Advertisement

Biomechanics

  • G. Cinotti
  • F. Postacchini

Abstract

Vertebrae, discs and ligaments form a column of vertebral motion segments, called functional spinal units. Each functional spinal unit includes a disc, the two adjacent vertebrae and the connecting ligaments; it represents the smallest segment of the spine showing biomechanical properties similar to those of the whole spine and, hence, is the anatomic unit of reference in biomechanical studies (81). Due to the presence of discs and ligaments, the whole spine acts as a flexible column, straight in the frontal plane and curved in the sagittal plane. The curved alignment of the spine in the sagittal plane increases spinal flexibility and the ability to withstand mechanical forces, whilst maintaining the stability of the spine (81).

Keywords

Intervertebral Disc Nucleus Pulposus Disc Degeneration Annulus Fibrosus Disc Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abumi K. A., Panjabi M. M., Kramer K. M. et al.: Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine 15: 1142–1147, 1990.PubMedCrossRefGoogle Scholar
  2. 2.
    Adams M. A., Dolan P.: A technique for quantifying the bending moment acting on the lumbar spine in vivo. J. Biomech. 24: 117–126, 1991.PubMedCrossRefGoogle Scholar
  3. 3.
    Adams M. A., Dolan P., Hutton W. C.: The stages of disc degeneration as revealed by discograms. J. Bone Joint Surg. 68-B: 36–41, 1986.Google Scholar
  4. 4.
    Ahlgren B. D., Vasavada A., Brower R. S. et al.: Annular incision technique on the strength and multidirectional flexibility of the healing intervertebral disc. Spine 19: 948–954, 1994.PubMedCrossRefGoogle Scholar
  5. 5.
    Belytschko T., Kulak R. F., Schultz A. B. et al.: Finite element stress analysis of an intervertebral disc. J. Biomech. 7: 277–285, 1974.PubMedCrossRefGoogle Scholar
  6. 6.
    Berkson M. H., Nachemson A., Schultz A. B.: Mechanical properties of human lumbar spine motion segment — Part 2: responses in compression and shear; influence of gross morphology. J. Biomech. Eng. 101: 53–57, 1979.CrossRefGoogle Scholar
  7. 7.
    Best B. A., Guilak F., Setton L. A. et al.: Compressive mechanical properties of the human annulus fibrosus and their relationship to biochemical composition. Spine 19: 212–221, 1994.PubMedCrossRefGoogle Scholar
  8. 8.
    Bradford D. S., Cooper K. M., Oegema T. R.: Chymopapain chemonucleolysis and nucleus pulposus regeneration. J. Bone Joint Surg. 65-A: 1220–1231, 1983.Google Scholar
  9. 9.
    Brinckmann P., Grootenboer H.: Change of disc height, radial bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs. Spine 16: 641–646, 1991.PubMedCrossRefGoogle Scholar
  10. 10.
    Broberg K. G.: Slow deformation of intervertebral discs. J. Biomech. 26: 501–512, 1993.PubMedCrossRefGoogle Scholar
  11. 11.
    Brown T., Hansen R., Yorra A.: Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral disc. J. Bone Joint Surg. 39-A: 1135–1164, 1957.PubMedGoogle Scholar
  12. 12.
    Buckwalter J. A.: The fine structure of the human intervertebral disc. In: Symposium on idiopathic low back pain. White A.A., Gordon S. L., Eds. CV Mosby Co., St. Luis, 108–143, 1982.Google Scholar
  13. 13.
    Castro W. H. M., Halm H., Rondhuis J.: The influence of automated percutaneous lumbar discectomy (APLD) on the biomechanics of the lumbar intervertebral disc. An experimental study. Acta Orthop. Belg. 58: 400–405, 1992.PubMedGoogle Scholar
  14. 14.
    Choy D. S. J., Altman P.: Fall of intradiscal pressure with laser ablation. Spine: State of the Art Reviews 7: 23–29, 1993.Google Scholar
  15. 15.
    Eyre D. R., Muir H.: Types I and II collagens in intervertebral disc: interchanging radial distributions in annulus fibrosus. Biochem. J. 157: 267–270, 1976.PubMedGoogle Scholar
  16. 16.
    Galante J.O.: Tensile properties of the human lumbar annulus fibrosus. Acta Orthop. Scand. Suppl. 100: 4–91, 1967.Google Scholar
  17. 17.
    Gertzbein S., Selignan J., Holtby R. et al.: Centrode pattern and segmental instability in degenerative disc disease. Spine 10: 257–261, 1985.PubMedCrossRefGoogle Scholar
  18. 18.
    Goel V. K., Goyal S., Clark C. et al.: Kinematics of the whole lumbar spine. Effect of discectomy. Spine 10: 543–554, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Goel V. K., Nishiyama K., Weinstein J. N. et al.: Mechanical properties of lumbar spinal motion segments as affected by partial disc removal. Spine 11: 1008–1012, 1986.PubMedCrossRefGoogle Scholar
  20. 20.
    Goel V. K., Nye T. A., Clark C. R. et al.: A technique to evaluate an internal spinal device by use of the selpot system: an application to Luque closed loop. Spine 12: 150–159, 1987.PubMedCrossRefGoogle Scholar
  21. 21.
    Gunzburg R., Fraser R. D., Moore R. et al.: An experimental study comparing percutaneous discectomy with chemonucleolysis. Spine 18: 218–226, 1993.PubMedCrossRefGoogle Scholar
  22. 22.
    Haher T., O’Brien M., Felmly W. T. et al.: Instantaneous axis of rotation as a function of the three columns of the spine. Spine 17: S 149–154, 1992.CrossRefGoogle Scholar
  23. 23.
    Hansson T.: The intervertebral disc: dynamic changes during loading. Seminars in Spine Surgery 5: 17–22, 1993.Google Scholar
  24. 24.
    Hayes M. A., Howard T. C., Gruel C. R. et al.: Roentgenographs evaluation of lumbar spine flexion-extension in asymptomatic individuals. Spine 14: 327, 1989.PubMedCrossRefGoogle Scholar
  25. 25.
    Hickey D. S., Hukins S. W. L.: The relationship between the structure of the annulus fibrosus and the function and failure of the intervertebral disc. Spine 5: 106–116, 1980.PubMedCrossRefGoogle Scholar
  26. 26.
    Hirsh C., Galante J. O.: Laboratory conditions for tensile tests in annulus fibrosus from human intervertebral discs. Acta Orthop. Scand. 38: 148–162, 1967.CrossRefGoogle Scholar
  27. 27.
    Holmes A. D., Hukins D. W., Freemont A. J.: End-plate displacement during compression of lumbar vertebra-discvertebra segments and the mechanism of failure. Spine 18: 128–135, 1993.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnstone B., Urban J. P. J., Roberts S. et al.: The fluid content of the human intervertebral disc. Spine 17, 4: 412–416, 1992.CrossRefGoogle Scholar
  29. 29.
    Kahanovitz N., Arnoczky S. P., Kummer F.: The comparative biomechanical, histologic, and radiographic analysis of canine lumbar discs treated by surgical excision or chemonucleolysis. Spine 10: 178–183, 1985.PubMedCrossRefGoogle Scholar
  30. 30.
    Keller T. S., Hansson T. H., Holm S. H. et al.: In vivo creep behavior of the normal and degenerated porcine intervertebral disk: a preliminary report. J. Spinal Disord. 1: 267–278, 1989.Google Scholar
  31. 31.
    Keller T. S., Holm S. H., Hansson T. H. et al.: The dependence of intervertebral disc mechanical properties on physiologic conditions. Spine 15: 751–761, 1990.PubMedGoogle Scholar
  32. 32.
    Keller T. S., Spengler D. M., Hansson T. H.: Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading. J. Orthop. Res. 5, 4: 467–478, 1987.PubMedCrossRefGoogle Scholar
  33. 33.
    Klein J. A., Hickey D. S., Hukins D. W. L.: Radial bulging of the annulus fibrosus during compression of the intervertebral disc. J. Biomech. 16: 211–217, 1983.PubMedCrossRefGoogle Scholar
  34. 34.
    Krag M. H., Seroussi R. E., Wilder D. G. et al.: Internal displacement distribution from in vitro loading of human thoracic and lumbar spinal motion segments: experimental results and theoretical predictions. Spine 12, 10: 1001–1007, 1987.PubMedCrossRefGoogle Scholar
  35. 35.
    Kremper J. F., Minnig G. I., Smith B. S.: Experimental studies on the effect of chymopapain on nerve root compression caused by intervertebral disc material. Clin. Orthop. 106: 336–349, 1975.CrossRefGoogle Scholar
  36. 36.
    Kulak R. F., Belytschko T. B., Schultz A. B. et al.: Nonlinear behavior of the human intervertebral disc under axial load. J. Biomech. 9: 377–386, 1976.PubMedCrossRefGoogle Scholar
  37. 37.
    Kurowski P., Kubo A.: The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae. Spine 11: 726–731, 1986.PubMedCrossRefGoogle Scholar
  38. 38.
    Lai W. M., Hou J., Mow V. C.: A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113: 145–258, 1991.CrossRefGoogle Scholar
  39. 39.
    Lane G. J., Prodoehl J. A., Black J. et al.: An experimental comparison of CO2, argon, Nd: YAG and Ho: YAG laser ablation of intervertebral discs. Spine: State of the Art Reviews 7: 1–9, 1993.Google Scholar
  40. 40.
    Lin H. S., Liu Y. K., Adams K. H.: Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J. Bone Joint Surg. 60-A: 41–55, 1978.Google Scholar
  41. 41.
    McGlashen K. M., Miller J. A., Schultz A. B. et al.: Load displacement behavior of the human lumbosacral joint. J. Orthop. Res. 5: 488–496, 1987.PubMedCrossRefGoogle Scholar
  42. 42.
    Minura M., Panjabi M. M., Tech D. et al.: Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19, 12: 1371–1380, 1994.CrossRefGoogle Scholar
  43. 43.
    Nachmenson A.: The load on lumbar disks in different positions of the body. Clin. Orthop. 45: 107–122, 1966.Google Scholar
  44. 44.
    Nachmenson A., Morris J.: In vivo measurements of intradiscal pressure. J. Bone Joint Surg. 46-A: 1077, 1964.Google Scholar
  45. 45.
    Nachmenson A. L., Schultz A. B., Berkson M. H.: Mechanical properties of human lumbar spine motion segments. Influences of age, sex, disc level, and degeneration. Spine 4: 1–8, 1979.CrossRefGoogle Scholar
  46. 46.
    Ogstone N. G., King G. J., Gertzbein S. D. et al.: Centrode pattern in the lumbar spine. Baseline studies in normal subjects. Spine 11: 591–595, 1986.CrossRefGoogle Scholar
  47. 47.
    Panagiotacopulos N. D., Knauss W. G., Bloch R.: On the mechanical properties of human intervertebral disc material. Biorheology 16: 317–330, 1979.PubMedGoogle Scholar
  48. 48.
    Panagiotacopulos N. D., Pope M. H., Krag M. H. et al.: Water content in human intervertebral discs: Part 2. Viscoelastic behavior. Spine 12: 918–924, 1987.PubMedCrossRefGoogle Scholar
  49. 49.
    Panjabi M., Tech D., Brown M. et al.: Intrinsic disc pressure as a measure of integrity of the lumbar spine. Spine 13, 8: 913–917, 1988.Google Scholar
  50. 50.
    Panjabi M. M.: The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J. Spinal Disord. 5: 390–397, 1992.PubMedCrossRefGoogle Scholar
  51. 51.
    Panjabi M. M., Krag M. H., Chung T. Q.: Effects of disc injury on mechanical behaviour of the human spine. Spine 9: 707–713, 1984.PubMedCrossRefGoogle Scholar
  52. 52.
    Panjabi M. M., Tech D., Oxland T. R. et al.: Mechanical behaviour of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J. Bone Joint Surg. 76A, 3: 413–424, 1994.Google Scholar
  53. 53.
    Pearcy M., Portek I., Shepherd J.: Three-dimensional x-rays analysis of normal movement in the lumbar spine. Spine 9: 294–297, 1984.PubMedCrossRefGoogle Scholar
  54. 54.
    Pearcy M. J., Bogduk N.: Instantaneous axes of rotation of the lumbar intervertebral joints. Spine 13: 1033–1041, 1988.PubMedCrossRefGoogle Scholar
  55. 55.
    Plamodon A., Gagnon M., Maurais G.: Application of a stereo-radiographic method for the study of intervertebral motion. Spine 13: 1027–1032, 1988.CrossRefGoogle Scholar
  56. 56.
    Posner I., White A. A. III., Edwards T. W. et al.: Abiomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine 7: 374–389, 1982.PubMedCrossRefGoogle Scholar
  57. 57.
    Quigley M. R., Maroon J. C., Shih T. et al.: Laser discectomy. Comparison of systems. Spine 19: 319–322, 1994.PubMedCrossRefGoogle Scholar
  58. 58.
    Quinnel R., Stockdale H.: The use of in vivo lumbar discography to assess the clinical significance of the position of the intercrestal line. Spine 8: 305–307, 1983.CrossRefGoogle Scholar
  59. 59.
    Ranu H. S.: Measurement of pressure in the nucleus and within the annulus of the human spinal disc due to extreme loading. J. Engin, in Med. Part H. Proc. Insrn. Mech. Engrs. Vol. 204: 141–146, 1990.CrossRefGoogle Scholar
  60. 60.
    Reuber M., Schultz A., Denis F. et al.: Bulging of lumbar intervertebral disc. J. Biomech. Eng. 104: 187–192, 1982.PubMedCrossRefGoogle Scholar
  61. 61.
    Roaf R.: A study of the mechanics of spinal injuries. J. Bone Joint Surg. 42B: 810–823, 1960.Google Scholar
  62. 62.
    Schonstrom N., Lindahl S., Hansson T.: Dynamic changes in the dimension of the lumbar spinal canal: an experimental study in vitro. J. Orthop. Res. 7, 1: 115–121, 1989.PubMedCrossRefGoogle Scholar
  63. 63.
    Schultz A. B., Warwick D., Berkson M. H. et al.: Mechanical properties of human lumbar spine motion segments. Part I: responses in flexion, extension, lateral bending and torsion. J. Biomech. Eng. 101: 46–52, 1979.CrossRefGoogle Scholar
  64. 64.
    Seligman J. V., Gertzbein S. D., Tile M. et al.: Computer analysis of spinal segment motion in degenerative disc disease with and without axial loading. Spine 9: 566–573, 1984.PubMedCrossRefGoogle Scholar
  65. 65.
    Shaffer W. O., Spratt K. F., Weinstein J. N. et al.: The consistence and accuracy of roentgenograms for measuring sagittal translation in the lumbar vertebral motion segment. An experimental model. Spine 15: 741–750, 1990.PubMedGoogle Scholar
  66. 66.
    Shah J. S., Hampson W. G. J., Jayson M. I. V.: The distribution of surface strain in the cadaveric lumbar spine. J. Bone Joint Surg. 60-B: 246–251, 1978.Google Scholar
  67. 67.
    Sheah M., Takeuchi T. Y., Wittemberg R. H. et al.: A comparison of the effects of automated percutaneous diskectomy and conventional diskectomy on intradiscal pressure, disk geometry and stiffness. J. Spinal Disord. 7: 317–325, 1994.Google Scholar
  68. 68.
    Shirazi S. A., Shrivastava S. C., Ahmed A. M.: Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. Spine 9: 120–133, 1984.CrossRefGoogle Scholar
  69. 69.
    Shirazi-Adl A., Ahmed A. M., Shrivastava S. C.: Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11: 914–927, 1986.PubMedCrossRefGoogle Scholar
  70. 70.
    Shirazi-Adl A.: Finite-element simulation of changes in the fluid content of human lumbar discs. Mechanical and clinical implications. Spine 17: 206–212, 1992.PubMedCrossRefGoogle Scholar
  71. 71.
    Simon B. R., Wu J. S. S., Carlton M. W. et al.: Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disk. J. Biomech. Eng. 107: 327–335, 1985.PubMedCrossRefGoogle Scholar
  72. 72.
    Skaggs D. L., Weidenbaum M., Iatridis J. C. et al.: Regional variation in tensile properties and biochemical composition of the human lumbar annulus fibrosus. Spine 19: 1310–1319, 1994.PubMedCrossRefGoogle Scholar
  73. 73.
    Soni A. H., Sullivan J. A., Patwardhan A. et al.: Kinematic analysis and simulation of vertebral motion under static load — Part I: kinematic analysis. J. Biomech. Eng. 104: 105–111, 1982.PubMedCrossRefGoogle Scholar
  74. 74.
    Spencer D. L., Miller J. A. A., Schultz A. B.: The effects of chemonucleolysis on the mechanical properties of the canine lumbar disc. Spine 10: 555–561, 1985.PubMedCrossRefGoogle Scholar
  75. 75.
    Tencer A. F., Ahmed A. M., Burke D. L.: Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J. Biomech. Eng. 104: 193–201, 1982.PubMedCrossRefGoogle Scholar
  76. 76.
    Twomey L., Taylor J.: Flexion creep deformation and hysteresis in the lumbar vertebral column. Spine 7: 116–122, 1982.PubMedCrossRefGoogle Scholar
  77. 77.
    Urban J. P. G., Holm S., Maroudas A. et al.: Diffusion of small solutes into the intervertebral disc: an in vivo study. Biorheology 15: 203–223, 1978.PubMedGoogle Scholar
  78. 78.
    Urban J. P. G., Holm S., Maroudas A. et al.: Nutrition of the intervertebral disc: effect of fluid flow in solute transport. Clin. Orthop. 170: 296–302, 1982.PubMedGoogle Scholar
  79. 79.
    Urban J. P. G., Maroudas A.: The chemistry of the intervertebral disc in relation to its physiological function and requirements. Clin. Rheum. Dis. 6: 51–76, 1980.Google Scholar
  80. 80.
    Wakano K., Kasman R., Chao E. Y. et al.: Biomechanical analysis of canine intervertebral disc after chymopapain injection. A preliminary report. Spine 8: 59–68, 1983.PubMedCrossRefGoogle Scholar
  81. 81.
    White A. A. III., Panjabi M. M.: Physical properties and functional biomechanics of the spine. In: Clinical biomechanics of the spine. White A. A. III., Panjabi M. M., Eds. J. B. Lippincott, Philadelphia, 1990.Google Scholar
  82. 82.
    Yamamoto I., Panjabi M., Crisco J. et al.: Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Proc. International Society for the Study of the Lumbar Spine, Kyoto, 1989.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • G. Cinotti
  • F. Postacchini

There are no affiliations available

Personalised recommendations