Physiopathology of Lumboradicular Pain

  • G. Cinotti
  • F. Postacchini


Radicular nerves and nerve roots may be compared, for their function, to peripheral nerves. However, at least from the anatomic point of view, there are some differences between radicular and peripheral nerves. Both are formed by bundles of nerve fibers kept together by a framework of connective tissue. Each nerve fiber includes single axons ensheathed by longitudinal invaginations of Schwann cells. The largest nerve fibers are enwrapped in myelinic sheaths, constituted by multiple layers of Schwann cell cytoplasm around the axon. The myelinic sheath increases nerve conduction along the axon, prevents diffusion of spontaneous activity to the adjacent axons and guides the regenerative processes of nerve fibers after injuries. Moreover, the myelinic sheath regulates metabolic exchanges between the axon and Schwann cell (92). A basement membrane, formed by an internal glycoproteic layer and an external layer, the Key and Retzius sheath, lies adjacent to the Schwann sheath. The Key and Retzius sheath is closely connected to the endoneurium and is particularly thick in sensory nerve fibers (Ruffini’s sheath) (92).


Dorsal Root Ganglion Nerve Root Nucleus Pulposus Disc Herniation Mechanical Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amundson G., Garfin S. R.: Minimizing blood loss during spine surgery. In: Complications of spine surgery. Garfin S. R. Ed, Williams and Wilkins, Baltimore, 1989.Google Scholar
  2. 2.
    Ashton I. K., Roberts S., Jaffray D. C. et al.: Neuropeptides in the human intervertebral disc. J. Orthop. Res. 12: 186–192, 1994.PubMedCrossRefGoogle Scholar
  3. 3.
    Avramov A. I., Cavanaugh J. M., Ozaktay C. A. et al.: The effects of controlled mechanical loading on group II, III and IV afferent units from the lumbar facet joint and surrounding tissue. J. Bone Joint Surg. 74-A: 1464–1471, 1992.Google Scholar
  4. 4.
    Bachwich P. R., Chensue S. W., Larrick J. W. et al.: Tumor necrosis factor stimulates interleukin-1 and prostaglandin E2 production in resting macrophages. Biochem. Biophys. Res. Commun. 136: 94–101, 1986.PubMedCrossRefGoogle Scholar
  5. 5.
    Baker D. G., Dayer J. M., Roelke M. et al.: Rheumatoid synovial cell morphologic changes induced by a mononuclear cell factor in culture. Arthritis Rheum. 26: 8–14, 1983.PubMedCrossRefGoogle Scholar
  6. 6.
    Balboni G. C., Bastianini A., Brizzi E. et al.: Il sistema nervoso periferico. In: Anatomia Umana. Vol. III, Ermes, Milano, 1979.Google Scholar
  7. 7.
    Bessou P., Perl E. R.: Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J. Neurophysiol. 32: 1025–1043, 1969.PubMedGoogle Scholar
  8. 8.
    Bisla R. S., Marchisello P. J., Lockshin M. D. et al.: Autoimmunological basis of disk degeneration. Clin. Orthop. 123: 149–154, 1976.Google Scholar
  9. 9.
    Blumberg H., Janig W.: Activation of fibers via experimentally produced stump neuromas of skin nerves: ephaptic transmission or retrograde sprouting? Exp. Neurol. 76: 468–482, 1982.PubMedCrossRefGoogle Scholar
  10. 10.
    Bobechko W. P., Hirsch C.: Auto-immune response to nucleus pulposus in the rabbit. J. Bone Joint Surg. 47-B: 574–580, 1965.Google Scholar
  11. 11.
    Bogduk P., Tynan W., Wilson A. S.: The innervation of the human lumbar intervertebral discs. J. Anat. 132: 39–56, 1981.PubMedGoogle Scholar
  12. 12.
    Brena S. F., Wolf S. L., Chapman S. L. et al.: Chronic back pain: electromyographic, motion and behavioral assessments following sympathetic nerve blocks and placebos. Pain 8: 1–10, 1980.PubMedCrossRefGoogle Scholar
  13. 13.
    Brenneman D. E., Neale E. A., Foster G. A. et al.: Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide. J. Cell. Biol. 104: 1603–1610, 1987.PubMedCrossRefGoogle Scholar
  14. 14.
    Bridge C. J.: Innervation of spinal meninges and epidural structures. Anat. Rec. 133: 553–561, 1959.PubMedCrossRefGoogle Scholar
  15. 15.
    Brodin E., Linderoth B., Gazelius B. et al.: In vivo release of substance P in cat dorsal horn studied with microdialysis. Neurosci. Lett. 76: 357–362, 1987.PubMedCrossRefGoogle Scholar
  16. 16.
    Burhiel K. J.: Ectopic impulse generation in focally demyelinated trigeminal nerve. Exp. Neurol. 69: 423–429, 1980.CrossRefGoogle Scholar
  17. 17.
    Campbell J. N., LaMotte R. H.: Latency to detection of first pain. Brain Res. 266: 203–208, 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Campbell J. N., Meyer R. A., LaMotte R. H.: Sensitization of myelinated nociceptive afferents that innervate monkey hand. J. Neurophysiol. 42: 1669–1679, 1979.PubMedGoogle Scholar
  19. 19.
    Cavanaugh J. M.: Neural mechanism of lumbar pain. Spine 20: 1804–1809, 1995.PubMedCrossRefGoogle Scholar
  20. 20.
    Chatani K., Kawakami M., Weinstein J. N. et al.: Characterization of thermal hyperalgesia, c-fos expression, and alterations in neuropeptides after mechanical irritation of the dorsal root ganglion. Spine 20: 277–290, 1995.PubMedCrossRefGoogle Scholar
  21. 21.
    Coderre T. J., Katz J., Vaccarino A. I. et al.: Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain 52: 259–285, 1993.PubMedCrossRefGoogle Scholar
  22. 22.
    Coppes M. H., Marani E., Thomeer R. T. W. M. et al.: Innervation of annulus fibrosis in low back pain. Lancet 336: 189–190, 1990.PubMedCrossRefGoogle Scholar
  23. 23.
    Cormia F. E., Dougherty J. W.: Proteolytic activity in development of pain and itching: cutaneous reactions to brady-kinin and kallikrein. J. Invest. Dermatol. 35: 21–26, 1960.PubMedGoogle Scholar
  24. 24.
    Cornefjord M., Olmarker K., Farley D. B. et al.: Neuropeptide changes in compressed spinal nerve roots. Spine 20: 670–673, 1995.PubMedCrossRefGoogle Scholar
  25. 25.
    Cunha F. Q., Lorenzetti B. B., Poole S. et al.: Inteleukin-8 as a mediator of sympathetic pain. Br. J. Pharmacol. 104: 765–767, 1991.PubMedCrossRefGoogle Scholar
  26. 26.
    Cunha F. Q., Poole S., Lorenzetti B. B. et al.: The pivotal role of tumor necrosis factor alfa in the development of inflammatory hyperalgesia. Br. J. Pharmacol. 107: 660–664, 1992.PubMedCrossRefGoogle Scholar
  27. 27.
    Cybulski G. R., D, Angelo C. M.: Neurological deterioration after laminectomy for spondylolytic cervical myeloradiculopathy: the putative role of spinal cord ischaemia. J. Neurol. Neurosurg. Psychiat. 51: 717–718, 1988.PubMedCrossRefGoogle Scholar
  28. 28.
    Dayer J. M., Beutler B., Cerami A.: Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J. Exp. Med. 162: 2163–2168, 1985.PubMedCrossRefGoogle Scholar
  29. 29.
    Dayer J. M., Bread J., Chess L. et al.: Participation of monocyte-macrophages and lymphocytes in the production of a factor that stimulates collagenase and prostaglandin release by rheumatoid synovial cells. J. Clin. Invest. 64: 1386–1392, 1979.PubMedCrossRefGoogle Scholar
  30. 30.
    Dayer J. M., Robinson D. R., Krane S. M.: Prostaglandin production by rheumatoid synovial cells: stimulation by a factor from human mononuclear cells. J. Exp. Med. 145: 1399–1404, 1977.PubMedCrossRefGoogle Scholar
  31. 31.
    Delamarter R. B., Bohlman H. H., Dodge L. D. et al.: Experimental lumbar spinal stenosis. Analysis of the cortical evoked potentials, microvasculature, and histopathology. J. Bone Joint Surg. 72-A: 110–120, 1990.Google Scholar
  32. 32.
    De Silva M., Hazleman B. L., Ward M. et al.: Auto-immunity and the prolapsed intervertebral disc syndrome. Rheumatology 1: 35–38, 1981.Google Scholar
  33. 33.
    El Mahadi M. A., Abdel Latif F. Y., Janko M.: The spinal nerve root innervation, and a new concept of the clinico-pathological interrelations in back pain and sciatica. Neurochirurgia (Stuttg.) 24: 137–141, 1981.Google Scholar
  34. 34.
    Ferreira S. H., Lorenzetti B. B., Bristow A. F. et al.: Interleukin 1 beta as a potent agent antagonized by a dipeptide analogue. Nature 334: 698–700, 1988.PubMedCrossRefGoogle Scholar
  35. 35.
    Ford-Hutchinson A. W., Bray M. A., Doig M. V. et al.: Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286: 264–265, 1980.PubMedCrossRefGoogle Scholar
  36. 36.
    Fowler T. J., Danta G., Gilliatt R. W.: Recovery of nerve conduction after a pneumatic tourniquet. Observations on the hind limb of the baboon. J. Neurol. Neurosurg. Psychiat. 35: 638–647, 1972.PubMedCrossRefGoogle Scholar
  37. 37.
    Franson R., Raghupathi R., Fry M. et al.: Inhibition of human phospholipases A2 by cis-unsaturated fatty acids and oligomers of prostaglandin B1. In: Biochemistry Molecular Biology and Physiology of Phospholipases A2 and their Regulatory Factors. Mukherjee A. B., Ed., Plenum Press, New York, 219–230, 1990.CrossRefGoogle Scholar
  38. 38.
    Franson R. C., Weir D. L.: Inhibition of a potent phospholipase A2 activity in the synovial fluid of patients with arthritis by non-steroidal anti-inflammatory agents. Clin. Res. 31: 650 A, 1983.Google Scholar
  39. 39.
    Fuji K., Semba E., Ueda Y. et al.: Vasoactive intestinal polypeptide (VIP)-containing neurones in the spinal cord of the rat and their projections. Neurosci. Lett. 37: 51–55, 1983.PubMedCrossRefGoogle Scholar
  40. 40.
    Gamble H. J.: Comparative electron-microscopic observations on the connective tissues of a peripheral nerve and a spinal nerve root in the rat. J. Anat. 98: 17–25, 1964.PubMedGoogle Scholar
  41. 41.
    Garfin S. R., Cohen M. S., Massie J. B. et al.: Nerve-roots of the cauda equina: the effect of hypotension and acute graded compression on function. J. Bone Joint Surg. 72-A: 1185–1192, 1990.Google Scholar
  42. 42.
    Gillette R. G., Kramis R. C., Roberts W. J.: Sympathetic activation of cat spinal neurons responsive to noxious stimulation of deep tissues in the low back. Pain 56: 31–42, 1994.PubMedCrossRefGoogle Scholar
  43. 43.
    Granit R., Leksell L., Skoglund C. R.: Fibre interaction in injured or compressed regions of nerve. Brain 67: 125–140, 1944.CrossRefGoogle Scholar
  44. 44.
    Groen G. J., Baljet B., Drukker J.: Nerve and nerve plexuses of the human vertebral column. Am. J. Anat. 188: 282–296, 1990.PubMedCrossRefGoogle Scholar
  45. 45.
    Gromblad M., Virri J., Ronkko S. et al.: A controlled biochemical study of human synovial-type (Group 11) phos-pholipase A2 and inflammatory cells in macroscopically normal, degenerated and herniated human lumbar disc tissue. Proc. International Society for the Study of the Lumbar Spine, Burlington, 1996.Google Scholar
  46. 46.
    Guerne P. A., Carson D. A., Lotz M.: IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones in vitro. J. Immunol. 144: 499–505, 1990.PubMedGoogle Scholar
  47. 47.
    Guyton A. C.: Il sistema nervoso. In: Trattato di Fisiologia Medica. Guyton A. C. Ed., Piccin Editore, Padova, 1983.Google Scholar
  48. 48.
    Haller F. R., Low F. N.: The fine structure of the peripheral nerve root sheath in the subarachnoid space in the rat and other laboratory animals. Am. J. Anat. 131: 1–20, 1971.PubMedCrossRefGoogle Scholar
  49. 49.
    Hardy R. W., Nash C. L., Brodkey J. S.: Follow-up report, experimental and clinical studies in spinal cord monitoring: the effect of pressure, anoxia and ischaemia on spinal cord function. J. Bone Joint Surg. 55-A: 435, 1973.Google Scholar
  50. 50.
    Hasue M.: Pain and the nerve root. Spine 18: 2053–2058, 1993.PubMedCrossRefGoogle Scholar
  51. 51.
    Hirsch C., Ingelmark B. E., Miller M.: The anatomical basis for low back pain. Acta Orthop. Scand. 33: 1–17, 1963.PubMedCrossRefGoogle Scholar
  52. 52.
    Hirsch C., Schajowitcz: Studies on structural changes in the lumbar annulus fibrosus. Acta Orthop. Scand. 22: 184–231, 1952.PubMedCrossRefGoogle Scholar
  53. 53.
    Hokfelt T., Kellerth J. O., Nilsson G. et al.: Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res. 100: 235–252, 1975.PubMedCrossRefGoogle Scholar
  54. 54.
    Hokfelt T., Kellerth J. O., Nilsson G. et al.: Substance P localization in the central nervous system and in some primary sensory neurons. Science 190: 889–890, 1975.PubMedCrossRefGoogle Scholar
  55. 55.
    Holm S., Rydevik B.: Quantification of nutritional contribution from the cerebrospinal fluid and the intraneural blood vessels in spinal nerve roots. Proc. International Society for the Study of the Lumbar Spine, Heidelberg, 1991.Google Scholar
  56. 56.
    Howe J. F., Loeser J. D., Calvin W. H.: Mechanosensitivity of dorsal root ganglia and chronically injured axons: a physiological basis for the radicular pain of nerve root compression. Pain 3: 25–41, 1977.PubMedCrossRefGoogle Scholar
  57. 57.
    Hukada S., Wilson C. B.: Experimental cervical myelopathy: effects of compression and ischemia on the canine cervical cord. J. Neurosurg. 37: 631–652, 1972.CrossRefGoogle Scholar
  58. 58.
    Iwamoto H., Kuwahara H., Matsuda H. et al.: Production of chronic compression of the cauda equina in rats for use in studies of lumbar spinal canal stenosis. Spine 20: 2750–2757, 1995.PubMedCrossRefGoogle Scholar
  59. 59.
    Jackson H. C., Winkelmann R. K., Bickel W. H.: Nerve endings in the human spinal column and related structures. J. Bone Joint Surg. 48-A: 1272–1281, 1966.Google Scholar
  60. 60.
    Jessel T. M., Kelly D. D.: Pain and analgesia. In: Principles of natural science. Kandel E. R., Schwartz J. H., Jessel T. M., Eds., Third edition. Appleton and Lange, Norwalk, CT: 385–399, 1991.Google Scholar
  61. 61.
    Johnson R. H., Spalding J. M. K.: Disorders of the autonomic nervous system. Blackwell Scientific Publications, Oxford, 1–22, 1974.Google Scholar
  62. 62.
    Jung A., Brunschwing A.: Recherches histologique des articulations des corps vertebraux. Presse Med. 40: 316–317, 1932.Google Scholar
  63. 63.
    Kang J. D., Georgescu H. I., Larkin M. et al.: Herniated cervical and lumbar intervertebral discs are capable of increasing their production of nitric oxide, IL-6, and PGE2 in response to stimolation with IL-1. Proc. International Society for the Study of the Lumbar Spine, Burlington, 1996.Google Scholar
  64. 64.
    Kang J. D., Georgescu H. I., Mcintyre-Larkin L. et al.: Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 21: 271–277, 1996.PubMedCrossRefGoogle Scholar
  65. 65.
    Kawakami M., Weinstein J. N., Chatani K. et al.: Experimental lumbar radiculopathy Behavioral and histologic changes in a model of radicular pain after spinal nerve root irritation with chromic gut ligatures in the rat. Spine 19: 1795–1802, 1994.PubMedCrossRefGoogle Scholar
  66. 66.
    Kawakami M., Weinstein J. N., Spratt K. F. et al.: Experimental lumbar radiculopathy. Immunohistochemical and quantitative demonstrations of pain induced by lumbar nerve root irritation of the rat. Spine 19: 1780–1794, 1994.PubMedCrossRefGoogle Scholar
  67. 67.
    Keele C. A., Armstrong D.: Substances producing pain and itch. Edward Arnold Ltd., London, 1964.Google Scholar
  68. 68.
    Kobayashi S., Yoshizawa H., Hachiya Y. et al.: Vasogenic edema induced by compression injury to the spinal nerve root. Distribution of intravenously injected protein tracers and gadolinium-enhanced magnetic resonance imaging. Spine 18: 1410–1424, 1993.PubMedGoogle Scholar
  69. 69.
    Konno S., Yabuki S., Sato K. et al.: A model for acute, chronic, and delayed graded compression of the dog cauda equina. Spine 20: 2758–2764, 1995.PubMedCrossRefGoogle Scholar
  70. 70.
    Konttinen Y. T., Gronblad M., Anti-Poika I. et al.: Neuroimmunohistochemical analysis of peridiscal nociceptive neural elements. Spine 15: 383–386, 1990.PubMedCrossRefGoogle Scholar
  71. 71.
    Kopmisaruk B. R., Banas C., Metha A. et al.: Analgesic effect of synthetic fragments of vasoactive intestinal peptide in the rat. Society for Neuroscience Abstracts 16: 565, 1990.Google Scholar
  72. 72.
    Korkala O., Gronblad M., Liesi P. et al.: Immunohistochemical demostration of nociceptors in the ligamentous structures of the lumbar spine. Spine 10: 156–157, 1985.PubMedCrossRefGoogle Scholar
  73. 73.
    Koyma Y., Maeda T., Arai R. et al.: Nerve supply to the posterior longitudinal ligament and the intervertebral disc of the rat vertebral column as studied by acetylcholinesterase histochemistry. II. Regional differences in the distribution of the nerve fibres and their origins. J. Anat. 169: 247–255, 1990.Google Scholar
  74. 74.
    Lampert P. W.: Mechanism of demyelinization in experimental allergic neuritis. Lab. Invest. 20: 127–138, 1969.PubMedGoogle Scholar
  75. 75.
    LaRocca H.: New horizons in research on disc disease. Orthop. Clin. North Am. 2: 521, 1971.PubMedGoogle Scholar
  76. 76.
    LeGreves P., Nyberg F., Terenius L. et al.: Calcitonin gene-related peptide is a potent inhibitor of substance P degeneration. Eur. J. Pharmacol. 115: 309–311, 1985.CrossRefGoogle Scholar
  77. 77.
    Liesi P., Gronblad M., Korkala O. et al.: Substance P. A neuropeptide involved in low back pain? Lancet 2: 1328–1329, 1983.CrossRefGoogle Scholar
  78. 78.
    Lind B., Massie J. B., Lincoln T. et al.: The effects of induced hypertension and acute graded compression on impulse propagation in the spinal nerve roots of the pig. Spine 18: 1550–1555, 1993.PubMedGoogle Scholar
  79. 79.
    Lindahl O., Rexed B.: Histological changes in spinal nerve roots of operated cases of sciatica. Acta Orthop. Scand. 20: 215–225, 1951.PubMedCrossRefGoogle Scholar
  80. 80.
    Lindoblom K., Rexed B.: Spinal nerve injury in dorso-lateral protrusion of lumbar disks. J. Neurosurg. 5: 413–432, 1948.CrossRefGoogle Scholar
  81. 81.
    Lundborg G., Rydevik B.: Effects of stretching the tibial nerve of the rabbit. A preliminary study on the intraneural microcirculation and the barrier function of the perineurium. J. Bone Joint Surg. 55-B: 390, 1973.Google Scholar
  82. 82.
    Lundskog J., Branemark P. I.: Microvascular proliferation produced by autologous graft of nucleus pulposus. Adv. Microcirc. 3: 115–124, 1970.Google Scholar
  83. 83.
    Luschka H. V.: Die Nerven des menschlichen Wirbel-kanales. H. Laupp, Tubingen, 1850.Google Scholar
  84. 84.
    Magistretti P. J., Morrison J. H., Shoemaker W. J. et al.: Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc. Natl. Acad. Sci. USA 78: 6535–6539, 1981.PubMedCrossRefGoogle Scholar
  85. 85.
    Malinsky J.: The ontogenetic development of nerve terminations in the intervertebral discs of man. Acta Anat. (Basel) 38: 96–113, 1959.CrossRefGoogle Scholar
  86. 86.
    Martin H. A., Basbaun A. I., Kwiat G. C. et al.: Leukotriene and prostaglandin sensitization of cutaneous high-threshold C-and A-delta mechanonociceptors in the hairy skin of rat hind-limbs. Neuroscience 22: 651–659, 1987.PubMedCrossRefGoogle Scholar
  87. 87.
    Melier S. T., Cummings C. P., Traub R. J. et al.: The role of nitrix oxide in the development and maintainance of the hyperalgesia produced by intraplantar injection of car-rageenan in the rat. Neuroscience 60: 367–374, 1994.CrossRefGoogle Scholar
  88. 88.
    Melzack R., Wall P. D.: Pain mechanism: A new theory. Science 150: 971–979, 1965.PubMedCrossRefGoogle Scholar
  89. 89.
    Mense S., Meyer H.: Different types of slowly-conducting afferent units in cat skeletal muscle and tendon. J. Physiol. 363: 403–417, 1985.PubMedGoogle Scholar
  90. 90.
    Mizel S. B., Dayer J. M., Krane S. M. et al.: Stimulation of rheumatoid cell collagenase and prostaglandin production by partially purified lymphocyte-activating factor (interleukin 1). Proc. Natl. Acad. Sci. USA 78: 2474–2477, 1981.PubMedCrossRefGoogle Scholar
  91. 91.
    Moncada S.: Biological importance of prostacyclin. Br. J. Pharmacol 76: 3–31, 1982.PubMedCrossRefGoogle Scholar
  92. 92.
    Monesi V.: Tessuto nervoso e nevroglia. In: Istologia. Piccin Editore, Padova, 1977.Google Scholar
  93. 93.
    Nakamura S., Takahashi K., Takahashi Y. et al.: Origin of nerve supplying the posterior portion of lumbar intervertebral disc in rats. Spine 21: 917–924, 1996.PubMedCrossRefGoogle Scholar
  94. 94.
    Nakamura S., Takahashi K., Takahashi Y. et al.: The afferent pathways of discogenic low-back pain. Evaluation of L2 nerve infiltration. J. Bone Joint Surg. 78-B: 606–612, 1996.Google Scholar
  95. 95.
    Naylor A.: The biophysical and biochemical aspects of intervertebral disc herniation and degeneration. Ann. R. Coll. Surg. Engl. 31: 91–114, 1962.PubMedGoogle Scholar
  96. 96.
    Naylor A., Happey F., Turner R. L. et al.: Enzymatica and immunological activity in the intervertebral disc. Orthop. Clin. North Am. 6: 51–58, 1975.PubMedGoogle Scholar
  97. 97.
    Nordin M., Nystrom B., Wallin U. et al.: Ectopic sensory discharges and paresthesiae in patients with disorders of peripheral nerves, dorsal roots and dorsal columns. Pain 20: 231–245, 1984.PubMedCrossRefGoogle Scholar
  98. 98.
    Ochoa J., Fowler T. J., Gilliatt R. W.: Anatomical changes in peripheral nerves compressed by a pneumatic tourniquet. J. Anat. 113: 433–455, 1972.PubMedGoogle Scholar
  99. 99.
    Oku R., Satoh M., Fujii N. et al.: Calcitonin gene-related peptide promotes mechanical nociception by potentiating release of substance P from the spinal dorsal horn in rats. Brain Res. 403: 350–354, 1987.PubMedCrossRefGoogle Scholar
  100. 100.
    Olmarker K., Blomquist J., Stromberg M. S. et al.: Inflam-matogenic properties of nucleus pulposus. Spine 20: 665–669, 1995.PubMedCrossRefGoogle Scholar
  101. 101.
    Olmarker K., Holm S., Rydevik B.: Importance of compression onset rate for the degree of impairment of impulse propagation in experimental compression injury of the porcine cauda equina. Spine 15: 416–419, 1990.PubMedCrossRefGoogle Scholar
  102. 102.
    Olmarker K., Nordborg C., Larsson K. et al.: Ultrastructural changes in spinal nerve roots induced by autologous nucleus pulposus. Spine 21: 411–414, 1996.PubMedCrossRefGoogle Scholar
  103. 103.
    Olmarker K., Rydevik B., Hansson T. et al.: Compression-induced changes of the nutritional supply to the porcine cauda equina. J. Spinal Disord. 3: 25–29, 1990.PubMedCrossRefGoogle Scholar
  104. 104.
    Olmarker K., Rydevik B., Holm S.: Edema formation in spinal nerve roots induced by experimental, graded compression. An experimental study on the pig cauda equina with special reference to differences in effects between rapid and slow onset of compression. Spine 14: 569–573, 1989.PubMedCrossRefGoogle Scholar
  105. 105.
    Olmarker K., Rydevik B., Norborg C.: Autologous nucleus pulposus induces neurophysiologic and histologic changes in porcine cauda equina nerve root. Spine 18: 1425–1432, 1993.PubMedGoogle Scholar
  106. 106.
    Otsuka M., Konishi S., Yanagisawa M.: Role of substance P as a sensory transmitter in spinal cord and sympathetic ganglia. In: Substance P in the nervous system. CIBA Foundation Symposium, Porter R., O’ Connor M., Eds. Pitman, London 91: 13–34, 1982.Google Scholar
  107. 107.
    Ozaktay A. C., Cavanaugh J. M., Blagoev D. C. et al.: Phospholipase A2-induced electrophysiologic and histologic changes in rabbit dorsal lumbar spine tissues. Spine 20: 2659–2688, 1995.PubMedCrossRefGoogle Scholar
  108. 108.
    Ozaktay A. C., Yamashita T., Cavanaugh J. M. et al.: Fine nerve fibers and endings in the fibrous capsule of the lumbar facet joint. 37th Annual Meeting Orthopaedic Research Society. Anaheim, The Orthopaedic Research Society 16: 353, 1991.Google Scholar
  109. 109.
    Papir-Krikeli D., Devor M.: Abnormal impulse discharge in primary afferent axons injured in the peripheral versus the central nervous system. Somatosens. Mot. Res. 6: 63–77, 1988.CrossRefGoogle Scholar
  110. 110.
    Parke W. W., Gammel K., Rothman R. H.: Arterial vascularization of the cauda equina. J. Bone Joint Surg. 63-A: 53–62, 1981.Google Scholar
  111. 111.
    Payan D. G., McGillis J. P., Goetzl E. J.: Neuroimmunology. Adv. Immunol. 39: 299–323, 1986.PubMedCrossRefGoogle Scholar
  112. 112.
    Payan D. G., McGillis J. P., Renold F. K. et al.: Neuropeptide modulation of leukocyte function. Ann. NY Acad. Sci. 496: 182–191, 1987.PubMedCrossRefGoogle Scholar
  113. 113.
    Pedersen H. E., Blunck C. F. J., Gardner E.: The anatomy of lumbosacral posterior rami and meningeal branches of spinal nerves (sinu-vertebral nerves). J. Bone Joint Surg. 38-A: 377–391, 1956.PubMedGoogle Scholar
  114. 114.
    Pedowitz R. A., Garfin S. R., Massie J. B. et al.: Effects of magnitude and duration of compression on spinal nerve roots conduction. Spine 17: 194–199, 1992.PubMedCrossRefGoogle Scholar
  115. 115.
    Rang H. P., Bevan S., Dray A.: Chemical activation of nociceptive peripheral neurons. Br. Med. Bull. 47: 354–348, 1991.Google Scholar
  116. 116.
    Rasminsky M.: Ephatic transmission between single nerve fibres in the spinal nerve roots of dystrophic mice. J. Physiol. 305: 169, 1980.Google Scholar
  117. 117.
    Roberts S., Eisenstein S. M., Menage J. et al.: Mechanoreceptors in intervertebral discs. Morphology, distribution, and neuropeptides. Spine 20: 2645–2651, 1995.PubMedCrossRefGoogle Scholar
  118. 118.
    Roofe P. G.: Innervation of annulus fibrosis and posterior longitudinal ligament. Arch. Neurol. Psychiat. 44: 100–103, 1940.CrossRefGoogle Scholar
  119. 119.
    Rydevik B.: Etiology of sciatica. In: The Lumbar Spine. J. N. Weinstein, S. W. Weisel Eds., W. B. Saunders, Philadelphia, Pennsylvania, USA, 1990.Google Scholar
  120. 120.
    Rydevik B., Brown M. D., Lunborg G.: Pathoanatomy and pathophysiology of nerve root compression. Spine 9: 7–15, 1984.PubMedCrossRefGoogle Scholar
  121. 121.
    Rydevik B., Hasue M., Wehling P.: Etiology of sciatic pain and mechanism of nerve root compression. In: The Lumbar Spine. S. W. Wiesel, J. N. Weinstein, H. Herkowitz et al. Eds., W. B. Saunders Company, Pennsylvania, USA, 1996.Google Scholar
  122. 122.
    Rydevik B., Holm S., Brown M. D. et al.: Diffusion from the cerebrospinal fluid as a nutritional pathway for spinal nerve roots. Acta Physiol. Scand. 138: 247–248, 1990.PubMedCrossRefGoogle Scholar
  123. 123.
    Rydevik B., Lundborg G.: Permeability of intraneural microvessels and perinevrium following acute, graded experimental nerve compression. Scand. J. Plast. Reconstr. Surg. 11: 179–187, 1977.PubMedCrossRefGoogle Scholar
  124. 124.
    Rydevic B., Lundborg G., Skalak R.: Biomechanics of peripheral nerves. In: Basic biomechanics of the musculoskeletal system. Nordin M. and Frankel V. Eds, Second edition, Lea and Febiger, Philadelphia, 1989.Google Scholar
  125. 125.
    Rydevik B., Myers R. R., Powell H. C.: Pressure increase in the dorsal root ganglion following mechanical compression. Closed compartment syndrome in nerve roots. Spine 14: 574–576, 1989.PubMedCrossRefGoogle Scholar
  126. 126.
    Rydevik B., Nordborg C.: Changes in nerve function and nerve fibre structure induced by acute, graded compression. J. Neurol. Neurosurg. Psychiat. 43: 1070–1082, 1980.PubMedCrossRefGoogle Scholar
  127. 127.
    Rydevik B., Pedowitz R. A., Hargens A. R. et al.: Effects of acute, graded compression on spinal nerve root function and structure. An experimental study of the pig cauda equina. Spine 16: 487–493, 1991.PubMedCrossRefGoogle Scholar
  128. 128.
    Saal J. S.: The role of inflammation in lumbar pain. Spine 20: 1821–1827, 1995.PubMedCrossRefGoogle Scholar
  129. 129.
    Sato K., Konno S., Yabuki S. et al.: A model for acute, chronic, and delayed graded compression of the dog cauda equina. Neurophysiologic and histologic changes induced by acute, graded compression. Spine 20: 2386–2391, 1995.PubMedCrossRefGoogle Scholar
  130. 130.
    Sato K., Olmarker K., Cornefjord M. et al.: Effects of chronic nerve root compression on intraradicular blood flow. An experimental study in pigs. Neuro-Orthopedics 16: 1–7, 1994.Google Scholar
  131. 131.
    Schonstrom N., Hansson T.: Pressure changes following constriction of the cauda equina. An experimental study in situ. Spine 13: 385–388, 1988.PubMedCrossRefGoogle Scholar
  132. 132.
    Sekiguchi Y., Konnai Y., Kikuchi S. et al.: An anatomic study of neuropeptide immunoreactivities in the lumbar dura mater after lumbar sympathectomy. Spine 21: 925–930, 1996.PubMedCrossRefGoogle Scholar
  133. 133.
    Shaible H. G., Shmidt R. F.: Activation of groups III and IV sensory units in medial articular nerves by local mechanical stimulation of knee joint. J. Neurophysiol 49: 35–44, 1983.Google Scholar
  134. 134.
    Shantha T. R., Evans J. A.: The relationship of epidural anesthesia to neural membranes and arachnoid villi. Anesthesiology 37: 543–557, 1972.PubMedCrossRefGoogle Scholar
  135. 135.
    Shimnei M., Masuda K., Kikuchi T.: The role of cytokines in chondrocyte mediated cartilage degeneration. J. Rheumatol. 18 (Suppl.) 16: 32–34, 1989.Google Scholar
  136. 136.
    Shimnei M., Masuda K., Kikuchi T. et al.: Production of cytokines by chondrocytes and its role in proteoglycan degradation. J. Rheumatol. 18 (Suppl. 27) 89–91, 1991.Google Scholar
  137. 137.
    Sicuteri F., Fanciullacci M., Franchi G.: Serotoninbradykinin potentiation on the pain receptors in man. Life Sciences 4: 309–316, 1965.PubMedCrossRefGoogle Scholar
  138. 138.
    Smyth M. J., Wright V.: Sciatica and the intervertebral disc: an experimental study. J. Bone Joint Surg. 40-A: 1401–1418, 1958.PubMedGoogle Scholar
  139. 139.
    Spencer D. L., Irwin G. S., Miller J. A. A.: Anatomy and significance of fixation of the lumbosacral nerve roots in sciatica. Spine 8: 672–679, 1983.PubMedCrossRefGoogle Scholar
  140. 140.
    Spencer D. L., Miller J. A. A., Bertolini J. E.: The effect of intervertebral disc space narrowing on the contact force between the nerve root and a simulated disc protrusion. Spine 9: 422–426, 1984.PubMedCrossRefGoogle Scholar
  141. 141.
    Stacey J. J.: Free nerve endings in skeletal muscle of the cat. J. Anatomy 105: 231–254, 1969.Google Scholar
  142. 142.
    Stadler J., Harbrecht B. G., DiSilvio M. et al.: Endogenous nitric oxide inhibits the synthesis of cyclooxygenase products and interleukin-6 by rat Kupffer cells. J. Leukoc. Biol. 53: 165–172, 1993.PubMedGoogle Scholar
  143. 143.
    Stilwell D. L.: The nerve supply of the vertebral column and its associated structures in the monkey. Anat. Rec. 125: 129–169, 1956.CrossRefGoogle Scholar
  144. 144.
    Stodieck L. S., Boel J. A., Luttges M. W.: Structural properties of spinal nerve roots: protein composition. Exp. Neurol. 91: 41–51, 1986.PubMedCrossRefGoogle Scholar
  145. 145.
    Takahashi H., Suguro T., Okazima Y. et al.: Inflammatory cytokines in the herniated disc of the lumbar spine. Spine 21: 218–224, 1996.PubMedCrossRefGoogle Scholar
  146. 146.
    Urban J.: Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Point of view. Spine 21: 277, 1996.CrossRefGoogle Scholar
  147. 147.
    Wall P. D., Devor M.: Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain 17: 321–339, 1983.PubMedCrossRefGoogle Scholar
  148. 148.
    Watanabe R., Parke W. W.: Vascular and neural pathology of lumbosacral spinal stenosis. J. Neurosurg. 64: 64–70, 1986.PubMedCrossRefGoogle Scholar
  149. 149.
    Wehiling P., Bandara G., Evans C. H.: Synovial cytokines impair the function of the sciatic nerve in rats: a possible element in the pathophysiology of radicular syndromes. Neuro-Orthopedics 7: 55–59, 1989.Google Scholar
  150. 150.
    Wehiling P., Wirths J., Evans C. H.: Die Wirkung von Zytokimen auf das Regenerationsergebnis komprimierter Nervenwurzeln und durchtrennter peripherer Nerven. Z. Orthop. Grenzgeb. 131: 83–93, 1993.CrossRefGoogle Scholar
  151. 151.
    Weinstein J. N.: Mechanism of spinal pain, the dorsal root ganglion and its role as a mediator of low back pain. Spine 11: 999–1001, 1986.PubMedCrossRefGoogle Scholar
  152. 152.
    Weinstein J. N.: Anatomy and neurophysiologic mechanism of spinal pain. In: The Adult Spine. Principles and Practice. Frymoyer J. W., Editor-in-Chief, Raven Press, New York, 1991.Google Scholar
  153. 153.
    Weinstein J. N., Claverie W., Gibson S.: The pain of discography. Spine 13: 1344–1348, 1988.PubMedCrossRefGoogle Scholar
  154. 154.
    Weinstein J. N., Pope M., Schmidt R., et al.: Neuropharmacologic effects of vibration on the dorsal root ganglion: An animal model. Spine 13: 521–525, 1988.PubMedCrossRefGoogle Scholar
  155. 155.
    White J. C., Sweet W. H.: Pain. Its mechanism and neurosurgical control. Springfield: C. C. Thomas 67–98, 1955.Google Scholar
  156. 156.
    Wyke B. D.: The neurological basis of thoracic spinal pain. Rheumatol. Phys. Med. 10: 346–367, 1970.CrossRefGoogle Scholar
  157. 157.
    Yahia L. H., Newman N., Rivard C. H.: Neurohistology of spinal ligaments. Acta Orthop. Scand. 50 (5): 509–512, 1988.Google Scholar
  158. 158.
    Yaksh T. L., Jessel T. M., Leeman S. E.: Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature 286: 155–157, 1980.PubMedCrossRefGoogle Scholar
  159. 159.
    Yamashita T., Cavanaugh J. M., El-Bohy A. A. et al.: Mechanosensitive afferent units in the lumbar facet joints. J. Bone Joint Surg. 72-A: 865–870, 1990.Google Scholar
  160. 160.
    Yoshizawa H., Kobayashi S., Hachiya Y.: Blood supply of nerve roots and dorsal root ganglia. Orthop. Clin. North Am. 22: 195–211, 1991.PubMedGoogle Scholar
  161. 161.
    Yoshizawa H., Kobayashi S., Morita T.: Chronic nerve root compression. Pathophysiologic mechanism of nerve root dysfunction. Spine 20: 397–407, 1995.PubMedCrossRefGoogle Scholar
  162. 162.
    Yoshizawa H., O’ Brien J. P., Smith W. T. et al.: The neuropathology of intervertebral discs removed for low back pain. J. Pathol. 132: 95–104, 1980.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • G. Cinotti
  • F. Postacchini

There are no affiliations available

Personalised recommendations