Computation and images in combinatorics

  • Maylis Delest
  • Jean-Marc Fédou
  • Guy Melançon
  • Nadine Rouillon
Part of the Texts and Monographs in Symbolic Computation book series (TEXTSMONOGR)


Combinatorics has always been concerned with images and drawings because they give interpretations of enumeration formulae leading to simple proofs of these formulae, and sometimes they are themselves central to the problem. Even if some small example drawings do not contain all elements of the proof, they are often useful to guide the intuition.


Virtual Machine Binary Tree Dependency Graph Formal Power Series Configuration File 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aho, A., Sethi, R., Ullman, J. (1986): Compilers. Addison-Wesley, Reading, MA.Google Scholar
  2. Arques, D., Eyrolles, G., Janey, N., Viennot, X. (1989): Combinatorial analysis of ramified patterns and computer imagery of trees. ACM SIGGRAPH. Comput. Graph. 23/3: 31–40.CrossRefGoogle Scholar
  3. Barcucci, E., Pinzani, R., Sprugnoli, R. (1992): Génération aléatoire de chemins sous diagonaux. In: Leroux, P., Reutenhauer, C. (eds.): Actes du 4ème Colloque Séries Formelles et Combinatoire Algébrique. Publications LaCIM, 11, Université de Québec à Montreal, pp. 17–32.Google Scholar
  4. Beaudoin-Lafon, M., Karsenty, A. (1992): Transparency and awareness in a real-time group-ware system. In: ACM Symposium on User Interface Software and Technology UIST’ 92, Association for Computing Machinery, New York, pp. 171–180.Google Scholar
  5. Bensoussan, A., et al. (1992): Les grands sujets de recherches en informatique et les programmes de l’INRIA. 25ieme anniversaire de l’INRIA. Institut National de Rechercheen Informatique et en Automatique, Le Chesnay.Google Scholar
  6. Bergeron, F., Cartier, G. (1988): Darwin: computer algebra and enumerative combinatorics. In: Cori, R., Wirsing, M. (eds.): STACS’ 88. Springer, Berlin Heidelberg New York Tokyo, pp. 393–394 (Lecture notes in computer science, vol. 294).CrossRefGoogle Scholar
  7. CalICo Group (1993): Outil de développement pour les communications, manuel d’utilisation. Rapp. Techn., LaBRI, Univerite de Bordeaux I, Bordeaux, France.Google Scholar
  8. Char, B., Geddes, K., Gonnet, G., Leong, B., Monogan, M., Watt, S. (1992): First leaves: a tutorial introduction to Maple V. Springer, Berlin Heidelberg New York Tokyo.MATHCrossRefGoogle Scholar
  9. Delest, M. (1995): Algebraic languages: a bridge between combinatorics and computer science. In: Billera, L. J., Greene, C., Simion, R., Stanley, R. P. (eds.): Formal power series and algebraic combinatorics. American Mathematical Society, Providence, RI, pp. 71–88.Google Scholar
  10. Denise, A. (1993): Génération aléatoire et uniforme de mots. In: Barlotti, A., Delest, M., Pinzani, R. (eds.): Actes du 5ème Colloque Séries Formelles et Combinatoire Algébrique, 1993. Université de Florence, pp. 153–164.Google Scholar
  11. Denise, A., Rouillon, N. (1992): Génération de structures arborescentes. In: Lucas, M. (ed.): Actes des 5 journées GROPLAN, pp. 83–90.Google Scholar
  12. Dutour, I., Fédou, J. (1994): Grammaire d’objets. Tech. Rep. 963-94, LaBRI, Université de Bordeaux I, Bordeaux, France.Google Scholar
  13. Flajolet, P., Salvy, B., Zimmermann, P. (1989): ΛγΩ: an assistant algorithms analyser. In: Mora, T. (ed.): Applied algebra, algebraic algorithms, and error-correcting codes. Springer, Berlin Heidelberg New York Tokyo, pp. 201–212 (Lecture notes in computer science, vol. 357)CrossRefGoogle Scholar
  14. Flajolet, P., Zimmermann, P., Cutsem, B. V. (1994): A calculus for the random generation of labelled combinatorial structures. Theor. Comput. Sci. 132: 1–35.MATHCrossRefGoogle Scholar
  15. Gaudin, V. (1995): XModele 2.0: manuel de maintenance. LaBRI, Université Bordeaux I, no. 9994–95.Google Scholar
  16. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V. (1993): PVM 3 users’s guide and reference manual. Techn. Rep., Oak Ridge National Laboratory, Oak Ridge, TN.Google Scholar
  17. Gomez, C., Goursat, M. (1994): Metanet: a system for network analysis. DIMACS Ser. Discr. Math. Theor. Comput. Sci. 15: 255–268.Google Scholar
  18. Kajler, N. (1993): Environnement graphique distribué pour le calcul formel. Ph.D. thesis, Université de Nice-Sophia Antipolis, Sophia Antipolis, France.Google Scholar
  19. Kerber, A. (1991): Algebraic combinatorics via finite group actions. B. I. Wissenschafts verlag, Mannheim.MATHGoogle Scholar
  20. ΨLab Group (1994): Ψlab user’s guide. Institut National de Recherche en Informatique et en Automatique, Le Chesnay.Google Scholar
  21. Rifflet, J. (1991): La communication sous Unix. Ediscience, Paris.Google Scholar
  22. Robinson, G. D. B. (1948): On the representation of the symmetric group. Am. J. Math. 60: 745–760CrossRefGoogle Scholar
  23. Rouillon, N. ( 1991 ): CalICo: une première réalisation du noyau. Mémoire de DEA Informatique, Université Bordeaux I, Bordeaux, France.Google Scholar
  24. Rouillon, N. (1994): Calcul et image en combinatoire. Ph.D. thesis, Université de Bordeaux I, Bordeaux, France.Google Scholar
  25. Schensted, C. (1961): Longest increasing and decreasing subsequences. Can. J. Math. 13: 179–191.MathSciNetMATHCrossRefGoogle Scholar
  26. Skiena, S. (1990): Implementing discrete mathematics: combinatorics and graph theory with Mathematica. Addison-Wesley, Reading, MA.MATHGoogle Scholar
  27. Symbolics (1984): Macsyma reference manual, 3rd edn. Symbolics Inc., Cambridge, MA.Google Scholar
  28. Viennot, G. (1986): Heaps of pieces i: basic definitions and combinatorial lemmas. In: Labelle, G., Leroux, P. (eds.): Combinatoire enumérative. Springer, Berlin Heidelberg New York Tokyo, pp. 210–245 (Lecture notes in mathematics, vol. 1234).Google Scholar
  29. Viennot, X. (1977): Une forme géométrique de la correspondance de Robinson-Schensted. In: Foata, D. (ed.): Combinatoire et représentation du groupe symétrique. Springer, Berlin Heidelberg New York, pp. 29–58 (Lecture notes in mathematics, vol. 579).CrossRefGoogle Scholar
  30. Viennot, X. (1988): La combinatoire bijective par l’exemple. Rapp. Interne, LaBRI, Université de Bordeaux, Bordeaux, France.Google Scholar
  31. Viennot, X. (1992): A survey of polyominoes enumeration. In: Leroux, P., Reutenauer, C. (eds.): 4ème Colloque Séries Formelles et Combinatoire Algébrique. Publications LaCIM, 11, Université du Québec à Montréal, pp. 399–420.Google Scholar
  32. Wilf, H. (1977): A unified setting for sequencing, ranking, and selection algorithms for combinatorial objects. Adv. Math. 24: 281–291.MathSciNetMATHGoogle Scholar
  33. Wolfram, S. (1988): Mathematica: a system for doing mathematics by computer. Addison-Wesley, Reading, MA.MATHGoogle Scholar
  34. Zimmermann, P. ( 1994): Gaïa: a package for the random generation of combinatorial structures. Maple Techn. Newslett. 1/1: 38–46.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • Maylis Delest
  • Jean-Marc Fédou
  • Guy Melançon
  • Nadine Rouillon

There are no affiliations available

Personalised recommendations