Advertisement

Ray Tracing of Subdivision Surfaces

  • Leif P. Kobbelt
  • K. Daubert
  • H-P. Seidel
Part of the Eurographics book series (EUROGRAPH)

Abstract

We present the necessary theory for the integration of subdivision surfaces into general purpose rendering systems. The most important functionality that has to be provided via an abstract geometry interface are the computation of surface points and normals as well as the ray intersection test. We demonstrate how to derive the corresponding formulas and how to construct tight bounding volumes for subdivision surfaces. We introduce envelope meshes which have the same topology as the control meshes but tightly circumscribe the limit surface. An efficient and simple algorithm is presented to trace a ray recursively through the forest of triangles emerging from adaptive refinement of an envelope mesh.

Keywords

Subdivision Scheme Subdivision Surface Control Polygon Control Mesh Subdivision Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W Barth, W. Stürzlinger, Efficient ray tracing for Bezier and B-spline surfaces, Comput Graph 17:423–430Google Scholar
  2. 2.
    E. Catmull, J. Clark, Recursively generated B-spline surfaces on arbitrary topological meshes, CAD 10 (1978), 350–355Google Scholar
  3. 3.
    C. de Boor, K. Höllig, S. Riemenschneider, Box Splines, Springer Verlag, 1993Google Scholar
  4. 4.
    D. Doo, M. Sabin, Behaviour of Recursive Division Surfaces Near Extraordinary Points, CAD 10 (1978), 356–360Google Scholar
  5. 5.
    N. Dyn, J. Gregory, D. Levin, A Butterfly Subdivision Scheme for Surface Interpolation with Tension Control, ACM ToG 9 (1990), 160–169MATHGoogle Scholar
  6. 6.
    N. Dyn, Subdivision Schemes in Computer Aided Geometric Design, Adv. Num. Anal. II, W.A. Light ed., Oxford Univ. Press, 1991, 36–104.Google Scholar
  7. 7.
    A. Fournier, J. Buchanan Chebyshev polynomials for boxing and intersections of parametric curves and surfaces, Comp Graph Forum (Eurographics 94 issue), 127–142Google Scholar
  8. 8.
    http://www9.informatik.uni-erlangen.de/~kobbelt/RT_of_SS.htmlGoogle Scholar
  9. 9.
    J. Kajiya, Ray tracing parametric patches SIGGRAPH 82 proceedings, 245–254Google Scholar
  10. 10.
    L. Kobbelt, Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology, Comp Graph Forum (Eurographics’ 96 issue), C407–C420Google Scholar
  11. 11.
    L. Kobbelt, Discrete Fairing, Proceedings of the 7th IMA Conference on the Mathematics of Surfaces, Information Geometers, 1997, 101–131Google Scholar
  12. 12.
    L. Kobbelt, S. Campagna, J. Vorsatz, H-P. Seidel, Interactive Multi-Resolution Modeling on Arbitrary Meshes, to appear in SIGGRAPH 98 proceedingsGoogle Scholar
  13. 13.
    C. Loop, Smooth Subdivision for Surfaces Based on Triangles, University of Utah, 1987Google Scholar
  14. 14.
    M. Lounsbery, T. DeRose, J. Warren Multiresolution Analysis for Surfaces of Arbitrary Topological Type, ACM ToG 16 (1997), 34–73Google Scholar
  15. 15.
    T. Nishita, T. Sederberg, M. Kakimoto Ray tracing trimmed rational surface patches SIGGRAPH 90 proceedings, 337–345Google Scholar
  16. 16.
    U. Reif, Neue Aspekte in der Theorie der Freiformaflächen beliebiger Topologie, Universität Stuttgart, 1993Google Scholar
  17. 17.
    M. Sweeney, R. Bartels, Ray tracing free-form B-spline surfaces, IEEE Comput Graph Appl 6 (1986), 41–49CrossRefGoogle Scholar
  18. 18.
    Slusallek P, Seidel H-P, Vision — an architecture for global illumination calculations, IEEE Trans Vis Comput Graph 1 (1995), 77–96CrossRefGoogle Scholar
  19. 19.
    E. Stollnitz, T. DeRose, D. Salesin Wavelets for Computer Graphics, Morgan Kaufmann Publishers, 1996Google Scholar
  20. 20.
    D. Toth, On ray tracing parametric surfaces, SIGGRAPH’ 85 proceedings, 171–179Google Scholar
  21. 21.
    C. Yang, On speeding up ray tracing of B-spline surfaces, CAD 19 (1987), 122–130MATHGoogle Scholar
  22. 22.
    D. Zorin, P. Schröder, W. Sweldens, Interpolating subdivision for meshes with arbitrary topology, SIGGRAPH 96 proceedings, 189–192Google Scholar
  23. 23.
    D. Zorin, P. Schröder, W. Sweldens, Interactive Multiresolution Mesh Editing, SIGGRAPH 97 proceedings, 259–269Google Scholar
  24. 24.
    D. Zorin C k Continuity of Subdivision Surfaces, California Institute of Technology, 1996Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • Leif P. Kobbelt
    • 1
  • K. Daubert
    • 1
  • H-P. Seidel
    • 1
  1. 1.Computer Science DepartmentUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations