Advertisement

Importance Driven Construction of Photon Maps

  • Ingmar Peter
  • Georg Pietrek
Part of the Eurographics book series (EUROGRAPH)

Abstract

Particle tracing allows physically correct simulation of all kinds of light interaction in a scene, but can be a computationally expensive task. Use of visual importance is a powerful technique to improve the efficiency of global illumination calculations. We describe a three pass solution for global illumination calculation extending the two pass approach proposed by Jensen. In the first pass particle tracing of importance is performed to create a global data structure, called importance map. Based on this data structure importance driven photon tracing is used in the second pass to construct a photon map containing information about the global illumination in the scene. In the last pass the image is rendered by distributed ray tracing using the photon map.

The photon tracing process, improved by the use of importance information, creates photon maps with an up to 8-times higher photon density in important regions of the scene. This allows a better use of memory and computation time resulting in better image quality.

Keywords

Computer Graphic Bidirectional Reflectance Distribution Function Monte Carlo Integration Global Illumination Incoming Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben75.
    Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509–517, September 1975.MathSciNetMATHCrossRefGoogle Scholar
  2. CPC84.
    Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. Computer Graphics, 18(3): 137–145, July 1984.CrossRefGoogle Scholar
  3. DW94.
    Philip Dutre and Yves D. Willems. Importance-Driven Monte Carlo Light Tracing. In Fifth Eurographics Workshop on Rendering, pages 185–194, Darmstadt, Germany, June 1994.Google Scholar
  4. DW95.
    Philip Dutre and Yves D. Willems. Potential-Driven Monte Carlo Particle Tracing for Diffuse Environments with Adaptive Probability Density Functions. In P. M. Hanra-han and W. Purgathofer, editors, Rendering Techniques’ 95 (Proceedings of the Sixth Eurographics Workshop on Rendering), pages 306–315, New York, NY, 1995. Springer-Verlag.Google Scholar
  5. Gou71.
    H. Gouraud. Continuous shading of curved surfaces. IEEE Transactions on Computers, C-20(6):623–629, June 1971.CrossRefGoogle Scholar
  6. GTGB84.
    Cindy M. Goral, Kenneth K. Torrance, Donald P. Greenberg, and Bennett Battaile. Modelling the interaction of light between diffuse surfaces. Computer Graphics (SIGGRAPH’ 84 Proceedings), 18(3):213–222, July 1984.Google Scholar
  7. Hec90a.
    Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. Computer Graphics, 24(4): 145–154, August 1990.CrossRefGoogle Scholar
  8. Hec90b.
    Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. Computer Graphics (SIGGRAPH’ 90 Proceedings), 24(4): 145–154, August 1990.Google Scholar
  9. ICG86.
    David S. Immel, Michael F. Cohen, and Donald P. Greenburg. A radiosity method for non-diffuse environments. In Proceedings of Siggraph’ 86, volume 20, pages 133–142, Ithaca, New York, 1986. Cornell University.Google Scholar
  10. JC95a.
    Henrik Wann Jensen and Niels J. Christensen. Efficiently rendering shadows using the photon map. In Harold P. Santo, editor, Edugraphics + Compugraphics Proceedings, pages 285–291, December 1995.Google Scholar
  11. JC95b.
    Henrik Wann Jensen and Niels Jorgen Christensen. Photon maps in bidirectional monte carlo ray tracing of complex objects. Computers & Graphics, 19(2):215–224, 1995.CrossRefGoogle Scholar
  12. Jen95.
    Henrik Wann Jensen. Importance driven path tracing using the photon map. In P. M. Han-rahan and W. Purgathofer, editors, Rendering Techniques’ 95 (Proceedings of the Sixth Eurographics Workshop on Rendering), pages 326–335. Springer-Verlag, New York, NY, 1995.Google Scholar
  13. Jen96a.
    Henrik Wann Jensen. Global illumination using photon maps. In Xavier Pueyo and Peter Schröder, editors, Eurographics Rendering Workshop 1996, pages 21–30, New York City, NY, June 1996. Eurographics, Springer Wien.Google Scholar
  14. Jen96b.
    Henrik Wann Jensen. Rendering caustics on non-lambertian surfaces. In Wayne A. Davis and Richard Bartels, editors, Graphics Interface’ 96, pages 116–121. Canadian Information Processing Society, Canadian Human-Computer Communications Society, May 1996.Google Scholar
  15. Kaj86.
    J. T. Kajiya. The rendering equation. Computer Graphics, 20(4): 143–150, August 1986.CrossRefGoogle Scholar
  16. Kal86.
    Malvin H. Kalos. Monte Carlo Methods. John Wiley & Sons, 1986.Google Scholar
  17. Pho75.
    Bui-Tuong Phong. Illumination for computer generated pictures. Communications of the ACM, 18(6):311–317, June 1975.CrossRefGoogle Scholar
  18. PM92.
    S. N. Pattanaik and S. P. Mudur. Computation of global illumination by monte carlo simulation of the particle model of light. Third Eurographics Workshop on Rendering, pages 71–83, May 1992.Google Scholar
  19. PM93a.
    S. N. Pattanaik and S. P. Mudur. Efficient potential equation solutions for global illumination computation. Computers and Graphics, 17(4):387–396, July-August 1993.CrossRefGoogle Scholar
  20. PM93b.
    S. N. Pattanaik and S. P. Mudur. The potential equation and importance in illumination computations. Computer Graphics Forum, 12(2): 131–136, 1993.CrossRefGoogle Scholar
  21. SAS92.
    Brian E. Smits, James R. Arvo, and David H. Salesin. An importance-driven radiosity algorithm. Computer Graphics, 26(2):273–282, July 1992.CrossRefGoogle Scholar
  22. SP89.
    François Sillion and Claude Puech. A general two-pass method integrating specular and diffuse reflection. Computer Graphics, 23(3):335–344, July 1989.CrossRefGoogle Scholar
  23. SWH+95._Peter Shirley, Bretton Wade, Philip M. Hubbard, David Zareski, Bruce Walter, and Donald P. Greenberg. Global Illumination via Density Estimation. In P. M. Hanrahan and W. Purgathofer, editors, Rendering Techniques’ 95 (Proceedings of the Sixth Eurographics Workshop on Rendering), pages 219–230. Springer-Verlag, New York, NY, 1995.Google Scholar
  24. War94.
    Gregory J. Ward. The RADIANCE lighting simulation and rendering system. In Andrew Glassner, editor, Proceedings of SIGGRAPH’ 94, Computer Graphics Proceedings, Annual Conference Series, pages 459–472. ACM SIGGRAPH, ACM Press, July 1994.Google Scholar
  25. Whi79.
    T. Whitted. An improved illumination model for shaded display. Computer Graphics (Special SIGGRAPH’79 Issue), 13(3): 1–14, August 1979.Google Scholar
  26. WRC88.
    Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing solution for diffuse interreflection. Computer Graphics, 22(4):85–92, August 1988.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • Ingmar Peter
    • 1
  • Georg Pietrek
    • 2
  1. 1.Wilhelm-Schickard-Institut GRISUniversität TübingenGermany
  2. 2.Lehrstuhl 7 Fachbereich InformatikUniversität DortmundGermany

Personalised recommendations