Abstractly modelling complex systems

  • Charles Rattray
Part of the Advances in Computing Science book series (ACS)


Systems theory means different things to different people. Here, we mean the mathematical study of abstract representations of systems, keeping in mind the problems that seem most important for real systems and the aspects of the theory which seem most amenable to mathematical development.


Goal State Natural Transformation Category Theory Categorical Term Graph Homomorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. von Bertalanffy, L. (1956): Les Problemes de la Vie, Gallimard, Paris.Google Scholar
  2. Carboni, A., Lack, S., Walters, R.F.C. (1992): Introduction to Extensive and Distributive Categories, Technical Report, Pure Mathematics 92–9, University of Sydney.Google Scholar
  3. Dampney, C.N.G., Johnson, M., Munro, G.P. (1992): An Illustrated Mathematical Foundation for ERA, in The Unified Computation Laboratory (ed. C.M.I. Rattray, R.G. Clark), Oxford University Press, Oxford.Google Scholar
  4. Ehresmann, A.C., Vanbremeersch, J-P. (1985): Systemes Hierarchique s Evolutifs: une modelisation des systemes vivants, Prepublication No 1, Universite de Picardie.Google Scholar
  5. Ehresmann, A.C., Vanbremeersch, J-P. (1986): Systemes Hierarchique s Evolutifs: modele d’evolution d’un systeme ouvert par interaction avec des agent, Prepublication No 2, Universite de Picardie.Google Scholar
  6. Ehresmann, A.C., Vanbremeersch, J-P. (1992): Outils Mathematiques Utilises pour Modeliser les Systemes Complexes, Cahiers de Topologie et Geometrie Differentielle Categoriques, XXX111, 2.MathSciNetGoogle Scholar
  7. Ginali, S., Goguen, J. (1978): A Categorical Approach to General Systems, in Applied General Systems Research: recent developments and trends (ed. GJ Klir), Plenum Press.Google Scholar
  8. Goguen, J. (1972): Minimal Realization of Machines in Closed Categories, Bull. Amer. Math. Soc, 78, 5.MathSciNetCrossRefGoogle Scholar
  9. Goguen, J. (1973): Realization is Universal, Maths. Sys. Theory, 6, 4.MathSciNetGoogle Scholar
  10. Goguen, J.A. (1991): A Categorical Manifesto, Mathematical Structures in Computer Science, 1.Google Scholar
  11. Hill, G. (1998): Formal Specification, this volume. Jacobs, B. (1995): Objects and Classes, coalgebraically, Report CS-R9536, Computer Science, CWI, Amsterdam.Google Scholar
  12. Jacobs, B. (1996a): Automata and Behaviours in Categories of Processes, Report CSR9607, Computer Science, CWI, Amsterdam.Google Scholar
  13. Jacobs, B. (1996b): Hybrid Systems of Coalgebras plus Monoid Actions, Report CSR9614, Computer Science, CWI, Amsterdam.Google Scholar
  14. Johnson, M., Dampney, C.N.G. (1993): On the Value of Commutative Diagrams in Information Modelling, in Algebraic Methodology and Software Technology AMAST’93 (Editors: M Nivat, C Rattray, T Rus, G Scollo), Workshops in Computing Series, Springer-Verlag.Google Scholar
  15. MacLane, S. (1971): Categories for the Working Mathematician, Springer-Verlag.Google Scholar
  16. Mesarovic, M.D., Takahara, Y. (1989): Abstract Systems Theory, Lecture Notes in Control and Information Sciences, 116, Springer-Verlag.Google Scholar
  17. Nerode, A. (1958): Linear Automaton Transformations, Proc. Amer. Math. Soc, 9.Google Scholar
  18. Rattray, C., Phua, G. (1990): A Meta—Model for Software Processes: Complex System Modelling by Categories — Data Flow Diagrams, Tech Rpt CSET/90.3, University of Stirling.Google Scholar
  19. Rosen, R. (1958a): A Relational Theory of Biological Systems, Bulletin of Mathematical Biophysics, 20.Google Scholar
  20. Rosen, R. (1958b): The representation of Biological Systems from the standpoint of the Theory of Categories, Bulletin of Mathematical Biophysics, 20.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • Charles Rattray

There are no affiliations available

Personalised recommendations