Biochemistry, Nutrition and Metabolism

  • S. Gumina
  • F. Postacchini


The extracellular matrix of the intervertebral disc is similar, in composition and structure, to hyaline cartilage. It consists mainly of collagen, which accounts for about 50% of the dry weight of the annulus fibrosus and some 20%–30% of that of the nucleus pulposus (151). Collagen fibers, which are flexible and inextensible, offer a high resistance to traction, but not to compressive loads.


Intervertebral Disc Nucleus Pulposus Disc Herniation Disc Degeneration Annulus Fibrosus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam M., Deyl Z.: Degenerated annulus fibrosus of the intervertebral disc contains collagen type III. Ann. Rheum. Dis. 43: 258–263, 1984.PubMedCrossRefGoogle Scholar
  2. 2.
    Adams P., Eyre D. R., Muir H.: Biochemical aspects of development and ageing of human lumbar intervertebral discs. Rheum. Rehab. 16: 22–29, 1977.CrossRefGoogle Scholar
  3. 3.
    Adams P., Muir H.: Qualitative changes with age of proteoglycans of human lumbar discs. Ann. Rheum. Dis. 35: 289–296, 1976.PubMedCrossRefGoogle Scholar
  4. 4.
    Akeson W. H.: An experimental study of joint stiffness. J. Bone Joint Surg. 43-A: 1022–1034, 1961.PubMedGoogle Scholar
  5. 5.
    Axelsson I., Inerot S., Heinegard D.: In: European Federation of Connective Tissue Clubs. Lapière C. M. Ed., 5th Meet., pp. 1–15, University at Sart Tilmam Liège, 1976.Google Scholar
  6. 6.
    Bailey A. J., Herbert C. M., Jaison M. I. V.: Collagen of the intervertebral disc. In: The lumbar spine and back pain. Jayson M. Ed., Sector Publishing Ltd., London, 1976.Google Scholar
  7. 7.
    Bayliss M. T., Johnstone B., O’Brien J. P.: Proteoglycan synthesis in the human intervertebral disc. Variation with age, region and pathology. Spine 13: 972–981, 1988.PubMedCrossRefGoogle Scholar
  8. 8.
    Bayliss M. T., Urban J. P. G., Johnstone B. et al.: In vitro method for measuring synthesis rates in the intervertebral disc. J. Orthop. Res. 4: 10–17, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Bray B. A., Lieberman R., Meyer K.: Structure of human skeletal keratosulphate. The linkage region. J. Biol. Chem. 242: 3373–3380, 1967.PubMedGoogle Scholar
  10. 10.
    Brodin H.: Path of nutrition in articular cartilage and the intervertebral disk. Acta Orthop. Scand. 24: 177–180, 1955.PubMedGoogle Scholar
  11. 11.
    Broom N. D., Myers D. B.: A study of the structural response of wet hyaline cartilage to various loading situations. Conn. Tissue Res. 7: 227–237, 1980.CrossRefGoogle Scholar
  12. 12.
    Bruns R. R.: Beaded filaments and long spacing fibrils: relation to type VI collagen. J. Ultrastruct. Res. 89: 136–145, 1984.PubMedCrossRefGoogle Scholar
  13. 13.
    Bruns R. R., Press W., Engvall E. et al.: Type VI collagen in extracellular, 100-nm periodic filaments and fibrils: identification by immunoelectron microscopy. J. Cell. Biol. 103: 393–404, 1986.PubMedCrossRefGoogle Scholar
  14. 14.
    Buckwalter J. A.: Aging and degeneration of the human intervertebral disc. Spine 20: 1307–1314, 1995.PubMedGoogle Scholar
  15. 15.
    Buckwalter J. A., Cooper R. R., Maynard J. A.: Elastic fiber in human intervertebral discs. J. Bone Joint Surg. 58-A: 73–76, 1976.Google Scholar
  16. 16.
    Buckwalter J. A., Maynard J. A., Cooper R. R.: Banded structures in human nucleus pulposus. Clin. Orthop. 139: 259–266, 1979.PubMedGoogle Scholar
  17. 17.
    Buddecke E., Sziegoleit M.: Isolierung, chemische Zusammensetzung und Altersabhängigkeitsverteilung von Mucopolysacchariden menschlicher Zwischenwirbelscheiben. Hoppe Seyler. Physiol. Chem. 337: 66–78, 1964.CrossRefGoogle Scholar
  18. 18.
    Cole T. C., Burkhardt D., Ghosh P. et al.: Effects of spinal fusion on the proteoglycans of the canine intervertebral disc. J. Orthop. Res. 3: 277–291, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Cole T. C., Ghosh P., Taylor T. K. F.: Variation of the proteoglycans of the canine intervertebral disc with ageing. Biochim. Biophys. Acta 880: 209–219, 1986.PubMedCrossRefGoogle Scholar
  20. 20.
    Cornah M. S., Meachim G., Parry E. W.: Banded structures in the matrix of human and rabbit nucleus pulposus. J. Anat. 107: 351–362, 1970.PubMedGoogle Scholar
  21. 21.
    Davidson E. A., Small W.: Metabolism in vivo of connective tissue mucopolysaccharides. I. Chondroitin sulphate C and keratan sulphate of nucleus pulposus. Biochim. Biophys. Acta 69: 445–452, 1936.CrossRefGoogle Scholar
  22. 22.
    Davidson E. A., Woodhall B.: Biochemical alterations in herniated intervertebral disks. J. Biol. Chem. 234: 2951–2954, 1959.PubMedGoogle Scholar
  23. 23.
    Dickson I. R., Happey F., Pearson C. H. et al.: Variations in the protein components of human intervertebral disk with age. Nature 215: 52–53, 1967.PubMedCrossRefGoogle Scholar
  24. 24.
    Di Fabio J. L., Pearce R. H., Caterson B. et al.: The heterogeneity of the non-aggregating proteoglycans of the human intervertebral disc. Biochem. J. 244: 27–33, 1987.Google Scholar
  25. 25.
    Di Salvo J., Schubert M.: Interaction during fibril formation of soluble collagen with cartilage proteinpolysaccharide. Biopolymers 4: 247–258, 1966.CrossRefGoogle Scholar
  26. 26.
    Doita M., Kanatami T., Harada T. et al.: Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine 21: 235–241, 1996.PubMedCrossRefGoogle Scholar
  27. 27.
    Donohue P. J., Jahnke J., Blaha J. D. et al.: Characterization of link protein(s) from human intervertebral disc tissues. Biochem. J. 251: 739–747, 1988.PubMedGoogle Scholar
  28. 28.
    Economou L. S.: Observations on a possible association between the acid mucopolysaccharides and lysozyme. J. Surg. Oncol.: 3: 89–95, 1971.PubMedCrossRefGoogle Scholar
  29. 29.
    Eyre D. R.: Biochemistry of the intervertebral disc. Int. Rev. Conn. Tissue Res. 8: 227–291, 1979.Google Scholar
  30. 30.
    Eyre D. R.: Collagens of the disc. The biology of the intervertebral disc. Ghosh P. Ed., CRC Press Inc., Boca Raton, pp. 171–188, 1988.Google Scholar
  31. 31.
    Eyre D. R., Muir H.: Quantitative analysis of types I and II collagens in human intervertebral disc at various ages. Biochim. Biophys. Acta 492: 29–42, 1977.PubMedCrossRefGoogle Scholar
  32. 32.
    Fawzy A. A., Dobrow R., Franson R. C.: Modulation of phospholipase A2 activity in human synovial fluid by cations. Inflammation 11: 389–400, 1987.PubMedCrossRefGoogle Scholar
  33. 33.
    Fleming A.: On a remarkable bacteriolytic element found in tissues and secretions. Proc. R. Soc. B. 93: 306–317, 1922.CrossRefGoogle Scholar
  34. 34.
    Franson R. C., Saal J. S., Saal J. A.: Human disc phospholipase A2 is inflammatory. Spine 17: 129S–132S, 1992.CrossRefGoogle Scholar
  35. 35.
    Franzen A., Bjornsson S., Heinegard D.: Cartilage proteoglycan aggregate formation. Role of link protein. Biochem. J. 197: 669–674, 1981.PubMedGoogle Scholar
  36. 36.
    Fricke R.: Serum protein in connective tissues. Protides Biol. Fluids 9: 249–253, 1961.Google Scholar
  37. 37.
    Fricke R., Hadding U.: Connective tissue proteins. Protides Biol. Fluids 10: 52–60, 1962.Google Scholar
  38. 38.
    Gerber B. R., Franklin E. C., Schubert M.: Ultracentrifugal fractionation of bovine nasal chondromucoprotein. J. Biol. Chem. 235: 2870–2875, 1960.PubMedGoogle Scholar
  39. 39.
    Gertzbein S. D.: Degenerative disk disease of the lumbar spine: immunological implications. Clin. Orthop. 129: 68–71, 1977.PubMedGoogle Scholar
  40. 40.
    Ghosh P., Bushell G. R., Taylor T. K. F. et al.: Collagens, elastin and noncollagenous protein of the intervertebral disk. Clin. Orthop. 129: 124–132, 1977.PubMedGoogle Scholar
  41. 41.
    Ghosh P., Bushell G. R., Taylor T. K. F. et al.: Distribution of glycosaminoglycans across the normal and the scoliotic disc. Spine 5: 310–317, 1980.PubMedCrossRefGoogle Scholar
  42. 42.
    Ghosh P., Taylor T. K. F., Braund K. G. et al.: The collagenous and non-collagenous proteins of the canine intervertebral disc and their variation with age, spinal level and breed. Gerontologia 22: 124–132, 1975.CrossRefGoogle Scholar
  43. 43.
    Ghosh P., Taylor T. K. F., Horsburgh B. A.: The composition and protein metabolism in the immature rabbit intervertebral disk. Cell Tissue Res. 163: 223–238, 1975.PubMedCrossRefGoogle Scholar
  44. 44.
    Gower W. E., Pedrini V.: Age-related variations in protein-polysaccharides from human nucleus pulposus, annulus fibrosus, and costal cartilage. J. Bone Joint Surg. 51-A: 1154–1162, 1969.Google Scholar
  45. 45.
    Gregory J. D.: Multiple aggregation factors in cartilage proteoglycans. Biochem. J. 133: 383–386, 1973.PubMedGoogle Scholar
  46. 46.
    Gronblad M., Virri J., Ronkko S. et al.: Immuno-histochemical study of human synovial-type (group 11) phospholipase A2 and inflammatory cells in macroscopically normal, degenerated and herniated human lumbar disc tissue. Proc. International Society for the Study of the Lumbar Spine, Burlington, Vermont, 1996.Google Scholar
  47. 47.
    Grynpas M. D., Eyre D. S., Kirschner D. A.: Collagen of the intervertebral disc. X-ray diffraction evidence for difference in molecular packing of types I and II collagens. Biochim. Biophys. Acta 626: 346–355, 1980.PubMedCrossRefGoogle Scholar
  48. 48.
    Hallen A.: Hexosamine and ester sulphate content of the human nucleus pulposus in different ages. Acta Chem. Scand. 12: 1869–1872, 1958.CrossRefGoogle Scholar
  49. 49.
    Hardingham T. E.: The role of link protein in the structure of articular cartilage proteoglycans aggregates. Biochem. J. 177: 237–247, 1979.PubMedGoogle Scholar
  50. 50.
    Hardingham T. E., Adams P.: A method for the determination of hyaluronate in the presence of other glycosaminoglycans and its application to human intervertebral discs. Biochem. J. 159: 143–147, 1976.PubMedGoogle Scholar
  51. 51.
    Hardingham T. E., Muir H.: Hyaluronic acid in cartilage and proteoglycan aggregation. Biochem. J. 139: 565–581, 1974.PubMedGoogle Scholar
  52. 52.
    Harris E. D. Jr., Welgus H. G., Krane S. M.: Regulation of the mammalian collagenases. Coll. Relat. Res. 4: 493–512, 1984.PubMedCrossRefGoogle Scholar
  53. 53.
    Hascall V. C., Heinegard D.: Aggregation of cartilage proteoglycans I. The role of hyaluronic acid. J. Biol. Chem. 249: 4242–4249, 1974.PubMedGoogle Scholar
  54. 54.
    Hascall V. C., Oogema T. R., Brown M. et al.: Isolation and characterization of proteoglycans from chick limb bud chondrocytes grown in vitro. J. Biol. Chem. 251: 3511–3519, 1976.PubMedGoogle Scholar
  55. 55.
    Hascall V. C., Sajdera S. W.: Protein polysaccharide complex from bovine nasal cartilage: the function of glycoprotein in the formation of aggregates. J. Biol. Chem. 244: 2384–2396, 1969.PubMedGoogle Scholar
  56. 56.
    Hass G. M.: Studies of cartilage. IV. A morphologic and chemical analysis of aging human costal cartilage. Arch. Pathol. 35: 275–279, 1943.Google Scholar
  57. 57.
    Heinegard D., Axelsson I.: Distribution of keratan sulphate in cartilage proteoglycans. J. Biol. Chem. 252: 1971–1979, 1977.PubMedGoogle Scholar
  58. 58.
    Heinegard D., Gardell S.: Studies on protein-polysaccharide complex (proteoglycan) from human nucleus pulposus. I. Isolation and preliminary characterization. Biochim. Biophys. Acta 148: 164–171, 1967.PubMedCrossRefGoogle Scholar
  59. 59.
    Heinegard D., Hascall V. C.: Aggregation of cartilage proteoglycan. III. Characteristics of the proteins isolated from tryptic digests of aggregates. J. Biol. Chem. 249: 4250–4256, 1974.PubMedGoogle Scholar
  60. 60.
    Heinegard D., Paulsson M., Inerot S. et al.: A novel low-molecular-weight chondroitin sulphate proteoglycan isolated from cartilage. Biochem. J. 197: 355–366, 1981.PubMedGoogle Scholar
  61. 61.
    Helfferich F.: Ion exchange. McGraw-Hill Book Co., New York, 1962.Google Scholar
  62. 62.
    Hendry N. G. C.: Discs, lesions and syndromes. Lancet 2: 1360–1363, 1961.CrossRefGoogle Scholar
  63. 63.
    Hirano N., Tsuji H., Ohshima H. et al.: Analisis of rabbit intervertebral disc physiology based on water metabolism. Spine 13: 1291–1296, 1988.PubMedCrossRefGoogle Scholar
  64. 64.
    Hirsch C., Paulson S., Sylven B. et al.: Biophysical and physiological investigations on cartilage and other mesenchymal tissues. Acta Orthop. Scand. 22: 175–181, 1952.PubMedCrossRefGoogle Scholar
  65. 65.
    Holm S.: Does diabetes induce degenerative processes in the lumbar intervertebral disc? Proc. International Society for the Study of the Lumbar Spine, Kyoto, Japan, 1989.Google Scholar
  66. 66.
    Holm S.: Nutrition of the intervertebral disc. In: The Lumbar Spine. Weinstein J. N., Wiesel S. W. Eds., W. B. Saunders Co., Philadelphia, 244–260, 1990.Google Scholar
  67. 67.
    Holm S., Maroudas A., Urban J. P. G. et al.: Nutrition of the intervertebral disc. Conn. Tissue Res. 8: 101–119, 1981.CrossRefGoogle Scholar
  68. 68.
    Holm S., Nachemson A.: Nutrition changes in the canine intervertebral disc after spinal fusion. Clin. Orthop. 169: 243–258, 1982.PubMedGoogle Scholar
  69. 69.
    Holm S., Nachemson A.: Variation in the nutrition of the canine intervertebral disc induced by motion. Spine 8: 866–874, 1983.PubMedCrossRefGoogle Scholar
  70. 70.
    Holm S., Nachemson A.: Cellularity of the lumbar intervertebral disc and its relevance to nutrition. Orthop. Trans. 7: 457–458, 1983.Google Scholar
  71. 71.
    Holm S., Nachemson A.: Immediate effects of cigarette smoke on nutrition of the intervertebral disc of the pig. Orthop. Trans. 8: 380, 1984.Google Scholar
  72. 72.
    Holm S., Nachemson A.: Nutrition of the intervertebral disc: effects induced by vibrations. Orthop. Trans. 9: 451, 1985.Google Scholar
  73. 73.
    Holm S., Urban J. P. G.: The intervertebral disc: factors contributing to its nutrition and matrix turnover. In: Joint Loading. Helminen H. J., Kiviranta I., Tammi M. Eds., Wright, Bristol, 1987.Google Scholar
  74. 74.
    Hopwood J. J., Robinson H. C.: The molecular weight distribution of glycosaminoglycans. Biochem. J. 135: 631–637, 1973.PubMedGoogle Scholar
  75. 75.
    Jackson D. S.: The nature of collagen-chondroitin sulphate linkages in tendon. Biochem. J. 56: 699–703, 1954.PubMedGoogle Scholar
  76. 76.
    Jackson D. S.: The formation and breakdown of connective tissue. In: Connective Tissue. A symposium edited by Tunbridge R.E., Keech M., Delafresnaye J. F., Wood G. C., Blackwell Scientific Publications, Oxford, 1957.Google Scholar
  77. 77.
    Jahnke M. R., McDevitt C. A.: Proteoglycans of human intervertebral disc. Biochem. J. 251: 347–356, 1988.PubMedGoogle Scholar
  78. 78.
    Johnstone B.: Structure and biosynthesis of human intervertebral disc proteoglycans. Ph. D. Thesis, London University, 1987.Google Scholar
  79. 79.
    Johnstone B., Urban J. P. G., Roberts S. et al.: The fluid content of the human intervertebral disc: comparison between fluid content and swelling pressure profiles of disc removed at surgery and those taken postmortem. Spine 17: 412–416, 1992.PubMedCrossRefGoogle Scholar
  80. 80.
    Kanatani T., Ozaki T., Doita M. et al.: The production of matrix metalloproteinases (MMP-1, 3) and the inhibitor of matrix metalloproteinases (TIMP) in the cells from sequestrated disc of lumbar spine. Proc. International Society for the Study of the Lumbar Spine, Burlington, Vermont, 1996.Google Scholar
  81. 81.
    Kanemoto M., Hukuda S., Komiya Y. et al.: Immuno-histochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 in human intervertebral discs. Spine 21: 1–8, 1996.PubMedCrossRefGoogle Scholar
  82. 82.
    Kang J. D., Georgescu H. I., Mclntyre-Larkin L. et al.: Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 21: 271–277, 1996.PubMedCrossRefGoogle Scholar
  83. 83.
    Katz M. M., Hargens A. R., Garfin S. R.: Intervertebral disc nutrition. Diffusion versus convection. Clin. Orthop. 210: 243–245, 1986.PubMedGoogle Scholar
  84. 84.
    Kimura J. H., Osdoby P., Caplan A. I. et al.: Electron microscopic and biochemical studies of proteoglycan polydispersity in chick limb bud chondrocyte cultures. J. Biol. Chem. 253: 4721, 1978.PubMedGoogle Scholar
  85. 85.
    Kraemer J.: Intervertebral disc diseases. G. Thieme Verlag, New York, 1981.Google Scholar
  86. 86.
    Kraemer J., Kolditz D., Gowin R.: Water and electrolyte content of human intervertebral discs under variable load. Spine 9: 69–71, 1984.Google Scholar
  87. 87.
    Kuettner K. E., Sorgente N., Arsenis C.: Lysozyme in calcifying tissues. Clin. Orthop. 112: 316–339, 1975.PubMedGoogle Scholar
  88. 88.
    Ladefoged C., Fedders O., Petersen O. F.: Amyloid in intervertebral discs: a histopathological investigation of surgical material from 100 consecutive operations on herniated discs. Ann. Rheum. Dis. 45: 239–243, 1986.PubMedCrossRefGoogle Scholar
  89. 89.
    Lane J. M., Brighton C. T., Menkowitz B. et al.: Aerobic vs anaerobic metabolism of articular cartilage. Proc. American Orthopaedics Research Society, 22nd Meeting, New Orleans, 1976.Google Scholar
  90. 90.
    Lipson S. J.: Aging versus degeneration of the intervertebral disc. In: The Lumbar Spine. Weinstein S. W., Wiesel S. W. Eds., W.B. Saunders Co., Philadelphia, 1990.Google Scholar
  91. 91.
    Lipson S. J., Muir H.: Proteoglycans in experimental disc degeneration. Spine 6: 194–210, 1981.PubMedCrossRefGoogle Scholar
  92. 92.
    Lohmander S., Antonopoulos C. A., Friberg U.: Chemical and metabolic heterogeneity of chondroitin sulfate and keratan sulfate in guinea pig cartilage and nucleus pulposus. Biochim. Biophys. Acta 304: 430–448, 1973.PubMedCrossRefGoogle Scholar
  93. 93.
    Ludowieg J. J., Sharma M. L., Hashimoto A. et al.: The mammalian intervertebral disk. Composition of the nucleus pulposus of whales during development and ageing. Conn. Tissue Res. 1: 79–83, 1972.CrossRefGoogle Scholar
  94. 94.
    Lundborg G.: Intraneural microcirculation. Orthop. Clin. North Am. 19: 1–12, 1988.PubMedGoogle Scholar
  95. 95.
    Lyons G., Eisenstein S. M., Sweet M. B. E.: Biochemical changes in intervertebral disc degeneration. Biochim. Biophys. Acta 673: 443–453, 1981.PubMedCrossRefGoogle Scholar
  96. 96.
    Lyons H., Jones E., Quinn F. E. et al.: Protein-polysaccharide complexes of normal and herniated human intervertebral disks. Proc. Soc. Exper. Biol. Med. 115: 610–614, 1964.Google Scholar
  97. 97.
    Lyons H., Jones E., Quinn F. E. et al.: Changes in the protein-polysaccharide fractions of nucleus pulposus from human intervertebral disc with age and disc herniation. J. Lab. Clin. Med. 68: 930–939, 1966.PubMedGoogle Scholar
  98. 98.
    Magora A., Schwartz A.: Relation between the low back pain syndrome and X-rays findings. Degenerative osteoarthritis. Scand. J. Rehab. Med. 8: 115–125, 1976.Google Scholar
  99. 99.
    Mangiarotti G.: Lineamenti di biologia. Dai geni agli organismi. UTET, Torino, 1981.Google Scholar
  100. 100.
    Maroudas A.: Physico-chemical properties of articular cartilage. In: Adult articular cartilage, 2nd ed., Freeman N. A. R. Ed., Pitman Medical, London, 1979.Google Scholar
  101. 101.
    Maroudas A., Evans H.: A study of ionic equilibria in cartilage. Conn. Tissue Res. 1: 69, 1972.CrossRefGoogle Scholar
  102. 102.
    Maroudas A., Stockwell R. A., Nachemson A. et al.: Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J. Anat. 120: 113–130, 1975.PubMedGoogle Scholar
  103. 103.
    Mathews M. B.: Macromolecular evolution of connective tissue. Biol. Rev. 42: 499–551, 1967.PubMedCrossRefGoogle Scholar
  104. 104.
    Mayne R., Burgeson R. E.: Structure and function of collagen types. The biology of extracellular matrix. Academic Press Inc., London, 1987.Google Scholar
  105. 105.
    McDevitt C. A.: Proteoglycans of the intervertebral disc. In: The biology of the intervertebral disc. Gosh P. Ed., CRC Press, Boca Raton, FL, 1988.Google Scholar
  106. 106.
    Meachim G., Stockwell R. A.: The matrix. Adult articular cartilage. Second edition. MAR Freeman Bath Ed., Pitman Medical, England, 1979.Google Scholar
  107. 107.
    Melrose J., Ghosh P., Taylor T. K. F.: Neutral proteinases of the human intervertebral disc. Biochim. Biophys. Acta 923: 483–495, 1987.PubMedCrossRefGoogle Scholar
  108. 108.
    Melrose J., Ghosh P., Taylor T. K. F.: Lysozyme, a major low-molecular-weight cationic protein of the intervertebral disc, which increases with ageing and degeneration. Gerontology 35: 173–180, 1989.PubMedCrossRefGoogle Scholar
  109. 109.
    Mikawa Y., Hamagami H., Shikata J. et al.: Elastin in the human intervertebral disk. A histological and biochemical study comparing it with elastin in the human yellow ligament. Arch. Orthop. Trauma Surg. 105: 343–349, 1986.PubMedCrossRefGoogle Scholar
  110. 110.
    Mitchell P. E. G., Henry N. G. C., Billewicz W. Z.: The chemical background of intervertebral disc prolapse. J. Bone Joint Surg. 43-B: 141–151, 1961.Google Scholar
  111. 111.
    Mort J. S., Caterson B., Poole A. R. et al.: The origin of human proteoglycan link-protein heterogeneity and fragmentation during aging. Biochem. J. 232: 805–812, 1985.PubMedGoogle Scholar
  112. 112.
    Nachemson A.: Lumbar intradiscal pressure. Acta Orthop. Scand. Suppl. 43: 1–110, 1960.PubMedGoogle Scholar
  113. 113.
    Nachemson A.: The lumbar spine. An orthopaedic challenge. Spine 1: 59–71, 1976.CrossRefGoogle Scholar
  114. 114.
    Nachemson A., Lewin T., Maroudas A. et al.: In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar intervertebral discs. Acta Orthop. Scand. 41: 589–607, 1970.PubMedCrossRefGoogle Scholar
  115. 115.
    Naylor A.: The biophysical and biochemical aspects of intervertebral disc herniations and degeneration. Ann. R. Coll. Surg. Engl. 31: 91–114, 1962.PubMedGoogle Scholar
  116. 116.
    Naylor A., Shentall R. D., West D. C.: In: Biopolymere und biomechanik von bindegewebssystemen. Hartmann F. Ed., Springer-Verlag, Berlin Heidelberg New York, 1974.Google Scholar
  117. 117.
    Ng S. C. S., Weiss J. B., Quennel R. et al.: Abnormal connective tissue degrading enzyme patterns in prolapsed intervertebral discs. Spine 11: 695–701, 1986.PubMedCrossRefGoogle Scholar
  118. 118.
    Nishimura I., Muragaki Y., Olsen B. R.: Tissue-specific form of type IX collagen-proteoglycan arise from the use of two widely separated promotors. J. Biol. Chem. 264: 2033–2041, 1989.Google Scholar
  119. 119.
    Noro A., Kimata K., Olike Y.: Isolation and characterization of a third proteoglycan subunits and aggregates in varying solution concentrations. J. Biomech. 17: 325–329, 1984.CrossRefGoogle Scholar
  120. 120.
    Oshima H., Tsuji H., Hirane N. et al.: Water diffusion pathway swelling pressure and biomechanical properties of the intervertebral disc during compression load. Spine 14: 1234–1244, 1989.CrossRefGoogle Scholar
  121. 121.
    Parke W. W.: Applied anatomy of the spine. In: The Spine. Second edition. Rothman R. H., Simeone F. Eds., W. B. Saunders Co., Philadelphia, 1982.Google Scholar
  122. 122.
    Paulson S., Sylven B.: Biophysical and physiological investigations on cartilage and other mesenchymal tissues. III. The diffusion rate of various substances in normal bovine nucleus pulposus. Biochim. Biophys. Acta 7: 207–213, 1951.PubMedCrossRefGoogle Scholar
  123. 123.
    Pearce R. H., Grimmer B. J.: The chemical constitution of the proteoglycan of human intervertebral disc. Biochem. J. 157: 753–763, 1976.PubMedGoogle Scholar
  124. 124.
    Pearce R. H., Grimmer B. J., Adams M. E.: Degeneration and the chemical composition of the human lumbar intervertebral disc. J. Orthop. Res. 5: 198–205, 1987.PubMedCrossRefGoogle Scholar
  125. 125.
    Pearson C. H., Happey F., Naylor A. et al.: Collagens and associated glyco-proteins in the human intervertebral disc. Variations in sugar and amino acid composition in relation to location and age. Ann. Rheum. Dis. 31: 45–51, 1972.PubMedCrossRefGoogle Scholar
  126. 126.
    Pedrini V., Pedrini-Mille A.: Aggregation of proteoglycans of human intervertebral disc. Trans. Orthop. Res. Soc. 2: 18, 1977.Google Scholar
  127. 127.
    Pita J. C., Cuervo L. A., Madruga J. E.: Evidence for a role of protein polysaccharides in regulation of mineral phase separation in calcifying cartilage. J. Clin. Invest. 49: 2188–2197, 1970.PubMedCrossRefGoogle Scholar
  128. 128.
    Postacchini F., Bellocci M., Massobrio M.: Morphologic changes in annulus fibrosus during aging. An ultrastructural study in rat. Spine 9: 596–603, 1984.PubMedCrossRefGoogle Scholar
  129. 129.
    Roberts S., Menage J., Duance V. et al.: Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. Spine 16: 1030–1038, 1991.PubMedCrossRefGoogle Scholar
  130. 130.
    Rodén L.: In: Chemistry and molecular biology of the intercellular matrix. A. Balazs Ed., Vol. 2, Academic Press, New York, 1970.Google Scholar
  131. 131.
    Rydevik B., Holm S.: Pathophysiology of the intervertebral disc and adjacent neural structures. In: The Spine. Vol. 1, Rothman R. H., Simeone F. A. Eds., W. B. Saunders Co., Philadelphia, 1992.Google Scholar
  132. 132.
    Saal J. S., Franson R. C., Dobrow R. et al.: High levels of inflammatory phospholipase A2 activity in lumbar disc herniations. Spine 15: 674–678, 1990.PubMedCrossRefGoogle Scholar
  133. 133.
    Schmidt A., Rodergerdts U., Buddecke E.: Correlation of lysozyme activity with proteoglycan biosynthesis in epiphyseal cartilage. Calc. Tissue Res. 26: 163–172, 1972.CrossRefGoogle Scholar
  134. 134.
    Sedowofia K. A., Tomlinson I. W., Weiss J. B. et al.: Collagenolytic enzyme system in human intervertebral disc: their control, mechanism and their possible role in the initiation of biomechanical failure. Spine 7: 213–221, 1982.PubMedCrossRefGoogle Scholar
  135. 135.
    Shikata J., Sanada H., Yamamuro T. et al.: Experimental studies of the elastic fiber of the capsular ligament: influence of aging and sex hormones on the hip joint capsule of rats. Conn. Tissue Res. 7: 21–27, 1979.CrossRefGoogle Scholar
  136. 136.
    Sorce D. J., McDevitt C. A., Greenwald R. A.: Protein and lysozyme content of adult human nucleus pulposus. Experientia 42: 1157–1158, 1986.PubMedCrossRefGoogle Scholar
  137. 137.
    Souter W. A., Taylor T. K. F.: Sulphated acid mucopolysaccharide metabolism in the rabbit intervertebral disc. J. Bone Joint Surg. 52-B: 371–384, 1970.Google Scholar
  138. 138.
    Spiliopoulou I., Korovessis P., Konstantinou D. et al.: IgG and IgM concentration in the prolapsed human intervertebral disc and sciatica etiology. Spine 19: 1320–1323, 1994.PubMedCrossRefGoogle Scholar
  139. 139.
    Stairmand J., Holm S., Urban J. P. G.: Factors influencing oxygen concentration gradients in the intervertebral disc. A theoretical analysis. Spine 16: 444–449, 1991.PubMedCrossRefGoogle Scholar
  140. 140.
    Stanescu V., Maroteaux P., Sobezak E.: Proteoglycan populations of baboon (papio papio) cartilages from different anatomical sites. Gel electrophoretic analysis of dissociated proteoglycans and of fractions obtained by density gradient centrifugation. Biochim. Biophys. Acta 629: 371–381, 1980.PubMedCrossRefGoogle Scholar
  141. 141.
    Sunderland S.: Nerves and nerve injuries. Churchill-Livingstone, New York, 1978.Google Scholar
  142. 142.
    Szirmai J. A.: In Chemistry and molecular biology of the intercellular matrix. Vol. 3, Balazs E. A. Ed., Academic Press, New York, 1970.Google Scholar
  143. 143.
    Takeda T., Sanada H., Ishii M.: Age-associated amyloid deposition in surgically removed herniated intervertebral discs. Arthritis Rheum. 27: 1063–1065, 1984.PubMedCrossRefGoogle Scholar
  144. 144.
    Taylor T. K. F., Akeson W. H.: Intervertebral disc prolapse: a review of the morphologic and biochemic knowledge concerning the nature of prolapse. Clin. Orthop. 76: 54–79, 1971.PubMedCrossRefGoogle Scholar
  145. 145.
    Taylor T. K. F., Little K.: Intercellular matrix of the intervertebral disk in ageing and in prolapse. Nature 208: 384–386, 1965.PubMedCrossRefGoogle Scholar
  146. 146.
    Tengblad A., Pearce R. H., Grimmer B. J.: Demonstration of link protein aggregates from human intervertebral disc. Biochem. J. 222: 85–92, 1984.PubMedGoogle Scholar
  147. 147.
    Thyberg J., Lohmander S., Friberg U. Electron microscopic demonstration of proteoglycans in guinea pig epiphyseal cartilage. J. Ultrastr. Res. 45: 407–427, 1973.CrossRefGoogle Scholar
  148. 148.
    Thyberg J., Lohmander S., Heinegard D.: Proteoglycans of hyaline cartilage. Electron microscopic studies on isolated molecules. Biochem. J. 151: 157–166, 1975.PubMedGoogle Scholar
  149. 149.
    Tsiganos C. P., Muir H.: Studies on protein-polysaccharides from pig laryngeal cartilage — heterogeneity, fractionation and characterization. Biochem. J. 113: 885–894, 1969.PubMedGoogle Scholar
  150. 150.
    Urban J. P. G.: Fluid and solute transport in the intervertebral disc. Ph. D. Thesis, London University, 1977.Google Scholar
  151. 151.
    Urban J. P. G.: Disc biochemistry in relation to function. In: The Lumbar Spine. Weinstein J. N., Wiesel S. W. Eds., W.B. Saunders Co., Philadelphia, 1990.Google Scholar
  152. 152.
    Urban J. P. G.: Point of View. Spine 21: 277, 1996.CrossRefGoogle Scholar
  153. 153.
    Urban J. P. G., Holm S., Maroudas A.: Diffusion of small solutes into the intervertebral disc: an in vivo study. Biorheology 16: 203–223, 1978.Google Scholar
  154. 154.
    Urban J. P. G., Holm S., Maroudas A. et al.: Nutrition of the intervertebral disc. An in vivo study of solute transport. Clin. Orthop. 129: 101–114, 1977.PubMedGoogle Scholar
  155. 155.
    Urban J. P. G., Maroudas A.: Measurement of fixed charge density and partition coefficients in the intervertebral disc. Biochim. Biophys. Acta 586: 166–178, 1979.CrossRefGoogle Scholar
  156. 156.
    Urban J. P. G., Maroudas A.: Swelling pressure of the intervertebral disc in vitro. Conn. Tissue Res. 9: 1–10, 1981.CrossRefGoogle Scholar
  157. 157.
    Urban J. P. G., Maroudas A., Bayliss M. T. et al.: Osmotic pressure of proteoglycans at the concentration found in cartilage. Biorheology 16: 447–464, 1979.PubMedGoogle Scholar
  158. 158.
    Urban J. P. G., McMullin J. F.: Swelling pressure of the intervertebral disc: influence of age, spinal level, composition and degeneration. Spine 13: 179–186, 1988.PubMedCrossRefGoogle Scholar
  159. 159.
    Van der Rest M., Dublet B., Chanpliand M. F.: Fibril associated collagens. Biomaterials 11: 28–31, 1990.PubMedGoogle Scholar
  160. 160.
    Vaughan L., Mendier M., Huber S.: Periodic distribution of collagen IX along cartilage fibrils. J. Cell Biol. 106: 991–997, 1988.PubMedCrossRefGoogle Scholar
  161. 161.
    Venn G., Mason R. M.: Changes in mouse intervertebral disc proteoglycan synthesis with age. Biochem. J. 234: 475–479, 1986.PubMedGoogle Scholar
  162. 162.
    Vernon-Roberts B.: Pathology of degenerative spondylosis. In: The lumbar spine and back pain. Jayson M. Ed., Sector Publishing Ltd., London, 1976.Google Scholar
  163. 163.
    Virgin W. J.: Experimental investigation into the physical properties of the intervertebral disc. J. Bone Joint Surg. 33-B: 607–618, 1951.Google Scholar
  164. 164.
    Wu J. J., Eyre D. R.: Covalent interactions of type IX collagen in cartilage. Conn. Tissue Res. 20: 241–246, 1989.CrossRefGoogle Scholar
  165. 165.
    Wu J. J., Eyre D. R., Slayter H. S.: Type VI collagen of the intervertebral disc. Biochem. J. 248: 373–381, 1987.PubMedGoogle Scholar
  166. 166.
    Yasuma T., Arai K., Suzuki F.: Age related phenomena in the lumbar intervertebral discs. Lipofuscin and amyloid deposition. Spine 17: 1194–1198, 1991.CrossRefGoogle Scholar
  167. 167.
    Yasuma T., Arai K., Yamauchi Y.: The histology of lumbar intervertebral disc herniation. The significance of small blood vessels in the extruded tissue. Spine 18: 1761–1765, 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • S. Gumina
  • F. Postacchini

There are no affiliations available

Personalised recommendations