Microsystem Simulation

  • Arokia Nathan
  • Henry Baltes
Part of the Computational Microelectronics book series (COMPUTATIONAL)


Support electronics has become an essential part of the microtransducer providing necessary control and signal processing/conversion functions for improved accuracy, reliability, and functionality (see [1, 2]). Integration of these elements on a single chip constitutes the first step towards realization of microsystems [3, 4]. The efficient design of successful microsystems critically rests on accommodating the interaction of mixed electrical, thermal, mechanical, magnetic, radiant, and chemical signals. Most importantly, since the microtransducer is central to control and feedback operation, it cannot be isolated from circuitry in the design process. For example, in the design process for an integrated accelerometer microsystem (see Fig. 9.1a) one has to: evaluate the system response to transient electrical and mechanical signals; optimize operating bias and self-test procedures with respect to accelerometer reliability associated with electrostatic pull-in; minimize the influence of read-out operation on accelerometer performance; and evaluate the sensitivity of electrical and mechanical system performance to variations in accelerometer or circuit parameters. Thus, it is crucial that the simulation tool or environment accounts for the mixed-signal microtransducer-circuit interactions and yet provides reasonably accurate functional descriptions for both.


Equivalent Circuit Circuit Modeling Bond Graph Spice Simulation Constant Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Middelhoek, S., Audet, S. A., Silicon Sensors, New York: Academic Press, 1989.Google Scholar
  2. [2]
    Wise, K. D., Microelectromechanical Systems: Interfacing Electronics to a Non-Electronic World, Technical Digest, IEEE IEDM, San Francisco, 1996, pp. 11–18.Google Scholar
  3. [3]
    Baltes, H., Future of IC Microtransducers, Sensors and Actuators A, 56 (1996), 179–192.CrossRefGoogle Scholar
  4. [4]
    Baltes, H., Paul, O., Korvink, J. G., Schneider, M., Bühler, J., Schneeberger, N., Jaeggi, D., Malcovati, P., Hornung, M., Häberli, A., von Arx, M., Mayer, F., Funk, J., IC MEMS Microtransducers, in: Technical Digest, IEEE IEDM, San Francisco, 1996, pp. 521–524.Google Scholar
  5. [5]
    Engl, W. L., Laur, R., Dirks, H. K., MEDUSA — A Simulator for Modular Circuits, IEEE Trans. CAD of ICAS, 1 (1982), 85–93.Google Scholar
  6. [6]
    McMacken, J. R. F., Chamberlain, S. G., Chord — A Modular Semiconductor Device Simulation Development Tool Incorporating External Network Models, IEEE Trans. CAD of ICAS, 8 (1989), 826–836.Google Scholar
  7. [7]
    Gnudi, A., Ciampolini, P., Guerrieri, R., Rudan, M., Baccarani, G., Circuit Analysis by Using Device Simulator, Proc. NASECODE V Conf., Dublin, Miller, J. J. H., (Ed.), 1987, pp. 201-206.Google Scholar
  8. [8]
    Litsios, J., Muller, S., Fitchner, W., Mixed-Mode Multi-Dimensional Device and Circuit Simulation, in: Simulation of Semiconductor Devices and Processes, Vol. 5, Selberherr, S., Stippel, H., Strasser, E. (Eds.), Wien-New York: Springer-Verlag, 1993, pp. 129–132.CrossRefGoogle Scholar
  9. [9]
    Latif, M., Bryant, P. R., Network Analysis Approach to Multidimensional Modeling of Transistors Including Thermal Effects, IEEE Trans. CAD of ICAS, 1 (1982), 94–101.Google Scholar
  10. [10]
    Krabbenborg, B. H., de Graaff, H. C., Mouthaan, A. J., Boezen, H., Bosma, A., Tekin, C., 3D Thermal/Electrical Simulation of Breakdown in a BJT Using a Circuit Simulator and a Layout-to-Circuit Extraction Tool, in: Simulation of Semiconductor Devices and Processes, Vol. 5, Selberherr, S., Stippel, H., Strasser, E. (Eds.), Wien-New York Springer-Verlag, 1993, pp. 57–60.CrossRefGoogle Scholar
  11. [11]
    Litsios, J., Schmithüsen, B., Fichtner, W., Large Scale Thermal Mixed Mode Device and Circuit Simulation, in: Simulation of Semiconductor Devices and Processes, Vol. 6, Ryssel, H., Pichler, P. (Eds.), Wien-New York: Springer-Verlag, 1995, pp. 368–371.CrossRefGoogle Scholar
  12. [12]
    Green, M. A., Shewchun, J., The General Transmission Line Equivalent Circuit Model for Degenerate and Non-Degenerate Carrier Concentrations in Semiconductors, Solid-State Electronics, 17 (1974), 717–723.CrossRefGoogle Scholar
  13. [13]
    Green, M. A., Shewchun, J., Application of the Small-Signal Transmission Line Equivalent Circuit Model to the a. c., d. c. and Transient Analysis of Semiconductor Devices, Solid-State Electronics, 17 (1974), 941–949.CrossRefGoogle Scholar
  14. [14]
    Swart, N. R., Nathan, A., Mixed-Mode Device-Circuit Simulation of Thermal-Based Microsensors, Sensors and Materials, 6 (1994), 179–192.Google Scholar
  15. [15]
    Mouthaan, T. J., Krabbenborg, B. H., Thermodynamic Analysis of Semiconductor Structures Using a Device Simulator and Lumped Circuit Modelling, Sensors and Materials, 6 (1994), 125–137.Google Scholar
  16. [16]
    Kuzmicz, W., Denisiuk, W., Gempel, J., Jaworski, Z., Niewczas, M., Pfitzner, A., Piworarska, E., Pleskazc, W., Wojtasik, A., Coupling a Statistical Process-Device Simulator with a Circuit Layout Extractor for a Realistic Circuit Simulation of VLSI Circuits, Simulation of Semiconductor Devices and Processes, Vol. 5, Selberherr, S., Stippel, H., Strasser, E. (Eds.), Wien-New York: Springer-Verlag, 1993, pp. 37–40.CrossRefGoogle Scholar
  17. [17]
    Kron, G., Electric Circuit Models of Partial Differential Equations, Electrical Engineering, 67 (1948), 672.MathSciNetGoogle Scholar
  18. [18]
    Lynn, J. W., Tensors in Electrical Engineering, London: Edward Arnold Ltd., 1963.Google Scholar
  19. [19]
    Kron, G., Equivalent Circuits for the Elastic Field, J. Appl. Mech., 12 (1945), 149–161.Google Scholar
  20. [20]
    Kron, G., Equivalent Circuits for the Field Equations of Maxwell, Proc. I. R. E., 32 (1944), 289.CrossRefMathSciNetGoogle Scholar
  21. [21]
    Kron, G., Equivalent Circuits of Compressible and Incompressible Fluid Flow Fields, J. Aero. Sci., 12 (1945), 221.MATHMathSciNetGoogle Scholar
  22. [22]
    Higgins, T. J., Electroanalogic Methods, Appl. Mech. Rev., Jan. 1956, Feb., Aug., Oct., 1957, May 1958.Google Scholar
  23. [23]
    Janata, J., Principles of Chemical Sensors, New York: Plenum Press, 1989.Google Scholar
  24. [24]
    MacNeal, R. H., Electric Circuit Analogies for Elastic Structures, New York: Wiley, 1962.Google Scholar
  25. [25]
    Koenig, H. E., Blackwell, W. A., Linear Graph Theory — A Fundamental Engineering Discipline, IRE Transactions of Education, 105 (1960), 42–49.CrossRefGoogle Scholar
  26. [26]
    Koenig, H. E., Tokad, Y., State Models of Systems of Multiterminal Linear Components, IEEE Int. Convention Record, 12, Part 1 (1964), 318–329.MathSciNetGoogle Scholar
  27. [27]
    Arnold, E., Computer Simulation of Conductivity and Hall Effect in Inhomogeneous Inversion Layers, Surface Sct, 113 (1982), 239–243.CrossRefGoogle Scholar
  28. [28]
    Popovic, R. S., Numerical Analysis of MOS Magnetic Field Sensors, Solid-State Electronics, 28 (1985), 711–716.CrossRefGoogle Scholar
  29. [29]
    Caverly, R., Peck, E., A Finite-Element Model and Characterization of the p-i-n Magnetodiode at Microwave Frequencies, Solid-State Electronics, 30 (1987), 473–477.CrossRefGoogle Scholar
  30. [30]
    Salim, A., Manku, T., Nathan, A., Modeling of Magnetic Field Sensitivity of Bipolar Magnetotransistors Using HSPICE, IEEE Trans. CAD of lCAS, 14 (1995), 464–469.Google Scholar
  31. [31]
    Mohajerzadeh, S., Nathan, A., Modeling Noise Correlation Behaviour in Dual-Collector Magnetotransistors Using Small Signal Equivalent Circuit Analysis, IEEE Trans. Electron Devices, 43 (1996), 883–888.CrossRefGoogle Scholar
  32. [32]
    Rombach, P., Langheinrich, W., Modelling of a Micromachined Torque Sensor, Sensors and Actuators A, 46-47 (1995), 294–297.CrossRefGoogle Scholar
  33. [33]
    Swart, N. R., Nathan, A., Flow-Rate Microsensor Modelling and Optimization Using SPICE, Sensors and Actuators A, 34 (1992), 109–122.CrossRefGoogle Scholar
  34. [34]
    Swart, N. R., Nathan, A., Coupled Electrothermal Modeling of Microheaters Using SPICE, IEEE Transactions on Electron Devices, 41 (1994), 920–925.CrossRefGoogle Scholar
  35. [35]
    Pham, H. H., Nathan, A., Compact MEMS-SPICE Modeling, Sensors and Materials, 10 (1998), 63–75.Google Scholar
  36. [36]
    Pham, H. H., Nathan, A., Circuit Modeling and SPICE Simulation of Mixed-Signal Microsystems, Sensors and Materials, Special Issue on CAD for MEMS, 10, No. 7 (1998), (to appear).Google Scholar
  37. [37]
    Auerbach, F J., Meiendres, G., Müller, R., Scheller, G. J. E., Simulation of the Thermal Behaviour of Thermal Flow Sensors by Equivalent Electrical Circuits, Sensors and Actuators A, 41-42 (1994), 275–278.CrossRefGoogle Scholar
  38. [38]
    Shie, J.-S., Chen, Y.-M., Ou-Yang, M., Chou, B. C. S., Characterization and Modeling of Metal-Film Microbolometer, J. of Microelectromechanical Systems, 5 (1996), 298–306.CrossRefGoogle Scholar
  39. [39]
    Reimer, D. E., Electrical Equivalent Method for Thermal Stress Analysis, ECC (1989), 869-874.Google Scholar
  40. [40]
    Marco, S., Samitier, J., Ruiz, O., Herms, A., Morante, J. R., Analysis of Electrostatic-Damped Piezoresistive Silicon Accelerometers, Sensors and Actuators A, 37-38 (1993), 317–322.CrossRefGoogle Scholar
  41. [41]
    Veijola, T., Kuisma, H., Lahdenperä, J., Ryhänen, T., Equivalent-Circuit Model of the Squeezed Gas Film in a Silicon Accelerometer, Sensors and Actuators A, 48 (1995), 239–248.CrossRefGoogle Scholar
  42. [42]
    Burstein, A., Kaiser, W. J., The Microelectromechanical Gyroscope — Analysis and Simulation Using SPICE Electronic Simulator, Proc. SPIE, 2642 (1995), 225–232.CrossRefGoogle Scholar
  43. [43]
    Fedder, G. K., Howe, R. T., Multimode Digital Control of a Suspended Polysilicon Microstructure, J. of Microelectromechanical Systems, 5 (1996), 283–297.CrossRefGoogle Scholar
  44. [44]
    Pourahmadi, F., Review of Modeling Silicon Microsensors and Actuators, Sensors and Materials, 6 (1994), 193–209.Google Scholar
  45. [45]
    Tilmans, H. A. C., Equivalent Circuit Representation of Electromechanical Transducers: I. Lumped-Parameter Systems, J. Micromech. Microeng., 6 (1996), 157–176.CrossRefGoogle Scholar
  46. [46]
    Romanowicz, B., Lerch, Ph., Renaud, Ph., Fullin, E., de Coulon, Y., Simulation of Integrated Electromagnetic Device Systems, Digest of Technical Papers, Transducers’ 97, Chicago, 1997, pp. 1051-1054.Google Scholar
  47. [47]
    Senturia, S. D., CAD for Microelectromechanical Systems, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, June 25–29, 1995, pp. 5–8.Google Scholar
  48. [48]
    Ando, S., Tanaka, K., Abe, M., Fishbone Architecture: An Equivalent Mechanical Model of Cochlea and Its Application to Sensors and Actuators, Digest of Technical Papers, Transducers’ 97, Chicago, 1997, pp. 1027-1030.Google Scholar
  49. [49]
    Voigt, P., Wachutka, G., Electro-Fluidic Microsystem Modeling Based on Kirchhoffian Network Theory, Digest of Technical Papers, Transducers’ 97, Chicago, 1997, pp. 1019-1022.Google Scholar
  50. [50]
    Massobrio, G. Martinoia, S., Grattarola, M., Use of SPICE for Modeling Silicon-Based Chemical Sensors, Sensors and Materials, 6 (1994), 101–123.Google Scholar
  51. [51]
    Korvink, J. G., Bächtold, M., Emmenegger, M., Paganini, R., Ruehl, R., Funk, J., Baltes, H., TCAD for MEMS, Proc. ESSDERC’ 96, Baccarani, G., Rudan, M. (Eds.), Bologna, 1996, pp. A5-A7.Google Scholar
  52. [52]
    Nathan, A., Self-Consistent Network Synthesis for Mixed-Signal Simulations, Int. Rep. No. 95/06, Physical Electronics Laboratory, ETH Zürich, Switzerland, 1995.Google Scholar
  53. [53]
    Nathan, A., Microtransducer CAD, Proc. ESSDERC’ 96, Baccarani, G., Rudan, M. (Eds.), Bologna, 1996, pp. 707-715.Google Scholar
  54. [54]
    Karnopp, D., Margolis, D., Rosenberg, R., System Dynamics: A Unified Approach, 2nd Ed., New York: Wiley, 1990.Google Scholar
  55. [55]
    Giloi, W. K., Principles of Continuous System Simulation, Stuttgert: Teubner, 1975.MATHGoogle Scholar
  56. [56]
    Karayanakis, N. M., Computer-Assisted Simulation of Dynamic Systems with Block Diagram Languages, Boca Raton, FL: CRC Press, 1993.MATHGoogle Scholar
  57. [57]
    Rudan, M., Guerrieri, R., Ciampolini, P., Baccarani, G., Discretization Strategies and Software Implementation for a General-Purpose 2D-Device Simulator, in: New Problems and New Solutions for Device and Process Modeling, Miller, J. J. H. (Ed.), Dublin: Boole Press, 1985, pp. 110–121.Google Scholar
  58. [58]
    Kron, G., Basic Concepts of Space Filters, Trans. A. I. E. E., 28, Part I (1959), 554.Google Scholar
  59. [59]
    Ackroyd, R. T., Houston, J., Lynn, J. W., Mann, E., An Electrical Analogue for Heat Waves in an Exothermic Medium, Proc. I. E. E., 108, Part B, (1961), 33.Google Scholar
  60. [60]
    Funk, J. M., Korvink, J. G., Bühler, J., Bächtold, M., Baltes, H., SOLIDIS: A Tool for Microactuator Simulation in 3-D, IEEE J. of Microelectromechanical Systems, 6 (1997), 70–82.CrossRefGoogle Scholar
  61. [61]
    Harrington, R. F., Field Computation by Moment Methods, New Jersey: IEEE Press, 1993.CrossRefGoogle Scholar
  62. [62]
    Rubesin, M. W., Inouye, M., Parikh, P. G., in: Handbook of Heat Transfer Fundamentals, Rohsenow, W. M., Hartnett, J. P., Ganic, E. N. (Eds.), New York: McGraw-Hill, 1985.Google Scholar
  63. [63]
    Swart, N. R., Heat Transport in Thermal-Based Microsensors, Ph.D. Dissertation, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1994.Google Scholar
  64. [64]
    Nabors, K., Kim, S., White, J., Fast Capacitance Extraction of General Three Dimensional Structures, IEEE Trans. on Microwave Theory and Techniques, 40 (1992), 1496–1506.CrossRefGoogle Scholar
  65. [65]
    Pham, H. H., Nathan, A., A New Approach for Rapid Evaluation of the Potential Field in Three Dimensions, Proceedings Royal Society London A, 455 (1999), 1–39.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Arokia Nathan
    • 1
  • Henry Baltes
    • 2
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Physical Electronics LaboratoryETH HoenggerbergZürichSwitzerland

Personalised recommendations