Skip to main content

Butyrophenone und strukturanaloge Verbindungen

  • Chapter
Neuro-Psychopharmaka Ein Therapie-Handbuch

Zusammenfassung

Trotz einer ähnlichen chemischen Grundstruktur und eines demzufolge ähnlichen Metabolismus verhalten sich die einzelnen Butyrophenone und Diphenylbutylpiperidine bezüglich Adsorption, Verteilung und Elimination sehr unterschiedlich, weitgehend bedingt durch unterschiedlich lipophile Eigenschaften.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Balant-Gorgia AE, Balant LP (1993) Psychotropic drug metabolism and clinical monitoring. In: Gram LF, Balant LP, Meltzer HY, Dahl SG (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York Tokyo, pp 212–229

    Google Scholar 

  • Bareggi SR, Mauri M, Cavallaro R, Regazzetti MG, Moro AR (1990) Factors affecting the clinical response to haloperidol therapy in schizophrenia. Clin Neuropharmacol 13 [Suppl]: S29–S34

    PubMed  Google Scholar 

  • Borgström L, Larsson H, Molander L (1982) Pharmacokinetics of parenteral and oral melperone in man. Eur J Clin Pharmacol 23: 173–176

    PubMed  Google Scholar 

  • Breyer-Pfaff U (1987) Klinische Pharmakokinetik der Neuroleptika: Ergebnisse und Probleme. In: Pichot P, Möller H-J (Hrsg) Neuroleptika. Springer, Berlin Heidelberg New York Tokyo, S 37–46

    Google Scholar 

  • Chang WH (1992) Reduced haloperidol: a factor in determining the therapeutic benefit of haloperidol treatment? Psychopharmacology 106: 289–296

    PubMed  CAS  Google Scholar 

  • Chang WH, Lin SK, Jann MW (1991) Interconversions between haloperidol and reduced haloperidol in schizophrenic patients and guinea pigs: a steady-state study. J Clin Psy-chopharmacol 11: 99–105

    CAS  Google Scholar 

  • Chang WH, Lin SK, Juang DJ, Chen LC, Yang CH, Hu WH, Chien CP, Lam YW, Jann MW (1993) Prolonged haloperidol and reduced haloperidol plasma concentrations after decanoate withdrawal. Schizophr Res 9: 35–40

    PubMed  CAS  Google Scholar 

  • Cooper SF, Dugal R, Albert J-M, Bertrand M (1975) Clin Pharmacol Ther 18: 325

    PubMed  CAS  Google Scholar 

  • Cressman WA, Plostnieks J, Johnson PC (1973) Absorption, metabolism, and excretion of droperidol by human subjects following intramuscular and intravenous administration. Anesthesiology 38: 363–369

    PubMed  CAS  Google Scholar 

  • Cressman WA, Bianchine JR, Slotnick VB, Johnson PC, Plostnieks J (1974) Plasma level profile of haloperidol in man following intramuscular administration. Eur J Clin Pharmacol 7: 99–103

    PubMed  CAS  Google Scholar 

  • Dahl SG (1990) Pharmakokinetik der Neuroleptika. In: müller-Oerlinghausen B, Möller HJ, Rüther E (Hrsg) Thioxanthene in der neuroleptischen Behandlung. Springer, Berlin Heidelberg New York Tokyo, S 25–33

    Google Scholar 

  • Doddi S, Rifkin A, Karajgi B, Cooper T, Boren-Stein M (1994) Blood levels of haloperidol and clinical outcome in schizophrenia. J Clin Psy-chopharmacol 14: 187–195

    CAS  Google Scholar 

  • El-Assra A, El-Sobky A, Kaye N, Blain PG, Wiles DH, Hajioff J, Gould SE (1983) The change from oral to depot neuroleptics in chronic schizophrenia. Clinical response and plasma levels after treatment with bromperidol or flu-phenazine decanoate. Janssen Res Rep

    Google Scholar 

  • Ereshefsky L, Davis CM, Harrington CA (1984) Haloperidol and reduced haloperidol plasma levels in selected schizophrenic patients. J Clin Psychopharmacol 4: 138–142

    PubMed  CAS  Google Scholar 

  • Fang J, Lai CT, Yu PH (1996) Neurotoxic effect of 4-(4-chlorophenyl)-1-(4-(4-fluorophenyl)-4-oxobuty1)-pyridinium (HP+), a major metabolite of haloperidol, in the dopaminergic system in vitro and in vivo. Biogen Amines 12:125–134

    Google Scholar 

  • Forsman A, Öhman R (1976) Pharmacokinetic studies on haloperidol in man. Curr Ther Res 20: 319–336

    PubMed  CAS  Google Scholar 

  • Furlanut M, Benetello P, Perosa A, Colombo G, Gallo F, Forgione A (1988) Pharmacokinetics of benperidol in volunteers after oral administration. Int J Clin Pharm Res 8: 13–16

    CAS  Google Scholar 

  • Heykants JJP (1978) Symposium on Trends in Modern Psychopharmacology and Psychiatry, Copenhagen, p 23

    Google Scholar 

  • Jann MW, Ereshefsky L, Saklad SR (1985) Clinical pharmacokinetics of the depot antipsychotics. Clin Pharmacokinet 10: 315–333

    PubMed  CAS  Google Scholar 

  • Jørgensen A (1986) Metabolism and pharmacokinetics of antipsychotic drugs. In: Bridges JW, Chasseaud LF (eds) Progress in drug metabolism, vol 9. Taylor & Francis, London, pp 111–174

    Google Scholar 

  • Kirch DG, Palmer MR, Egan M (1985) Electrophysiological interactions between haloperidol and reduced haloperidol, and dopamine, norepinephrine and phencyclidine in rat brain. Neuropharmacology 24: 375–379

    PubMed  CAS  Google Scholar 

  • Khot V, Devane CL, Korpi ER, Venable D, Bigelow LB, Wyatt RJ, Kirch DG (1993) The assessment and clinical implications of haloperidol acute-dose, steady-state, and withdrawal pharmacokinetics. J Clin Psychopharmacol 13: 120–127

    PubMed  CAS  Google Scholar 

  • Lam YWF, Chang WH, Jann MW, Chen H (1992) Interindividual variabilities in haloperidol interconversion and the reduced haloperidol/ haloperidol ratio. Neuropsychopharmacol 7: 33–39

    CAS  Google Scholar 

  • Llerena A, Alm C, Dahl ML, Ekqvist B, Bertilsson L (1992a) Haloperidol disposition is dependent on debrisoquine hydroxylation pheno-type. Ther Drug Monit 14: 92–97

    PubMed  CAS  Google Scholar 

  • Llerena A, Dahl ML, Ekqvist B, Bertilsson L (1992b) Haloperidol disposition is dependent on the debrisoquine hydroxylation pheno-type: increased plasma levels of the reduced metabolite in poor metabolizers. Ther Drug Monit 14: 261–264

    PubMed  CAS  Google Scholar 

  • Mccreadie RG, Heykants JJP, Chalmers A, Anderson AM (1979) Br J Clin Pharmacol 7: 533

    PubMed  CAS  Google Scholar 

  • Migdalof BH, Grindel JM, Heykants JJP, Janssen PAJ (1979) Penfluridol: a neuroleptic drug designed for long duration of action. Drug Metabol Rev 9: 281–299

    CAS  Google Scholar 

  • Miller DD, Perry PJ, Kelly MW, Coryell WH, Arndt SV (1990) Pharmacokinetic protocol for predicting plasma haloperidol concentrations. J Clin Psychopharmacol 10: 207–212

    PubMed  CAS  Google Scholar 

  • Reyntijens AJM, Heykants JJP, Woestenborghs RJH, Gelders YG, Aerts TJL (1982) Pharmacokinetics of haloperidol decanoate. Int Pharmacopsychiatry 17: 238–246

    Google Scholar 

  • Schlyer DJ, Volkow ND, Fowler JS, Wolf AP, Shiue CY, Dewey SL, Bendriem B, Logan J, Raulli R, Hitzemann R (1992) Regional distribution and kinetics of haloperidol binding in human brain: a PET study with (18F) haloperidol. Synapse 11: 10–19

    PubMed  CAS  Google Scholar 

  • Subramanyam B, Pond SM, Eyles DW, Whiteford HA, Fouda HG, Castagnoli N (1991) Identification of potentially neurotoxic pyridinium metabolite in the urine of schizophrenic patients treated with haloperidol. Biochem Bio-phys Res Commun 181: 573–578

    CAS  Google Scholar 

  • Tang SW, Glaister J, Davidson L, Toth R, Jeffries JJ, Seeman (1984) Total and free plasma neuroleptic levels in schizophrenic patients. Psy-chiatr Res 13: 285–293

    CAS  Google Scholar 

  • Tischio J, Chaikin B, Abrams L, Hetyei N, Patrick J, Weintraub H, Collins D, Chasin M, Wesson D, Abuzzahab F (1982) Comparative bioavailability and pharmacokinetics of bromperidol in schizophrenic patients following oral administration. J Clin Pharmacol 22: 16a

    Google Scholar 

  • Usuki E, Pearce R, Parkinson A, Castagnoli N (1996) Studies on the conversion of haloperidol and its tetrahydropyridine dehydration product to potentially neurotoxic pyridinium metabolites by human liver microsomes. Chem Res Toxicol 9: 800–806

    PubMed  CAS  Google Scholar 

  • Vranckx-Haenen J, de Munter W, Heykants J (1979) Fluspirilen administered in a biweekly dose for the prevention of relapses in chronic schizophrenics. Acta Psychiatr Belg 79: 459–474

    Google Scholar 

  • Wiles DH, Mccreadie RG, Whitehead A (1990) Pharmacokinetics of haloperidol and fluphe-nazine decanoates in chronic schizophrenia. Psychopharmacology 101: 274–281

    PubMed  CAS  Google Scholar 

Literatur

  • Alberch J, Brito B, Notario V, Castro R (1991) Prenatal haloperidol treatment decreases nerve growth factor receptor and mRNA in neonate rat forebrain. Neurosci Lett 131(2): 228–232

    PubMed  CAS  Google Scholar 

  • Auchus AP, Pickel VM (1992) Quantitative light microscopic demonstration of increased pallidal and striatal met-5-enkephalin-like immu-noreactivity in rats following chronic treatment with haloperidol but not with clozapine: implications for the pathogenesis of neurolep-tic-induced movement disorders. Exp Neurol 117(1): 17–27

    PubMed  CAS  Google Scholar 

  • Ayd FJ JR (1989) Fluspirilene: a new long-acting injectable neuroleptic. In: Ayd FJ (ed) 30 Years Janssen research in psychiatry. Ayd Medical Communications, Baltimore Maryland, pp 85–89

    Google Scholar 

  • Bandelow B, Müller P, Rüther E (1991) 30 Jahre Erfahrung mit Haloperidol. Fortschr Neurol Psychiat 59: 297–321

    PubMed  CAS  Google Scholar 

  • Bannon MJ, Freedman AS, Chiodo LA (1987) The electrophysiological and biochemical pharmacology of mesolimbic and mesocortical dopamine neurons. In: Iversen LI, Iversen LD, Snyder SH (eds) Handbook of psychopharma-cology. Plenum Press, New York, pp 329–374

    Google Scholar 

  • Bartlett EJ, Wolkin A, Brode JD, Laska EM, Wolf AP, Sanfilipo M (1991) Importance of pharmacologic control in PET studies: effects of thiothixene and haloperidol on cerebral glucose utilization in chronic schizophrenia. Psychiatry Res: Neuroimaging 40: 115–124

    PubMed  CAS  Google Scholar 

  • Benfeld P, Ward A, Clark BG, Jue SG (1988) Bromperidol. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in psychoses. Drugs 35: 670–684

    Google Scholar 

  • Buchsbaum MS, Potkin SG, Siegel BV Jr, Lohr J, Katz M, Gottschalk LA, Gulasekaram B, Marshall JF, Lottenberg S, Teng CY (1992) Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch Gen Psychiatry 49(12): 966–974

    PubMed  CAS  Google Scholar 

  • Bunney BS, Grace AA (1978) Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. Life Sci 23: 1715–1728

    PubMed  CAS  Google Scholar 

  • Calabresi P, De Murtas M, Mercuri NB, Bernardi G (1992) Chronic neuroleptic treatment: D2 dopamine receptor supersensitivity and striatal glutamatergic transmission. Ann Neurol 31(4): 366–373

    PubMed  CAS  Google Scholar 

  • Carlsson A, Lindouist M (1963) Effect of chlorpro-mazin or haloperidol on formation of 3-me-thoxytyramin and normetanephrine in mouse brain. Acta Pharmacol (Copenh) 20: 140–144

    CAS  Google Scholar 

  • Chien CC, Pasternak GW (1994) Selective antagonism of opioid analgesia by a sigma system. J Pharmacol Exp Ther 271(3): 1583–1590

    PubMed  CAS  Google Scholar 

  • Chrapusta SJ, Karoum F, Egan ME, Wyatt RJ (1993) Haloperidol and clozapine increase intraneuronal dopamine metabolism, but not gamma-butyrolactone-resistant dopamine release. Eur J Pharmacol 233(1): 135–142

    PubMed  CAS  Google Scholar 

  • Christensson EG (1989) Pharmacological data of the atypical neuroleptic compound melpero-ne (Buronil®). Acta Psychiatr Scand [Suppl] 352: 7–15

    CAS  Google Scholar 

  • Civelli O, Bunzow JR, Grandy DK, Zhou QY, Van Tol HHM (1991) Molecular biology of the dopamine receptor. Eur J Pharmacol 207: 277–286

    PubMed  CAS  Google Scholar 

  • Cools AR, Van Rossum JM (1976) Excitation-mediating and inhibition-mediating dopamine-receptors: a new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional clinical data. Psychopharmacologia (Berl) 45: 243–254

    CAS  Google Scholar 

  • Davidson M, Kahn RS, Knott P, Kaminsky R, Cooper M, Dumont K, After S (1991) Effect of neuroleptic treatment on symptoms of schizophrenia and plasma homovanillic acid concentrations. Arch Gen Psychiatry 48: 910–913

    PubMed  CAS  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine and schizophrenia: a review and reformulation. Am J Psychiatry 148: 1474–1486

    PubMed  CAS  Google Scholar 

  • De Koning P, De Vries MH (1995) A comparison of the neuro-endokrinological and temperature effects of DU 29894, flesinoxan, sulpiride and haloperidol in normal volunteers. Br J Clin Pharmacol 39(1): 7–14

    PubMed  CAS  Google Scholar 

  • Denber HCB, Rajotte P, Kauffman D (1959) Problems in evaluation of R-1625. Am J Psychiatry 116: 356–357

    PubMed  CAS  Google Scholar 

  • Ding XZ, Mocchetti I (1992) Dopaminergic regulation of cholezystokinin mRNA content in rat striatum. Brain Res Mol Brain Res 12(1–3): 77–83

    PubMed  CAS  Google Scholar 

  • Diets RO JR, Helton TE, McGinty JF (1993) Selective induction of Fos and FRA immunoreac-tivity within the mesolimbic and mesostriatal dopamine terminal fields. Synapse 13(3): 251–263

    Google Scholar 

  • Essig EC, Kilpatrrck IC (1991) Influence of acute and chronic haloperidol treatment on dopamine metabolism in the rat caudate-putamen, prefrontal cortex and amygdala. Psychophar-macology (Berl) 104(2): 194–200

    CAS  Google Scholar 

  • Farde L, Nordstrom AL (1992) PET analysis indicates atypical central dopamine receptor occupancy in clozapine-treated patients. Br J Psychiatry [Suppl] 17: 30–33

    Google Scholar 

  • Farde L, Nordstrøm AL, Wesel FA, Pauli S, Hall-Din C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49: 538–544

    PubMed  CAS  Google Scholar 

  • Freedman SB, Patel S, Marwood R, Emms F, Seab-Rook GR, Knowles MR, Mcallister G (1994) Expression and pharmacological characterization of the human D3 dopamine receptor. J Pharmacol Exp Ther 268(1): 417–426

    PubMed  CAS  Google Scholar 

  • Gewirtz GR, Gorman JM, Volavka J, Macaluso J, Gribkoff G, Taylor DP, Borlson R(1994) BMY 14802 — a sigma receptor ligand for the treatment of schizophrenia. Neuropsychopharma-col 10(1): 37–40

    CAS  Google Scholar 

  • Goebel S, Dietrich M, Jarry H, Wuttke W (1992) Indirect evidence to suggest that prolactin mediates the adrenal action of haloperidol to stimulate aldosterone and corticosterone secretion in rats. Endocrinology 130(2): 914–919

    PubMed  CAS  Google Scholar 

  • Grace AA, Bunney BS (1986) Induction of depo-larizatian block in midbrain dopamine neurons by repeated administration of haloperidol: analysis using in vivo intracellular recording. J Pharmacol Exp Ther 238(3): 1092–1100

    PubMed  CAS  Google Scholar 

  • Hernandez L, Baptista T, Hoebel BG (1990) Neurochemical effects of chronic haloperidol and lithium assessed by brain microdialysis in rats. Prog Neuropsychopharmacol Biol Psychiatry 14 [Suppl]: S17–S35

    PubMed  CAS  Google Scholar 

  • Holson RR, Webb PJ, Grafton TF, Hansen DK (1994) Prenatal neutoleptic exposure and growth stunting in the rat: an in vivo and in vitro examination of sensitive periods and possible mechanisms. Teratology 50(2): 125–136

    PubMed  CAS  Google Scholar 

  • Ichikawa J, Meltzer HY (1992) The effect of chronic atypical antipsychotic drugs and haloperidol on amphetamine-induced dopamine release in vivo. Brain Res 574(1–2): 98–104

    PubMed  CAS  Google Scholar 

  • Janke W, Debus G (1972) Double-blind psychometric evaluation of pimozide and haloperidol versus placebo in emotionally labile volunteers under two different work load conditions. Pharmacopsychiatry 1: 34–51

    Google Scholar 

  • Janssen PA (1962) A review of the pharmacology of haloperidol and of triperidol. Symposium Internazionale Sull’Haloperidol E Triperidol, Milano, pp 11–29

    Google Scholar 

  • Janssen PA, Nemegeers CJE, Schellekens KHL (1960) Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part III: The subcutaneous and oral activity in rats and dogs of 56 neuroleptic drugs in the jumping box test. Arzneimittelforschung 16: 339–346

    Google Scholar 

  • Janssen PA, Niemegeers CJE, Schellekens KHL (1965a) Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part I: „Neuroleptic activity spectra“ for rats. Arzneimittelforschung 15: 104–117

    PubMed  CAS  Google Scholar 

  • Janssen PA, Nemegeers CJE, Schellekens KHL (1965b) Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part II: „Neuroleptic activity spectra“ for dog. Arzneimittelforschung 15: 1196–1206

    Google Scholar 

  • Janssen PA, Niemegeers CJE, Schellekens KHL (1967) Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part IV: An improved experimental design for measuring the inhibitory effects of neuroleptic drugs on amphetamine-or apomorphine-induced „chewing“ and „agitation“ in rats. Arzneimittelforschung 15: 1196–1206

    Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Schellekens KHL, Lenaeris FM, Versruggen F, Van Nueten JM, Marsboom RHM, Herin W, Schaper WKA (1970) The pharmacology of fluspirilene (R 6218), a potent, long-acting and injectable neuroleptic drug. Arzneimittelforschung/ Drug Res 20: 1689–1698

    CAS  Google Scholar 

  • Janssen PA, Niemegeers CJE, Schellekens KHL (1994) Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part V: From halope-ridol and pipamperone to risperidone. Arznei-mittelforschung/Drug Res 44(1): 269–277

    CAS  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277: 93–96

    PubMed  CAS  Google Scholar 

  • King DJ, Henry G (1992) The effect of neuroleptics on cognitive and psychomotor function. A preliminary study in healthy volunteers. Br J Psychiatry 160: 647–653

    PubMed  CAS  Google Scholar 

  • Kishimoto T, Hirai M, Ohsawa H, Terada M, Matsuoka I, Ikawa G (1989) Manners of ar-ginine vasopressin secretion in schizophrenic patients — with reference to the mechanism of water intoxication. Jpn J Psychiatry Neurol 43(2): 161–169

    PubMed  CAS  Google Scholar 

  • Klimke A, Kleser E (1991) The treatment of positive and negative schizophrenic symptoms with dopamine agonists. In: Marneros A, Andreasen NC, Tsuang MT (eds) Negative versus positive schizophrenia. Springer, Berlin Heidelberg New York Tokyo, pp 377–398

    Google Scholar 

  • Klinzova AJ, Uranova NA, Haselhorst U, Schenk H (1990) Synaptic plasticity in rat medial prefrontal cortex under chronic haloperidol treatment produced behavioral sensitization. J Hirnforsch 31(2): 175–179

    PubMed  CAS  Google Scholar 

  • Lambert GW, Horne M, Kalff V, Kelly MJ, Turner AG, Cox HS, Jennings GL, Esler MD (1995) Central nervous system noradrenergic and dopaminergic turnover in response to acute neuroleptic challenge. Life Sci 56(19): 1545–1555

    PubMed  CAS  Google Scholar 

  • Leysen JE, Janssen PMF, Schotte A, Luyten WHML, Megens AAHP (1993) Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5HT2 receptors. Psychopharmacology (Berl) 112: S40–S54

    CAS  Google Scholar 

  • Lieberman JA (1993) Prediction of outcome in first-episode schizophrenia. J Clin Psychiatry 54 [Suppl]: 13–17

    PubMed  Google Scholar 

  • Lynch MR, Woo J (1991) Enhanced haloperidol-induced prolactin stimulation with chronic neuroleptic treatment in the rat. Life Sci 49(23): 1721–1729

    PubMed  CAS  Google Scholar 

  • Maas JW, Contreras SA, Miller AL, Berman N, Bowden CL, Javors MA, Seleshi E, Weintraub S (1993) Studies of catecholamine metabolism in schizophrenial psychosis-II. Neuropsy-chopharmacology 8(2): 111–115

    CAS  Google Scholar 

  • Magliozzi JR, Mungas D, Laubly JN, Blunden D (1989) Effect of haloperidol on a symbol digit substitution task in normal adult males. Neu-ropsychopharmacology 2: 29–37

    CAS  Google Scholar 

  • Magliozzi JR, Doran AR, GietzeN DW, Olson AM, Maclin E, Tuason B (1993) Effects of single dose haloperidol administration on plasma homovanillic acid levels in normal subjects. Psychiat Res 47: 141–149

    CAS  Google Scholar 

  • Malaspina D, Colemann EA, Quitkin M, Amador XF, Kaufmann CA, Gorman JM, SACKEIM (1994) Effects of pharmacological catecholamine manipulation on smooth pursuit eye movements in normals. Schizophr Res 13(2): 151–159

    PubMed  CAS  Google Scholar 

  • Malmberg A, Jackson DM, Eriksson A, Mohell N (1993) Unique binding characteristics of antipsychotic agents interacting with human dopamine D2A, D2B and D3 receptors. Mol Pharmacol 43: 749–754

    PubMed  CAS  Google Scholar 

  • Markianos M, Sakellariou G, Bistolaki E (1991) Prolactin responses to haloperidol in drug-free and treated schizophrenic patients. J Neural Transm [Gen Sect] 83(1–2): 37–42

    CAS  Google Scholar 

  • Masuda Y, Murai S, Saito H (1991) The enhancement of the hypomotility induced by small doses of haloperidol in the phase of dopaminergic supersensitivity in mice. Neuropharmacology 30(1): 35–40

    PubMed  CAS  Google Scholar 

  • Mc Clelland GR, Cooper SM, Pigram AJ (1990) A camparison of the central nervous system effects of haloperidol, chlorpromazin and sulpiride in normal volunteers. Br J Clin Pharmacol 30(6): 795–803

    CAS  Google Scholar 

  • Meltzer HY, Koenig JL, Nasch JF, Gudelsky GA (2989) Melperone and clozapine: neuroendocrine effects of atypical neuroleptic drugs. Acta Psychiatr Scand [Suppl] 352: 24–29

    Google Scholar 

  • Meshul CK, Janowsky A, Casey DE, Stallbaumer RK, Taylor B (1992) Effect of haloperidol and clozapine on the density of „perforated“ synapses in caudate, nucleus accumbens, and medial prefrontal cortex. Psychopharmacol (Berl) 106(1): 45–52

    CAS  Google Scholar 

  • Miyake M, Iguchi K, Okamura H, Fukui K, Naka-Jima T, Chihara E, Ibata Y, Yanaihara N (1990) Effect of Haloperidol on immunoreactive neuropeptide Y in rat cerebral cortex and basal ganglia. Brain Res Bull 25(2): 263–269

    PubMed  CAS  Google Scholar 

  • Moghaddam B, Bunney BS ( 1990) Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens and striatum of the rat: an in vivo microdialysis study. J Neurochem 54(5): 1755–1760

    PubMed  CAS  Google Scholar 

  • Moghaddam B, Bunney BS (1990) Utilization of microdialysis for assessing the release of mesotelencephalic dopamine following clozapine and other antipsychotic drugs. Prog Neuropsychopharmacol Biol Psychiatry 14 [Suppl]: S 51–57

    Google Scholar 

  • Morgan JI, Curran TE (1995) Proto-oncogenes. Beyond second messengers. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 631–642

    Google Scholar 

  • Nemeroff CB, Kins CD, Levant B, Bisseite G, Campbell A, Baldessarini RJ (1991) Effects of the isomers of N-n-propylnorapomorphine and haloperidol on regional concentrations of neurotensin in rat brain. Neuropsychophar-macology 4(1): 27–33

    CAS  Google Scholar 

  • Newcomer JW, Riney SJ, Vinogradow S, Csernan-Sky JG (1992) Plasma prolactin and homo-vanillic acid as markers tor psychopathology and abnormal movements during maintenance haloperidol treatment in male patients with schizophrenia. Psychiatry Res 41(3): 191–202

    PubMed  CAS  Google Scholar 

  • Niemegeers CJE (1988) Paul Janssen und die Entdeckung von Haloperidol sowie anderer Neuroleptika. In: Linde OK (Hrsg) Pharmako-psychiatrie im Wandel der Zeit. Tilia-Verlag, Mensch und Medizin, Klingenmünster, S 155–169

    Google Scholar 

  • Niemegeers CJE, Janssen PAJ (1974) Bromperidol, a new potent neuroleptic of the butyrophe-none series. Arzneimittelforschung/Drug Res 24(1): 45–52

    CAS  Google Scholar 

  • Nordstrøm AL, Farde L, Halldin C (1992) Time course of D2-dopamine receptor occupancy examined by PET after single oral doses of haloperidol. Psychopharmacology (Berl) 106(4): 433–438

    Google Scholar 

  • Nordstrom AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C, Uppfeldt G (1993) Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 33: 227–235

    PubMed  CAS  Google Scholar 

  • Nyberg S, Farde L, Halldin C, Dahl ML, Bertilsson L (1995) D2 dopamine receptor occupancy during low-dose treatment with haloperidol decanoate. Am J Psychiatry 152(2): 173–178

    PubMed  CAS  Google Scholar 

  • Pinder RM, Brogden RN, Sawyer PR, Speight TM, Spencer R, Avery GS (1976) Pimozide: a review of its pharmacological properties and therapeutic uses in psychiatry. Drugs 12: 1–40

    PubMed  CAS  Google Scholar 

  • Robertson GS, Fibinger HC (1992) Neuroleptics increase c-fos expression in the forebrain: contrasting effects of clozapine and haloperidol. Neuroscience 46(2): 315–328

    PubMed  CAS  Google Scholar 

  • Schmidt MH, Lee T (1991) Investigation of striatal dopamine D2 receptor acquisition following prenatal neuroleptic exposure. Psychiatry Res 36(3): 319–328

    PubMed  CAS  Google Scholar 

  • Schwartz JC, Giros B, Martres MP, Sokoloff P (1993) Multiple dopamine receptors as molecular targets for antipsychotics. In: Brunello N, Mendlewicz J, Racagni G (eds) New generation of antipsychotic drugs: novel mechanism of action, vol 4. Karger, Basel, pp 1–14 (Int Acad Biomed Drug Res)

    Google Scholar 

  • Sedvall G (1992) The current status of PET scanning with respect to schizophrenia. Neuropsy-chopharmacology 7: 41–54

    CAS  Google Scholar 

  • Seeman, Van TOL (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15(7): 264–270

    PubMed  CAS  Google Scholar 

  • Seiler W, Wetzel H, Hillert A, Schollnhammer G, Benkert O, Hiemke C (1994) Plasma levels of benperidol, prolactin, and homovanillic acid after intravenous versus two different kinds of oral application of the neuroleptic in schizophrenic patients. Exp Clin Endocrinol 102(4): 326–333

    PubMed  CAS  Google Scholar 

  • Smialowska M, Legutgo B (1992) Haloperidol-induced increase in neuropeptide Y immuno-reactivity in the locus coeruleus of the rat brain. Neuroscience 47(2): 351–355

    PubMed  CAS  Google Scholar 

  • Sokoloff P, Andrieux M, Besançon R, Pilon C, Martres MP, Giros B, Schwartz JC (1992) Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2-receptor. Eur J Pharmacol 225: 331–337

    PubMed  CAS  Google Scholar 

  • Stille G, Lauener H (1971) Zur Pharmakologie katatonigener Stoffe. I. Mitteilung: Korrelation zwischen neuroleptischer Katalepsie und Homovanillinsäuregehalt im C. Striatum bei Ratten. Arzneimittelforschung 21: 252–255

    CAS  Google Scholar 

  • Vincent SL, Mcsparren J, Wang RY, Benes FM (1991) Evidence for ultrastructural changes in cortical axodendritic synapses following longterm treatment with haloperidol or clozapine. Neuropsychopharmacology 5(33): 147–155

    PubMed  CAS  Google Scholar 

  • Warner MD, Gillespie H, Pavlou SN, Nader S, Peabody CA (1992) The effect of haloperidol on aldosterone secretion. Psychoneuroendo-crinology 17(5): 517–521

    CAS  Google Scholar 

  • Wiedemann DJ, Garris PA, Near JA, Wightman RM (1992) Effect of chronic haloperidol treatment on stimulated synaptic overflow of dopamine in the rat striatum. J Pharmacol Exp Ther 261(2): 574–579

    PubMed  CAS  Google Scholar 

  • Wiesel FA, Farde L, Halldin C (1989) Clinical melperone treatment blocks D2-dopamine receptors in the human brain as determined by PET. Acta Psychiatr Scand [Suppl 352]: 30–34

    Google Scholar 

  • Williams R, Ali SF, Scalzo FM, Soliman K, Holson RR (1992) Prenatal haloperidol exposure: effects of brain weights and caudate neurotransmitter levels in rats. Brain Res Bull 29(3–4): 449–458

    PubMed  CAS  Google Scholar 

  • Yamada S, Yokoo H, Harajiri S, Nishi S (1991) Alternations in dopamine release form striatal slices of rats after chronic treatment with haloperidol. Eur J Pharmacol 192(1): 141–145

    PubMed  CAS  Google Scholar 

Literatur

  • Athen D, Hippius R, Meyendorf R, Riener C, Steiner C (1977) Ein Vergleich der Wirksamkeit von Neuroleptika und Clomethiazol bei der Behandlung des Alkoholdelirs. Nervenarzt 48: 528–532

    PubMed  CAS  Google Scholar 

  • Ayd FJ (1980) Haloperidol update: 1958–1980. Ayd Medical Communications, Baltimore

    Google Scholar 

  • Balant-Gorgia AE, Eisele R, Balant L, Garrone G (1984) Plasma haloperidol levels and therapeutic response in acute mania and schizophrenia. Eur Arch Psychiatry Neurol Sci 234:1–4

    PubMed  CAS  Google Scholar 

  • Ban TA (1969) Treatment of acute and chronic psychoses with haloperidol: review of the clinical results. Curr Ther Res 11: 284–288

    PubMed  CAS  Google Scholar 

  • Ban TA, Lehmann HE (1967) Efficacy of haloperidol in drug refractory patients. Int J Neuropsy-chiat [Suppl 3]: 79

    Google Scholar 

  • Bandelow B, Müller P, Frick U, Gaebel W, Linden M, Müller-Spahn F, Pietzcker A, Tegeler J (1992) Depressive syndromes in schizophrenic patients under neuroleptic therapy. Eur Arch Psychiatry Clin Neurosci 241: 291–295

    PubMed  CAS  Google Scholar 

  • Bauer D, Gärtner HJ (1983) Wirkungen der Neuroleptika auf die Leberfunktion, das blutbildende System, den Blutdruck und die Temperaturregulation. Ein Vergleich zwischen Clozapin, Perazin und Haloperidol anhand von Krankenblattauswertungen. Pharmacopsych-iat 16: 23–29

    CAS  Google Scholar 

  • Bechelli LPC, Ruffino-Neto A, Hetem G (1983) A double-blind controlled triai of pipotiazine, haloperidol and placebo in recently-hospitalized acute schizophrenic patients. Brazilian J Med Biol Res 16: 305–311

    CAS  Google Scholar 

  • Bennett WM, Singer I, Golper T, Feig P, Coggins CJ (1977) Guidelines for drug therapy in renal failure. Ann Int Med 86: 754–783

    PubMed  CAS  Google Scholar 

  • Bennett WM, Muther RS, Parker RA, Feig P, Morrison G, Golper TA, Singer I (1980) Drug therapy in renal failure: dosing guidelines for adults, part II. Sedatives, hypnotics, and tranquilizers; cardiovascular, antihypertensive, and diuretic agents; miscellanous agents. Ann Int Med 93: 286–325

    PubMed  CAS  Google Scholar 

  • Bjerkenstedt L (1989) Melperone in the treatment of schizophrenia. Acta Psychiatr Scand 352: 35–39

    CAS  Google Scholar 

  • Böhm P (1980) Akut-Therapie mit Benperidol und frühe Umstellung auf Depot-Neurolepti-ka. Ärztl Gespräch 30: 78–83

    Google Scholar 

  • Brannen JO, Mcevoy JP, Wilson WH, Ban TA, Berney SA, Schaffee JD (1981) A double-blind comparison of bromperidol and haloperidol in newly admitted schizophrenic patients. Pharmakopsychiat 14: 139–140

    CAS  Google Scholar 

  • Broussolle P, Grunthaler C (1965) Impressions clinique tirées de 80 cures de Ben-péridol. J Méd de Lyon 5: 407–408

    Google Scholar 

  • Campbell M, Fish B, Shapiro T, Floyd A (1972) Acute responses of schizophrenic children to a sedative and a „stimulating“ neuroleptic: a pharmacologic yardstick. Curr Ther Res 14(12): 759–766

    PubMed  CAS  Google Scholar 

  • Clark ML, Huber WK, Kyriakopoulos AA, Ray TS, Colmore JP, Ramsey HR (1968) Evaluation of trifluperidol in chronic schizophrenia. Psy-chopharmacologia (Berlin) 12: 193–203

    Google Scholar 

  • Clinton JE, Sterner S, Stelmachers Z, Ruiz E (1987) Haloperidol for sedation of disruptive emergence patients. Ann Emerg Med 16: 319–322

    PubMed  CAS  Google Scholar 

  • Cookson JC, Moult PJ, Wiles D, Besser GM (1983) The relationship between prolactin levels and clinical ratings in manic patients treated with oral and intravenous test doses of haloperidol. Psychol Med 13: 279–285

    PubMed  CAS  Google Scholar 

  • Cookson JC, Silverstone T, Williams S, Besser GM (1985) Plasma Cortisol levels in mania: associated clinical ratings and changes during treatment with haloperidol. Br J Psychiatry 146: 498–502

    PubMed  CAS  Google Scholar 

  • Crane G (1967) A review of the clinical literature on haloperidol. Int J Neuropsychiat Aug: 110–127

    Google Scholar 

  • Cummingham DG, Challapalli M (1979) Hypertension in acute haloperidol poisoning. J Pediatr 95: 489–490

    PubMed  CAS  Google Scholar 

  • Dincsoy HP, Saelinger DA (1982) Haloperidol-induced chronic cholestatic liver disease. Gastroenterology 83: 694–700

    PubMed  CAS  Google Scholar 

  • Dudley LD, Rowlett DB, Loebel PJ (1979) Emergency use of intravenous haloperidol. Paper presented at the 131th Annual Meeting of the American Psychiatric Association, May 8–12. Gen Hosp Psychiat 1(3): 240–246

    CAS  Google Scholar 

  • Eggers C, Kessler E (1987) Besonderheiten der neuroleptischen Behandlung bei Kindern und Jugendlichen. In: Heinrich K, Klieser E (Hrsg) Probleme der neuroleptischen Dosierung. Schattauer, Stuttgart New York

    Google Scholar 

  • Ericksen SE, Hurt SW, Chang S et al. (1978) Haloperidol dose, plasma levels, and clinical response: a double-blind study. Psychophar-macol Bull 14: 15–16

    CAS  Google Scholar 

  • Fernando J, Krishna Raju R, Jones GG, Stanley RO (1984) The use of depot neuroleptic haloperidol decanoate. Acta Psychiatr Scand 69: 175–176

    PubMed  CAS  Google Scholar 

  • Flügel KA, Pfeiffer WM (1967) Klinische Erfahrung mit dem Butyrophenon Benperidol. Arzneimittelforschung 17: 483–485

    PubMed  Google Scholar 

  • Fox W, Gobble F, Clos M (1964) A clinical comparison of trifluperidol, haloperidol, and chlorpromazine. Curr Ther Res 4: 409–415

    Google Scholar 

  • Gallant DM, Bishop MP, Timmons E, Steele CA (1963) A controlled evaluation of trifluperidol: a new potent psychopharmacologic agent. Curr Ther Res 5(9): 428–471

    Google Scholar 

  • Gerle B (1964) Clinical observations on the side-effects of haloperidol. Acta Psychiatr Scand 40: 65–76

    PubMed  CAS  Google Scholar 

  • Gerle B (1966) Haloperidol clinical experience. Clin Trial J 3: 360–384

    Google Scholar 

  • Giannini AJ, Eighan MS, Loiselle RH, Giannini MC (1984) Comparison of haloperidol and chlor-promazin in the treatment of phencyclidine psychosis. J Clin Psychopharmacol 24: 202–204

    CAS  Google Scholar 

  • Grohmann R (1983) EKG-Untersuchungen im Rahmen eines Drug Monitoring-Systems in der Psychiatrie. In: Müller-Oerlinghausen B (Hrsg) Klinische Relevanz der Kardiotoxizität von Psychopharmaka. pmi, Frankfurt Zürich, S 82

    Google Scholar 

  • Grohmann R, Rüther E (1994) Neuroleptika. In: Grohmann R, Rüther E, Schmidt LG (Hrsg) Unerwünschte Wirkungen von Psychopharmaka. Springer, Berlin Heidelberg New York Tokyo, S 42–133

    Google Scholar 

  • Haas S, Beckmann H (1982) Pimozide versus haloperidol in acute schizophrenia. A double blind controlled study. Pharmacopsychiat 15: 70–74

    CAS  Google Scholar 

  • Haase H-J, Mattke D, Schönbeck M (1964) Klinisch-neuroleptische Prüfungen am Beispiel der Butyrophenonderivate Benzperidol und Spiroperidol. Psychopharmacol 6: 435–452

    CAS  Google Scholar 

  • Harnryd C, Bjerkenstedt L, Gullberg B (1989) A clinical comparison of melperone and placebo in schizophrenic women on a milieu therapeutic ward. Acta Psychiatr Scand 352: 40–47

    CAS  Google Scholar 

  • Holzbach E, Bühler KE (1978) Die Behandlung des Delirium tremens mit Haldol. Nervenarzt 49: 405–409

    PubMed  CAS  Google Scholar 

  • Itoh H (1985) A comparison of the clinical effects of bromperidol, a new butyrophenone derivative, and haloperidol on schizophrenia using a double-blind technique. Psychopharmacol Bull 21: 120–122

    PubMed  CAS  Google Scholar 

  • Itoh H, Yagi G, Ohtsuka N et al. (1980) Serum level of haloperidol and its clinical significance. Prog Neuropsychopharmacol 4:171–183

    PubMed  CAS  Google Scholar 

  • Ives TJ, Fleming MF, Weart CW, Bloch D (1985) Treatment of intractable hiccups with intra-muscular haloperidol. Am J Psychiatry 142: 1368–1369

    PubMed  CAS  Google Scholar 

  • Kapfhammer HP, Rüther E (1987) Depot-Neuro-leptika. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Kelwala S, Ban TA, Berney SA, Wilson WH (1984) Rapid tranquilization: a comparative study of thiothixene and haloperidol. Prog Neuropsy-chopharmacol Biol Psychiatry 8: 77–83

    CAS  Google Scholar 

  • Klein DF, Davis JM (1969) Diagnosis and drug treatment of psychiatric disorders. Williams, Baltimore

    Google Scholar 

  • Klein E, Bental E, Lerer B, Belmaker RH (1984) Carbamazepine and haloperidol vs. p0lacebo and haloperidol in exited psychoses. A controlled study. Arch Gen Psychiatry 41:165–170

    PubMed  CAS  Google Scholar 

  • Kummer J, Gündel L (1994) Wirksamkeit und Verträglichkeit von Melperon bei geronto-psychiatrischen Patienten mit Insomnie — eine schlafpolygraphische Doppelblindstudie vs. Lorazepam. Krankenhauspsychiatrie 5: 54–60

    Google Scholar 

  • Laux G (1992) Pharmakopsychiatrie. Fischer, Stuttgart

    Google Scholar 

  • Lehmann E, Lienert A (1984) Differential improvements from haloperidol in two types of schizophrenics. Psychopharmacol 84: 96–97

    CAS  Google Scholar 

  • Luckey WT, Schiele BC (1967) A comparison of haloperidol and trifluoperazin. Dis Nerv Syst 28: 181–186

    PubMed  CAS  Google Scholar 

  • Man PL, Chen CH (1973) Rapid tranqulization of acutely psychotic patients with intramuscular haloperidol and chlorpromazine. Psychoso-matics 14: 59–63

    CAS  Google Scholar 

  • Mclaren S, Cookson JC, Silverstone T (1992) Positive and negative symptoms, depression and social disability in chronic schizophrenia: a comparative trial of bromperidol and fluphenazine decanoates. Int Clin Psychopharmacol 7: 67–72

    PubMed  CAS  Google Scholar 

  • Menon S, Ramachandran V (1972) A controlled trial of trifluperidol on a group of chronic schizophrenic patients. Curr Ther Res 14: 17–21

    PubMed  CAS  Google Scholar 

  • Modestin J, Toffler G, Pia M, Greub E (1983) Haloperidol in acute schizophrenic inpatients. A double-blind comparison of two dosage regimens. Pharmacopsychiat 16: 121–126

    CAS  Google Scholar 

  • Mueller CE, Frost GL, Elenbaas RM (1983) Ha-loperidol-overdose-induced torsade de pointes. Drug Intelligence and Clinical Pharmacy 17: 440

    Google Scholar 

  • Naber D, Ackenheil M, Laakman G, Fischer H, Von Werder K (1980) Basal and stimulated levels of prolactin, TSH and LH in serum of chronic schizophrenic patients, long-term treated with neuroleptics. Pharmakopsychiat 13: 325–330

    CAS  Google Scholar 

  • Nedopil N, Rüther E (1985) High-dosage neuroleptic therapy for acute schizophrenic patients — two double-blind studies with ben-peridol. Pharmacopsychiat 1: 63–66

    Google Scholar 

  • Nygaard HA, Fuglum E, Elgen K (1992) Zu-clopenthixol/melperone and haloperidol/le-vomepromazine in the elderly. Meta-analysis of two double-blind trials at 15 nursing homes in Norway. Curr Med Res Opin 12: 615–622

    PubMed  CAS  Google Scholar 

  • Oldham AJ, Bott M (1971) The management of excitement in general hospital psychiatric ward by high dosage haloperidol. Acta Psychi-atr Scand 47: 369–376

    CAS  Google Scholar 

  • Pakalnis A, Drake ME, John K, Kellum BJ (1987) Forced normalization. Acute psychosis after seizure control in seven patients. Arch Neurol 44: 289–292

    PubMed  CAS  Google Scholar 

  • Palestine ML (1973) Drug treatment of alcohol withdrawal syndrome and delirium tremens. A comparison of haloperidol with mesoridazine and hydroxyzine. Q J Stud Alc 34:185–193

    CAS  Google Scholar 

  • Parent M, Toussaint C (1983) Flupenthixol versus haloperidol in acute psychosis. Pharmathera-peutica 3: 354–364

    CAS  Google Scholar 

  • Petit P, Blayac JP, Castelnau D, Billet J, Puech R, Pouget R (1987) Utilisation de très fortes posologies d’halopéridol dans le traitement des épisodes psychotiques aigus. L’encéphale 13: 127–130

    PubMed  CAS  Google Scholar 

  • Prasad L, Townley MC (1966) Haloperidol and thioridazine in treatment of chronic schizophrenics. Dis Nerv Syst 27: 723–726

    Google Scholar 

  • Pratt IT (1971) Twilight sleep after infarcation. Br Med J 4: 475–476

    Google Scholar 

  • Pratt JP, Bishop MP, Gallant DM (1964) Trifluo-peridol and haloperidol in treatment of acute schizophrenia. Am J Psychiatry 121: 592–594

    PubMed  CAS  Google Scholar 

  • Psaras, MS, Paterakis P, Manafi T, Zissis NP, Lyketsos GK (1984) Therapeutic evaluation of bromperidol in schizophrenia. Curr Ther Res 36: 1089–1097

    Google Scholar 

  • Remington G, Pollock B, Voineskos G, Reed K, Coulter K (1993) Acutely psychotic patients receiving high-dose haloperidol therapy. J Clin Psychopharmacol 13: 41–45

    PubMed  CAS  Google Scholar 

  • Reschke RW (1974) Parenteral haloperidol for rapid control of severe, disruptive symptoms of acute schizophrenia. Dis Nerv Syst 35:112–115

    PubMed  CAS  Google Scholar 

  • Ritter MR, Davidson DE, Robinson TA (1972) Comparison of injectable haloperidol and chlorpromazine. Am J Psychiatry 129:110–113

    Google Scholar 

  • Royer P, Galland S (1966) Le Benpéridol dans la pratique psychiatrique. Ann Méd Nancy 5: 269–282

    Google Scholar 

  • Rüther E (1986) Wirkungsverlauf der neuroleptischen Therapie. Fischer, Stuttgart New York

    Google Scholar 

  • Sato M, Chen CH CH, Akiyama K, Otsuki S (1983) Acute exacerbation of paranoid psychotic state after long-term abstinence in patients with previous metamphetamine psychosis. Biol Psychiatry 18: 429–440

    PubMed  CAS  Google Scholar 

  • Schmidt LG, Schüssler G, Kappes CV, Müller-Oer-Linghausen B (1982) Vergleich einer höher dosierten Haloperidol-Therapie mit einer Pe-razin-Standard-Therapie bei akut-schizophrenen Patienten. Nervenarzt 53: 530–536

    PubMed  CAS  Google Scholar 

  • Schmidt LG, Niemeyer R, Müller-Oerlinghausen B (1983) Drug prescribing pattern of a psychiatric university hospital in Germany. Pharma-copsychiat 16: 35–42

    CAS  Google Scholar 

  • Scialli JVK, Thornton WE (1978) Toxic reactions from a haloperidol overdose in two children. Thermal and cardiac manifestations. JAMA 239(1): 48–49

    PubMed  CAS  Google Scholar 

  • Serrano AC (1981) Haloperidol — its use in children. J Clin Psychiatry 42: 154–156

    PubMed  CAS  Google Scholar 

  • Sieberns S (1986) Akut-Behandlung schizophrener Psychosen mit Benperidol. Krankenhausarzt 59: 925–931

    Google Scholar 

  • Sim M, Armitage GH, Davies MH, Gordon EB (1971) The treatment of schizophrenia and acute psychoses. A controlled trial of trifluperidol (Triperidol) with trifluoperazin. Clinical Trials J 1: 35–40

    Google Scholar 

  • Stone CK, Garve DL, Griffith J, Hirschowitz J, Bennett J (1995) Further evidence of a dose-response threshold for haloperidol in psychosis. Am J Psychiatr 152: 1210–1212

    PubMed  CAS  Google Scholar 

  • Stotsky BA (1972) Haloperidol in the treatment of geriatric patients. In: Dímascío A, Shader RI (eds) Butyrophenones in psychiatry. Raven Press, New York, pp 71–84

    Google Scholar 

  • Tanghe A, Vereecken TM (1970) Quelques expériences avec un nouveau neuroleptique — le Benpéridol. L’encéphale 49: 479–485

    Google Scholar 

  • Tobin JM, Brousseau FR, Lorenz AA (1970) Clinical evaluation of haloperidol in geriatric patients. Geriatrics 25: 119–122

    PubMed  CAS  Google Scholar 

  • Wagner H, Bartels M (1987) Neuroleptische Therapie bei Patienten mit hirnorganischer Vorschädigung. Wirksamkeit von Melperon. MMW 129: 784–785

    Google Scholar 

  • Wastl R, Grohmann R, Rüther E (1986) Frequency of increased serum liver-enzyme levels under treatment with neuroleptics. Pharma-kopsychiat 19: 290–291

    Google Scholar 

  • Woggon B, Angst J (1978) Double-blind comparison of bromperidol and perphenazine. Int Pharmacopsychiatry 13: 165–175

    PubMed  CAS  Google Scholar 

  • Zee-Cheng CS, Mueller CE, Seifert CF, Gibbs HR (1985) Haloperidol and torsade de pointes. Ann Intern Med 102: 418

    PubMed  CAS  Google Scholar 

Literatur

  • Angst J, Woggon B (1975) Klinische Prüfung von fünf Depotneuroleptika. Arzneimittelforschung 25: 267–270

    PubMed  CAS  Google Scholar 

  • Ayd FJ (1971) Pimozide: a promising new neuroleptic. Int Drug Ther Newsletter 6: 17–28

    Google Scholar 

  • Barnes TRE, Milavic G, Curson DA (1983) Use of the social behaviour assessment schedule (SBAS) in a trial of maintenance antipsychotic therapy in schizophrenic outpatients: pimozide versus fluphenazine. Social Psychiatry 18: 193–199

    PubMed  CAS  Google Scholar 

  • Chouinard G, Annable L (1982) Pimozide in the treatment of newly admitted schizophrenic patients. Psychopharmacology 76: 13–19

    PubMed  CAS  Google Scholar 

  • Dolon PT, Swaback DO, Osborne ML (1977) Pimozide versus fluphenazine in ambulatory schizophrenics, a 12-month comparison study. Dis Nerv Syst 38: 119–123

    Google Scholar 

  • Falloon J, Watt DC, Shepherd M (1978) The social outcome of patients in a trial of long-term continuation therapy in schizophrenia: pimozide vs fluphenazine. Psychol Med 8: 265–274

    PubMed  CAS  Google Scholar 

  • Frangos H, Zissis NP, Leontopoulos L (1978) Double-blind therapeutic evaluation of flus-pirilene compared with Fluphenazine de-canoate in chronic schizophrenics. Acta Psy-chiatr Scand 57: 436–446

    CAS  Google Scholar 

  • Fulop G, Phillips RA, Shapiro AK (1987) ECG changes during haloperidol and pimozide treatment of Tourette’s disorder. Am J Psychiatry 144: 673–675

    PubMed  CAS  Google Scholar 

  • Gerlach J, Kramp P, Kristjansen P (1975) Peroral and parenteral administration of longacting neuroleptics. Acta Psychiatr Scand 52:132–144

    PubMed  CAS  Google Scholar 

  • Haas S, Beckmann H (1982) Pimozide versus haloperidol in acute schizophrenia. A double blind controlled study. Pharmacopsychiat 15: 70–74

    CAS  Google Scholar 

  • Van Kammen D, Hommer W, Malask K (1987) Effect of pimozide on positive and negative symptoms in schizophrenic patients. Neuropsycho-biology 18: 113–117

    Google Scholar 

  • Kapfhammer H, Rüther E (1988) Depot-Neuroleptika. Springer, Berlin Heidelberg New York Tokyo, S 125–129

    Google Scholar 

  • Klieser E, Klimke A (1994) Zur Wirksamkeit der substituierten Diphenylbutylpiperidine auf schizophrene Negativsymptomatik In: Möller HJ, Laux G (Hrsg) Fortschritte in der Diagnostik und Therapie schizophrener Minussymptomatik. Springer, Wien New York, S 241–249

    Google Scholar 

  • Kurland AA, Ota KY, Slotnick (1975) Penfluridol: a long-acting oral neuroleptic. A controlled study. J Clin Pharmacol 15: 611–621

    PubMed  CAS  Google Scholar 

  • Lapierre PA (1978) A controlled study of penfluridol in the treatment of chronic schizophrenia. Am J Psychiatry 135: 956–959

    PubMed  CAS  Google Scholar 

  • Lehmann E (1987) Neuroleptanxiolyse: Neuro-leptika in Tranquilizerindikation. In: Pichot P, Möller HJ (Hrsg) Neuroleptika. Rückschau 1952–1986, künftige Entwicklungen. Springer, Berlin Heidelberg New York Tokyo, S 111–118

    Google Scholar 

  • Malm U, Perris C, Rapp W (1974) A multicenter controlled trial of fluspirilene and fluphenazine enanthate in chronic schizophrenic syndromes. Acta Psychiatr Scand 249: 94–116

    CAS  Google Scholar 

  • Mccreadie RG, Main CJ, Dunlop RA (1978) Token economy, pimozide and chronic schizophrenia. Br J Psychiatry 133: 179–181

    PubMed  CAS  Google Scholar 

  • Nedopil N, Klein HE (1980) Penfluridol: the same drug in acute and maintenance treatment in newly admitted schizophrenic patients. Abstracts 12th CINP Congress, Göteborg

    Google Scholar 

  • Opler L, Feinberg S (1991) The role of pimozide in clinical psychiatry: a review. J Clin Psychiatry 52: 221–227

    PubMed  CAS  Google Scholar 

  • Pecknold JC, Mcclure DJ, Allan T (1982) Comparison of pimozide and chlorpromazine in acute schizophrenia. Can J Psychiatry 27: 208–212

    PubMed  CAS  Google Scholar 

  • Reilly TM (1989) Pimozide: a selective clinical review. In: Ayd FJ (ed) 30 Years Janssen research in psychiatry. Ayd Medical Communications, Baltimore, pp 72–84

    Google Scholar 

  • Riding J, Munro A (1975) Pimozide in the treatment of monosymptomatic hypochondrial psychosis. Lancet i: 23–3023–30

    Google Scholar 

  • Russel N, Landmark J, Merskey H (1982) A double-blind comparison of fluspirilene and fluphenazine decanoate in schizophrenia. Can J Psychiatry 27: 593–596

    Google Scholar 

  • Scottish Schizophrenia Research Group (1987) The Scottish first episode schizophrenia study. II. Treatment: pimozide versus flupenthixol. Br J Psychiatry 150: 334–338

    Google Scholar 

  • Singer HS, Frifiletti R, Gammon K (1988) The role of „other“ neuroleptic drugs in the treatment of Tourette’s syndrome. In: Cohen DJ, Brunn RD, Leckman JF (eds) Tourette’s syndrome and Tic disorder. Wiley, New York, pp 303–316

    Google Scholar 

  • Silverstone T, Cookson J, Ball R (1984) The relationship of dopamine receptor blockade to clinical response to schizophrenic patients treated with pimozide or haloperidol. J Psychiatr Res 18: 255–268

    PubMed  CAS  Google Scholar 

  • Svestka J, Nahunek K (1972) A comparison of pimozide with perphenazine in the treatment of acute schizophrenic psychoses. Act Nerv Sup (Praha) 14: 93–94

    CAS  Google Scholar 

  • Tegeler J (1990) Nutzen und Risiken der Depot-neuroleptika. Habilitationsschrift, Düsseldorf

    Google Scholar 

  • Tegeler J, Floru T (1979) Eine vergleichende Untersuchung der Depotneuroleptika Per-phenazinönanthat und Fluspirilen. Pharmacopsychiat 12: 359–365

    Google Scholar 

  • Wilson LG, Roberts RW, Gerber CJ (1982) Pimozide versus chlorpromazine in chronic schizophrenia. J Clin Psychiatry 43: 62–65

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Heininger, K. et al. (1998). Butyrophenone und strukturanaloge Verbindungen. In: Riederer, P., Laux, G., Pöldinger, W. (eds) Neuro-Psychopharmaka Ein Therapie-Handbuch. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6458-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6458-7_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7327-5

  • Online ISBN: 978-3-7091-6458-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics