Global Ray-bundle Tracing with Hardware Acceleration

  • László Szirmay-Kalos
  • Werner Purgathofer
Part of the Eurographics book series (EUROGRAPH)


The paper presents a single-pass, view-dependent method to solve the general rendering equation, using a combined finite element and random walk approach. Applying finite element techniques, the surfaces are decomposed into planar patches that are assumed to have position independent, but not direction independent radiance. The direction dependent radiance function is then computed by random walk using bundles of parallel rays. In a single step of the walk, the radiance transfer is evaluated exploiting the hardware z-buffer of workstations, making the calculation fast. The proposed method is particularly efficient for scenes including not very specular materials illuminated by large area light-sources or sky-light. In order to increase the speed for difficult lighting situations, walks can be selected according to their importance. The importance can be explored adaptively by the Metropolis sampling method.


Computer Graphic Importance Sampling Global Illumination Importance Function Radiance Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Buckalew and D. Fussell. Illumination networks: Fast realistic rendering with general reflectance functions. Computer Graphics (SIGGRAPH’ 89 Proceedings), 23(3):89–98, July 1989.CrossRefGoogle Scholar
  2. 2.
    F. Castro, R. Martinez, and M. Sbert. Quasi Monte-Carlo and extended first-shot improvements to the multi-path method. In Proc. of SCCG’98, pages 91–102, 1998.Google Scholar
  3. 3.
    P. H. Christensen, D. Lischinski, E. J. Stollnitz, and D. H. Salesin. Clustering for glossy global illumination. ACM Transactions on Graphics, 16(1):3–33, 1997.CrossRefGoogle Scholar
  4. 4.
    P. H. Christensen, E. J. Stollnitz, D. H. Salesin, and T. D. DeRose. Global illumination of glossy environments using wavelets and importance. ACM Transactions on Graphics, 15(1):37–71, 1996.CrossRefGoogle Scholar
  5. 5.
    R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In Computer Graphics (SIGGRAPH’ 84 Proceedings), pages 137–145, 1984.Google Scholar
  6. 6.
    I. Deák. Random Number Generators and Simulation. Akadémia Kiadó, Budapest, 1989.Google Scholar
  7. 7.
    P. Dutre, E. Lafortune, and Y. D. Willems. Monte Carlo light tracing with direct computation of pixel intensities. In Compugraphics’ 93, pages 128–137, Alvor, 1993.Google Scholar
  8. 8.
    D. S. Immel, M. F. Cohen, and D. P. Greenberg. A radiosity method for non-diffuse environments. In Computer Graphics (SIGGRAPH’ 86 Proceedings), pages 133–142, 1986.Google Scholar
  9. 9.
    J. T. Kajiya. The rendering equation. In Computer Graphics (SIGGRAPH’ 86 Proceedings), pages 143–150, 1986.Google Scholar
  10. 10.
    A. Keller. A quasi-Monte Carlo algorithm for the global illumination in the radiosity setting. In H. Niederreiter and P. Shiue, editors, Monte-Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages 239–251. Springer, 1995.Google Scholar
  11. 11.
    E. Lafortune and Y. D. Willems. Bi-directional path-tracing. In Compugraphics’ 93, pages 145–153, Alvor, 1993.Google Scholar
  12. 12.
    E. Lafortune and Y. D. Willems. A 5D tree to reduce the variance of Monte Carlo ray tracing. In Rendering Techniques’ 96, pages 11–19, 1996.Google Scholar
  13. 13.
    N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–1091, 1953.CrossRefGoogle Scholar
  14. 14.
    L. Neumann. Monte Carlo radiosity. Computing, 55:23–42, 1995.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    M. E. Newell, R. G. Newell, and T. L. Sancha. A new approach to the shaded picture problem. In Proceedings of the ACM National Conference, pages 443–450, 1972.Google Scholar
  16. 16.
    H. Niederreiter. Random number generation and quasi-Monte Carlo methods. SIAM, Pennsilvania, 1992.MATHCrossRefGoogle Scholar
  17. 17.
    S. N. Pattanik and S. P. Mudur. Adjoint equations and random walks for illumination computation. ACM Transactions on Graphics, 14(1):77–102, 1995.CrossRefGoogle Scholar
  18. 18.
    M. Sbert. The Use of Global Directions to Compute Radiosity. PhD thesis, Catalan Technical University, Barcelona, 1996.Google Scholar
  19. 19.
    M. Sbert, X. Pueyo, L. Neumann, and W. Purgathofer. Global multipath Monte Carlo algorithms for radiosity. Visual Computer, pages 47–61, 1996.Google Scholar
  20. 20.
    P. Shirley. Discrepancy as a quality measure for sampling distributions. In Eurographics’ 91, pages 183–194. Elsevier Science Publishers, 1991.Google Scholar
  21. 21.
    P. Shirley, C. Wang, and K. Zimmerman. Monte Carlo techniques for direct lighting calculations. ACM Transactions on Graphics, 15(1): 1–36, 1996.CrossRefGoogle Scholar
  22. 22.
    F. Sillion and C. Puech. A general two-pass method integrating specular and diffuse reflection. In Computer Graphics (SIGGRAPH’ 89 Proceedings), pages 335–344, 1989.Google Scholar
  23. 23.
    F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg. A global illumination solution for general reflectance distributions. Computer Graphics (SIGGRAPH’ 89 Proceedings), 25(4): 187–198, 1991.CrossRefGoogle Scholar
  24. 24.
    I. Sobol. Die Monte-Carlo Methode. Deutscher Verlag der Wissenschaften, 1991.Google Scholar
  25. 25.
    L. Szirmay-Kalos and T. Fóris. Sub-quadratic radiosity algorithms. In Winter School of Computer Graphics’ 97, pages 562–571, Plzen, Czech Republic, 1997.Google Scholar
  26. 26.
    E. Veach and L. Guibas. Optimally combining sampling techniques for Monte Carlo rendering. In Rendering Techniques’ 94, pages 147–162, 1994.Google Scholar
  27. 27.
    E. Veach and L. Guibas. Bidirectional estimators for light transport. In Computer Graphics (SIGGRAPH’ 95 Proceedings), pages 419–428, 1995.Google Scholar
  28. 28.
    E. Veach and L. Guibas. Metropolis light transport. Computer Graphics (SIGGRAPH’ 97 Proceedings), pages 65–76, 1997.Google Scholar
  29. 29.
    J. R. Wallace, M. F. Cohen, and D. P. Greenberg. A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods. In Computer Graphics (SIGGRAPH’ 87 Proceedings), pages 311–324, 1987.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • László Szirmay-Kalos
    • 1
  • Werner Purgathofer
    • 1
  1. 1.Department of Control Engineering and Information TechnologyTU of BudapestBudapestHungary

Personalised recommendations