Spinal cord blood flow and metabolism in transient spinal ischemia

  • M. Marsala


Spinal cord ischemia and the resulting irreversible loss of neurological function (i.e. the development of spastic or flaccid paraplegia) represent serious complications associated with transient aortic cross-clamp (as for rep air of aortic aneurysm). While the precise mechanism leading to the irreversible spinal neuronal degeneration after spinal ischemia is not well understood, current experimental studies suggest that the progressive evolution of spinal injury after aortic cross clamp may be considered in at least two categories: i) spinal cord blood flow changes, and, ii) metabolic changes resulting from critical reduction of substrate (glucose/oxygen) delivery and corresponding release of active factors (excitatory amino acids, prostaglandins, oxygen free radicals etc.) into the spinal extracellular space.


Spinal Cord Aortic Occlusion High Energy Phosphate Anterior Spinal Artery Spinal Cord Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aadahl P, Saether OD, Stenseth R, Myhre HO (1990) Microcirculation of the spinal cord during proximal aortic cross-clamping. Europ J Vasc Surg 4: 5–10CrossRefGoogle Scholar
  2. Abram SE, Kostreva DR (1986) Spinal cord metabolic response to noxious radiant heat stimulation of the cat hind footpad. Brain Res 385: 143–147PubMedCrossRefGoogle Scholar
  3. Allen BT, Davis CG, Osborne D, Karl I (1994) Spinal cord ischemia and reperfusion metabolism: The effect of hypothermia. J Vasc Surg 19: 332–339PubMedCrossRefGoogle Scholar
  4. Anderson DK, Behbehani MM, Means ED, Waters TR, Green ES (1983) Susceptibility of feline spinal cord energy metabolism to severe incomplete ischemia. Neurology 33: 722–731PubMedCrossRefGoogle Scholar
  5. Berguer R, Porto J, Fedoronko B, Dragovic L (1992) Selective deep hypothermia of the spinal cord prevents paraplegia after aortic cross-clamping in the dog model. J Vase Surg 35: 62–71CrossRefGoogle Scholar
  6. Bower TC, Murray MJ, Gloviczki P, Yaksh TL, Hollier LH, Pairolero PC (1989) Effects of thoracic aortic occlusion and cerebrospinal fluid drainage on regional spinal cord blood flow in dogs: Correlation with neurologic outcome. J Vasc Surg 9: 135–144PubMedGoogle Scholar
  7. Breckwoldt WL. Genco CM, Connolly RJ, Cleveland RJ, Diehl JT (1991) Spinal cord protection during aortic occlusion: Efficacy of intrathecal tetracaine. Ann Thorac Surg 51: 959–963PubMedCrossRefGoogle Scholar
  8. Cavazzuti M, Porro CA, Barbieri A, Galetti A (1991) Brain and spinal cord metabolic activity during propofol anaesthesia. Br J Anaesth 66: 490–495PubMedCrossRefGoogle Scholar
  9. Cheng MK, Robertson C, Grossman RG, Foltz R, Williams V (1984) Neurological outcome correlated with spinal evoked potentials in spinal cord ischemia model. J Neurosurg 60: 786–795PubMedCrossRefGoogle Scholar
  10. Cole DJ, Lin DM, Drumrnond JC, Shapiro HM (1990) Spinal tetracaine decreases central nervous system metabolism during somatosensory stimulation in the rat. Can J Anaesth 37: 231–237PubMedCrossRefGoogle Scholar
  11. Crosby G, Russo MA, Szabo MD. Davies KR(1990) Subarachnoid Clonidine reduces spinal cord blood flow and glucose utilization in conscious rats. Anesthesiology 73: 1179–1185PubMedCrossRefGoogle Scholar
  12. Danielisova V, Chavko M, Kehr J (1987) Adenine nucleotide levels and regional distribution of ATP in rabbit spinal cord after ischemia and recirculation. Neurochem Res 12: 241–245PubMedCrossRefGoogle Scholar
  13. Doppman JL, DiChiro G, Morton DL (1968) Arteriographie identification of spinal cord blood supply prior to aortic surgery. JAMA 204: 174–175PubMedCrossRefGoogle Scholar
  14. Evans HE (1993) Miller’s Anatomy of the Dog, 3rd edn. Saunders, Philadelphia, pp 648–649Google Scholar
  15. Faure C, Djindjian R, Lefehvre J (1966) [Apropos of spinal cord hazards in abdominal aortography]. Ann Radiol (Paris) 9: 523–530PubMedGoogle Scholar
  16. Follis F, Miller K, Scremin OU, Pett S, Kessler R, Temes T, Wemly JA (1995) Experimental delayed postischemic spinal cord hypoperfusion after aortic cross-clamping. Can J Neurol Sci 22: 202–207PubMedGoogle Scholar
  17. Gordh T Jr, Feuk U, Norlen K (1986) Effect of epidural clonidine on spinal cord blood flow and regional and central hemodynamics in pigs. Anesth Analg 65: 1312–1318PubMedGoogle Scholar
  18. Gray H. (1973) Edited by Charles Mayo Goss. Anatomy of the Human Body, 29th edn. Lea & Febiger,pp 964–971Google Scholar
  19. Griffiths IR, Rowan JO, Crawford RA (1975) Spinal cord blood flow measured by a hydrogen clearance technique. J Neurol Sci 26: 529–544PubMedCrossRefGoogle Scholar
  20. Hickey R, Albin MS, Bunegin L, Gelineau J (1986) Autoregulation of spinal cord blood flow: Is the cord a microcosm of the brain. Stroke 17: 1183–1189PubMedCrossRefGoogle Scholar
  21. Homma S, Suzuki T, Murayama S, Otsuka M (1979) Amino acid and substance P contents in spinal cord of cats with experimentai hind-limb rigidity produced by occlusion of spinal cord blood supply. J Neurochem 32: 601–698CrossRefGoogle Scholar
  22. Jacobs TP, Kempski O, McKinley D, Dutka AJ, Hallenbeck JM, Feuerstein G (1992) Blood flow and vascular permeability during motor dysfunction in a rabbit model of spinal cord ischemia. Stroke 23: 367–373PubMedCrossRefGoogle Scholar
  23. Jacobs TP, Shoami E, Baze W, Burgard E, Gunderson C, Hallenbeck JM, Fuerstein G (1987) Deteriorating stroke model: histopathology, edema, and eicosanoid changes following spinal cord ischemia in rabbit. Stroke 18: 741–750PubMedCrossRefGoogle Scholar
  24. Kadekaro M, Crane AM, Sokoloff L (1985) Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. ProcNat Acad Sci USA 82: 6010–6030CrossRefGoogle Scholar
  25. Kaplan BJ, Friedman WA, Gravenstein N, Richards R, Davis RF (1987) Effects of aortic occlusion on regional spina] cord blood flow and somatosensory evoked potentiais in sheep. Neurosurgery 21: 668–675PubMedCrossRefGoogle Scholar
  26. Kobrine AI, Doyle TF, Martins AN (1975) Autoregulation of spinal cord biood flow. Clin Neurosurg 22: 573–581PubMedGoogle Scholar
  27. Kwun BD, Vacanti F (1995) Mild hypothermia protects against irreversible damage during prolonged spinal cord ischemia. J Surg Res 59: 780–782PubMedCrossRefGoogle Scholar
  28. Lenzi P, Cianci T, Guidalotti PL, Franzini C (1986) Regional spinal cord blood flow during sleep-waking cycle in rabbit. Am J Physiol 251: H957–960Google Scholar
  29. Malatova Z, Vanicky I, Galik J, Marsala M (1995) Epidural perfusion cooling protects against spinal cord ischemia in rabbits. An evaluation of choiinergic function. Mol Chem Neuropath 25: 81–96CrossRefGoogle Scholar
  30. Marini CP, Cunningham JN (1993) Issues surrounding spinal cord protection. In: Advances in Cardiac Surgery, vol 4. Mosby, St. Louis, pp 89–107Google Scholar
  31. Marini CP, Grubbs PE, Toporoff B, Woloszyn TT, Coons MS, Acinapura AJ, Cunningham JN (1989) Effect of sodium nitroprusside on spinal cord perfusion and paraplegia during aortic cross-damping. Ann Thorac Surg 47: 379–783PubMedCrossRefGoogle Scholar
  32. Marsala M, Danielisova V, Chavko M, Hornakova A, Marsala J (1989) Improvement of energy state and basic modifications of neuropathological damage in rabbits as a result of graded postischemic spinal cord reoxygenation. Exper Neurol 105: 93–103CrossRefGoogle Scholar
  33. Marsala J, Sulla I, Santa M, Marsala M, Zacharias L, Radonak J (1991) Mapping of the canine lumbosacral spinal cord neurons by nauta method at the end of the early phase of paraplegia induced by ischemia and reperfusion. Neuroscience 45: 479–494PubMedCrossRefGoogle Scholar
  34. Marsala M, Vanicky I, Radonak J, Kliesenbauerova E, Marsala J (1992) Postischemic hyperoxia enhances vulnerability in the rabbit spinal cord ischemia model. Rest Neurol Neurosci 6: 283–291Google Scholar
  35. Marsala M, Vanicky I, Galik J, Radonak J, Kundrat I, Marsala J (1993) Panmyelic epidural cooling protects against ischemic spinal cord damage. J Surg Res 55: 21–31.PubMedCrossRefGoogle Scholar
  36. Marsala M, Vanicky 1, Yaksh TL (1994) Effect of graded hypothermia (27-34°C) on behavioral function, histopathology and spinal blood flow following spinal ischemia in rat. Stroke 25: 2038–2046PubMedCrossRefGoogle Scholar
  37. Nystrom B, Norlen K (1983) Regional spinal cord and brain blood flows in the rat. Neurol Res 5: 91–101PubMedGoogle Scholar
  38. Orendacova J, Marsala M, Marsala J (1991) The blood-brain barrier permeability in graded postischemic spinal cord reoxygenation in rabbits. Neurosci Lett 128: 143–146PubMedCrossRefGoogle Scholar
  39. Porro CA, Cavazzuti M, Galetti A, Sassatelli L, Barbieri GC (1991) Functional activity mapping of the rat spinal cord during formalin-induced noxious stimulation. Neuroscience 41:655–665PubMedCrossRefGoogle Scholar
  40. Pulsinelli WA, Brierley JB, Plum F. (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491–498PubMedCrossRefGoogle Scholar
  41. Rokkas CK, Cronin CS, Nitta T, Helfrich LR Jr, Lobner DC, Choi DW, Kouchoukos NT (1995) Profound systemic hypothermia inhibits the release of neurotransmitter amino acids in spinal cord ischemia. J Thorac Cardiovasc Surg 110: 27–35PubMedCrossRefGoogle Scholar
  42. Rubinstein A, Arbit E (1990) Spinal cord blood flow in the rat under normal physiological conditions. Neurosurgery 27: 882–886PubMedCrossRefGoogle Scholar
  43. Schievink WI, Luyendijk W, Los JA (1988) Does the artery of Adamkiewicz exist in the albino rat? J Anat 161: 95–101PubMedGoogle Scholar
  44. Senter HI, Venes JL (1979) Loss of autoregulation and post-tarumatic ischemia following experimental spinal cord trauma.) Neurosurg 50: 198–206CrossRefGoogle Scholar
  45. Simpson JI, Eide TR, Schiff GA, Clagnaz JF, Hossain I, Tverskoy A, Koski G (1994) Intrathecal magnesium sulfate protects the spinal cord from ischemic injury during thoracic aortic cross-clamping. Anesthesiology 81: 1493–1499PubMedCrossRefGoogle Scholar
  46. Simpson RK Jr, Robertson CS, Goodman JC (1990) Spinal cord ischemia-induced elevation of amino acids: extracellular measurement with microdialysis. Neurochem Res 15: 635–639PubMedCrossRefGoogle Scholar
  47. Smith ML, Auer RN, Siesjo BK (1984) The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol (Berl) 64: 319–332CrossRefGoogle Scholar
  48. Steen PA, Newberg L, Milde JH, Michenfeldcr JD (1983) Hypothermia and barbiturates: individual and combined effects on canine cerebral oxygen consumption. Anesthesiology 58: 527–532PubMedCrossRefGoogle Scholar
  49. Svensson LG, Von Ritter CM, Groeneveld HT, Rickards ES, Hunter SJ, Robinson MR Hinder RA (1986) Cross-clamping of the thoracic aorta. Influence of aortic shunts, laminectomy, papaverine, calcium channel blocker, allopurinol, and Superoxide dismutase on spinal cord blood flow and paraplegia in baboons. Ann Surg 204: 38–47Google Scholar
  50. Szilagyi DE, Hageman JH, Smith RF, Elliott JP (1978) Spinal cord damage in surgery of the abdominal aorta. Surgery 83: 38–45PubMedGoogle Scholar
  51. Taira Y, Marsala M (1996) Effect of proximal arterial perfusion pressure on function, spinal cord blood flow, and histopathological changes after increasing intervals of aortic occlusion in the rat. Stroke 27: 1850–1858PubMedCrossRefGoogle Scholar
  52. Torre de la J C (1984) Spinal cord injury models. Prog Neurobiol 22: 289–344PubMedCrossRefGoogle Scholar
  53. Tveten L (1976) Spinal cord vascularity: the spinal cord arteries in the rat. Acta Radiol Diagn 17: 385–398Google Scholar
  54. Ueno T, Itoh T, Hirahara K, Sakai M, Naitoh K (1994) Protection against spinal cordischaemia: one-shot infusion of hypothermie solution. Cardiovasc Surg 2: 374–378PubMedGoogle Scholar
  55. Vacanti FX; Ames A 3d (1984) Mild hypothermia and Mg++ protect against irreversible damage during CNS ischemia. Stroke 15: 695–698PubMedCrossRefGoogle Scholar
  56. Vanicky 1, Marsala M, Galik J, Marsala J (1993) Epidural perfusion cooling protection against protracted spinal cord ischemia in rabbits. I Neurosurg 79: 736–741Google Scholar
  57. Vanicky I, Marsala M, Oendacova J, Marsala J (1992) Silver impregnability of ischemia-sensitive neocortical neurons after 15 minutes of cardiac arrest in the dog. Anat Embryol 186: 167–173PubMedCrossRefGoogle Scholar
  58. Wisselink W, Becker MO, Nguyen JH, Money SR, Hollier LH (1994) Protecting the ischemie spinal cord during aortic clamping: the influence of selective hypothermia and spinal cord perfusion pressure. J Vasc Surg 19: 788–795PubMedCrossRefGoogle Scholar
  59. Woolen D H M, Millen J W (1955) The arterial supply of the spinal cord and its significance. J Neuroi Neurosurg Psychiatry 18: 97–102CrossRefGoogle Scholar
  60. Zivin JA, DeGirolami U (1980) Spinal cord infarction: a highly reproducible stroke model. Stroke 11: 200–202PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • M. Marsala
    • 1
  1. 1.Anesthesiology Research LaboratoryUniversity of CaliforniaSan DiegoUSA

Personalised recommendations