• Arokia Nathan
  • Henry Baltes
Part of the Computational Microelectronics book series (COMPUTATIONAL)


Microactuators are miniaturized output transducers which convert an electrical input signal into a non-electrical output signal in the radiant, magnetic, thermal, mechanical, or chemical domains [1, 2]. Integrated silicon microactuators are realized using integrated circuit (IC) micro-fabrication techniques coupled with application-specific thin film deposition and micromachining technologies [3–11]. Central to current research is microactuation in the mechanical domain. Mechanical microactuators are three-dimensional structures with physical dimensions ranging from micrometers to millimeters. Progress in the field is rapid with evolution of new thin film actuation materials [12–14] and proliferation of increasingly complex micromechanical systems. Mechanical microactuators are part of Micro Electro Mechanical Systems (MEMS), a field which has grown to encompass a broad family of micromachined sensors, actuators, and systems that exploit coupled electrical, mechanical, radiant, thermal, magnetic, and selected chemical effects [15, 16]. The simulation of mechanical microactuators is the topic of this chapter.


Shape Memory Alloy Piezoelectric Actuation Micro Electro Mechanical System Mechanical Displacement Thermal Actuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Middelhoek, S., Audet, S. A., Silicon Sensors, New York: Academic Press, 1989.Google Scholar
  2. [2]
    Grandke, T., Hesse, J., Introduction, in: Sensors, Vol. 1, Grandke, T., Ko, W. H. (Eds.), Weinheim: VCH, 1989, pp. 1–16.Google Scholar
  3. [3]
    Trimmer, W. S. N., Microrobots and Micromechanical Systems, Sensors and Actuators, 19 (1989), 267–287.Google Scholar
  4. [4]
    Elwenspoek, M., Blom, F. R., Bouwstra, S., Lammerink, T. S. J., Popma, Th. J. A., Fluitman, J. H. J., Transduction Mechanisms and Their Applications in Micromechanical Devices, Digest of Technical Papers, Transducers’ 89, Montreux, 1989, pp. 126-132.Google Scholar
  5. [5]
    Muller, R. S., Microdynamics, Sensors and Actuators, A21-A23 (1990), 1–8.Google Scholar
  6. [6]
    Muller, R. S., Howe, R. T., Senturia, S. D., Smith, R. L., White, R. M. (Eds.), Microsensors, New York: IEEE Press, 1991.Google Scholar
  7. [7]
    Fujita, H., Gabriel, K. J., New Opportunities for Micro Actuators, Digest of Technical Papers, Transducers’ 91, San Francisco, 1991, pp. 14-20.Google Scholar
  8. [8]
    Benecke, W., Silicon-Microactuators: Activation Mechanisms and Scaling Problems, Digest of Technical Papers, Transducers’ 91, San Francisco, 1991, pp. 46-50.Google Scholar
  9. [9]
    Sze, S. M. (Ed.), Semiconductor Sensors, New York: Wiley, 1994.Google Scholar
  10. [10]
    Baltes, H., Future of IC Microtransducers, Sensors and Actuators A, 56 (1996), 179–192.Google Scholar
  11. [11]
    Baltes, H., Paul, O., Korvink, J. G., Schneider, M., Bühler, J., Schneeberger, N., Jaeggi, D., Malcovati, P., Hornung, M., Häberli, A., von Arx, M., Mayer, F., Funk, J., IC MEMS Microtransducers, Technical Digest, IEEE IEDM, San Francisco, 1996, pp. 521–524.Google Scholar
  12. [12]
    Hunter, I. W., Lafontaine, S., A Comparison of Muscle with Artificial Actuators, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1992, pp. 178–185.Google Scholar
  13. [13]
    Quandt, E., Holleck, H., Materials Development for Thin Film Actuators, Microsystem Technologies, 1 (1995), 178–184.Google Scholar
  14. [14]
    Lu, Y., Nathan, A., Manku, T., Ning, Y., Thin Film Magnetostrictive Sensor with On-Chip Readout and attoFarad Capacitance Resolution, Technical Digest, IEEE IEDM, San Francisco, 1996, pp. 777–780.Google Scholar
  15. [15]
    Proceedings, IEEE Micro Electro Mechanical Systems Conference, Nagoya, 1997.Google Scholar
  16. [16]
    Digest of Technical Papers, Transducers’ 97, Chicago, 1997.Google Scholar
  17. [17]
    Prak, A., Elwenspoek, M., Fluitman, J. H. J., Selective Mode Excitation and Detection of Micromachined Resonators, IEEE J. Microelectromechanical Systems, 1 (1992), 179–186.Google Scholar
  18. [18]
    Prak, A., Lammerink, T. S. J., Fluitman, J. H. J., Review of Excitation and Detection Mechanisms for Micromechanical Resonators, Sensors and Materials, 5 (1993), 143–181.Google Scholar
  19. [19]
    Korvink, J. G., Funk, J., Baltes, H., IMEMS Modeling, Sensors and Materials, 6 (1994), 235–243.Google Scholar
  20. [20]
    A. Nathan, (Ed.), Special Issue on Microsensor Modeling, Sensors and Materials, Vol. 6, Nos. 2-4 (1994).Google Scholar
  21. [21]
    Nathan, A., Microtransducer CAD, Proc. ESSDERC’ 96, Baccarani, G., Rudan, M. (Eds.), Bologna, 1996, pp. 707-715.Google Scholar
  22. [22]
    Korvink, J. G., Bächtold, M., Emmenegger, M., Paganini, R., Ruehl, R., Funk, J., Baltes, H., TCAD for MEMS, Proc. ESSDERC’ 96, Baccarani, G., Rudan, M. (Eds.), Bologna, 1996, pp. A5-A7.Google Scholar
  23. [23]
    Korvink, J. G., Baltes, H., Microsystem Modeling, in: Sensors Update, Baltes, H., Göpel, W., Hesse, J. (Eds.), Chapt. 6, Weinheim: VCH, 1996, pp. 181–209.Google Scholar
  24. [24]
    Baltes, H., Korvink, J. G., Paul, O., Numerical Modelling and Materials Characterization for Integrated Micro Electro Mechanical Systems, in: Simulation of Semiconductor Devices and Processes, Vol. 6, Ryssel, H., Pichler, P., (Eds.), Wien-New York: Springer-Verlag, 1995, pp. 1–9.Google Scholar
  25. [25]
    Senturia, S. D., Harris, R. M., Johnson, B. P., Kim, S., Nabors, K., Shulman, M. A., White, J. K., A Computer-Aided Design System for Microelectromechanical Systems (MEMCAD), IEEE J. of Microelectromechanical Systems, 1 (1992), 3–14.Google Scholar
  26. [26]
    Allegretto, W., Nathan, A., Baltes, H., Numerical Analysis of Magnetic-Field-Sensitive Bipolar Devices, IEEE Trans. CAD of ICAS, 10 (1991), 501–511.Google Scholar
  27. [27]
    Trimmer, W. S. N., Gabriel, K. J., Design Considerations for a Practical Electrostatic Micro-Motor, Sensors and Actuators, 11 (1987), 189–206.Google Scholar
  28. [28]
    Tang, W. C., Nguyen, T.-C. H., Howe, R. T., Laterally-Driven Polysilicon Resonant Microstructures, Sensors and Actuators, 20 (1989), 25–32.Google Scholar
  29. [29]
    Tang, W. C., Lim, M. G., Howe, R. T., Electrostatic Comb Drive Levitation and Control Method, IEEE J. Microelectromechanical Systems, 1 (1992), 170–178.Google Scholar
  30. [30]
    Price, R. H., Wood, J. E., Jacobsen, S. C., Modelling Considerations for Electrostatic Forces in Electrostatic Microactuators, Sensors and Actuators A, 20 (1989), 107–114.Google Scholar
  31. [31]
    Schwarzenbach, H. U., Korvink, J. G., Roos, M., Sartoris, G., Anderheggen, E., A Micro Electro Mechanical CAD Extension for SESES, J. Micromech. Microeng., 3 (1993), 118–122.Google Scholar
  32. [32]
    Korvink, J., An Implementation of the Adaptive Finite Element Method for Semiconductor Sensor Simulation, Ph. D. Dissertation, ETH Zurich, No. 10143, Switzerland, 1993.Google Scholar
  33. [33]
    Fischer, M., Graef, H., von Münch, W., Electrostatically Deflectable Polysilicon Torsional Mirrors, Sensors and Actuators A, 44 (1994), 83–89.Google Scholar
  34. [34]
    Cai, X., Osterberg, P., Yie, H., Gilbert, J., Senturia, S., White, J., Self-Consistent Electromechanical Analysis of Complex 3-D Microelectromechanical Structures Using Relaxation/Multipole-Accelerated Method, Sensors and Materials, 6 (1994), 85–99.Google Scholar
  35. [35]
    Pourahmadi, F., Review of Modeling Silicon Microsensors and Actuators, Sensors and Materials, 6 (1994), 193–209.Google Scholar
  36. [36]
    Yamada, K., Kuriyama, T., FEM Analysis for Single-Chip Multiaxial Servo Accelerometer, Sensors and Materials, 6 (1994), 211–223.Google Scholar
  37. [37]
    Korvink, J. G., SOLIDIS Reference Manual 1.0, Internal Report No. 95/01, Physical Electronics Laboratory, ETH Zurich, 1995. ISE Integrated Systems Engineering AG, Technopark Zürich, Technoparkstrasse 1, CH-8005 Zürich, Switzerland.Google Scholar
  38. [38]
    Lee, J. S., Yoshimura, S., Yagawa, G., Shibaike, N., A CAE System for Micro-machines: Its Application to Electrostatic Micro Wobble Actuator, Sensors and Actuators A, 50 (1995), 209–221.MATHGoogle Scholar
  39. [39]
    Senturia, S. D., CAD for Microelectromechanical Systems, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 5–8.Google Scholar
  40. [40]
    Funk, J., Modeling and Simulation of IMEMS, Ph. D. Dissertation, ETH Zürich, No. 11378, Switzerland, 1996.Google Scholar
  41. [41]
    Bächtold, M., Efficient 3D Computation of Electrostatic Fields and Forces in Microsystems, Ph. D. Dissertation, ETH Zürich, No. 12165, Switzerland, 1997.Google Scholar
  42. [42]
    Osterberg, P., Yie, H., Cai, X., White, J., Senturia, S., Self-Consistent Simulation and Modeling of Electrostatically Deformed Diaphragms, Proc. IEEE MEMS, Oiso, 1994, pp. 28-32.Google Scholar
  43. [43]
    Johnson, B. P., Kim, S., Senturia, S. D., White, J., MEMCAD Capacitance Calculations for Mechanically Deformed Square Diaphragm and Beam Microstructures, Digest of Technical Papers, Transducers’ 91, San Francisco, 1991, pp. 494-497.Google Scholar
  44. [44]
    Korvink, J. G., Funk, J., Roos, M., Wachutka, G., Baltes, H., SESES: A Comprehensive MEMS Modelling System, Proc. IEEE MEMS, Oiso, 1994, pp. 22-27.Google Scholar
  45. [45]
    Wang, P. K. C., Hadaegh, F. Y., Computation of Static Shapes and Voltages for Micromachined Deformable Mirrors with Nonlinear Electrostatic Actuators, IEEE J. of Microelectromechanical Systems, 5 (1996), 205–220.Google Scholar
  46. [46]
    Yie, H., Bart, S. F., White, J., Senturia, S. D., A Computationally Practical Approach to Simulating Complex Surface-Micromachined Structures with Fabrication Non-Idealities, Proc. IEEE MEMS, Amsterdam, 1995, pp. 128-133.Google Scholar
  47. [47]
    Gilbert, J. R., Legtenberg, R., Senturia, S. D., 3D Coupled Electro-Mechanics for MEMS: Applications of CoSolve-EM, Proc. IEEE MEMS, Amsterdam, 1995, pp. 122-127.Google Scholar
  48. [48]
    Gilbert, J. R., Ananthasuresh, G. K., Senturia, S. D., 3D Modeling of Contact Problems and Hysteresis in Coupled Electro-Mechanics, Proc. IEEE MEMS, San Diego, 1996, pp. 127-132.Google Scholar
  49. [49]
    Jaecklin, V P., Linder, C., de Rooij, N. F., Moret, J. M., Micromechanical Comb Actuators with Low Driving Voltage, J. Micromech. Microeng., 2 (1992), 250–255.Google Scholar
  50. [50]
    Cho, Y-H., Pisano, A. P., Howe, R. T., Viscous Damping Model for Laterally Oscillating Microstructures, IEEE J. of Microelectromechanical Systems, 3 (1994), 81–87.Google Scholar
  51. [51]
    Zhang. X., Tang, W. C., Viscous Air Damping in Laterally Driven Microresonators, Sensors and Materials, 27 (1995), 415–430.Google Scholar
  52. [52]
    Kittel, C., Introduction to Solid State Physics, 6th Ed., New York: Wiley, 1986.Google Scholar
  53. [53]
    Nye, J. F., Physical Properties of Crystals, Oxford: Oxford University Press, 1957.MATHGoogle Scholar
  54. [54]
    Lorrain, P., Corson, D. R., Lorrain, F., Electromagnetic Fields and Waves, 3rd Ed., New York: Freeman, 1987.Google Scholar
  55. [55]
    Selberherr, S., Analysis and Simulation of Semiconductor Devices, Wien-New York: Springer-Verlag, 1984.Google Scholar
  56. [56]
    SUPREM, Integrated Circuits Laboratory (ICL), Department of Electrical Engineering, Stanford University, CA, USA. http://www-tcad.stanford.edu/tcad/org.html.Google Scholar
  57. [57]
    Nabors, K., White, J., FastCap: A Multipole-Accelerated 3-D Capacitance Extraction Program, IEEE Trans. CAD of ICAS, 10 (1991), 1447–1459.Google Scholar
  58. [58]
    Riethmüller, W., Benecke, W., Schnakenberg, U., Heuberger, A., Micromechanical Silicon Actuators Based on Thermal Expansion Effects, Digest of Technical Papers, Transducers’ 87, Tokyo, 1987, pp. 834-837.Google Scholar
  59. [59]
    Lammerink, T. S. J., Elwenspoek, M., Fluitman, J. H. J., Optical Excitation of Micro-Mechanical Resonators, Proc. IEEE MEMS, Nara, 1991, pp. 160-165.Google Scholar
  60. [60]
    Johnson, A. D., Vacuum-Deposited TiNi Shape Memory Film: Characterization and Applications in Microdevices, J. Micromech. Microeng., 1 (1991), 34–41.Google Scholar
  61. [61]
    Rashidian, B., Allen, M. G., Electrothermal Microactuators Based on Dielectric Loss Heating, Proc. IEEE MEMS, Fort Lauderdale, 1993, pp. 24-29.Google Scholar
  62. [62]
    Bergstrom, P. L., Ji, J., Liu, Y.-N., Kaviany, M., Wise, K. D., Thermally-Driven Phase-Change Microactuation, IEEE J. Microelectromechanical Systems, 4 (1995), 10–17.Google Scholar
  63. [63]
    Swart, N. R., Nathan, A., Reliability Study of Polysilicon for Microhotplates, Technical Digest, IEEE Solid-State Sensors and Actuators Workshop, Hilton Head Is., 1994, pp. 119–122.Google Scholar
  64. [64]
    Wachutka, G. K., Rigorous Thermodynamic Treatment of Heat Generation and Conduction in Semiconductor Device Modeling, IEEE Trans. on CAD of ICAS, 9 (1990), 1141–1149.Google Scholar
  65. [65]
    Paul, O., von Arx, M., Baltes, H., CMOS IC Layers: Complete Set of Thermal Conductivities, in: Semiconductor Characterization: Present and Future Needs, Bullis, W. M., Seiler, D. G., Diebold, A. C. (Eds.), New York: AIP, 1995, pp. 197–201.Google Scholar
  66. [66]
    Nathan, A., Swart, N. R., Quasi-three-Dimensional Simulation of Heat Transfer in Thermal-Based Microsensors, in: Simulation of Semiconductor Devices and Processes, Vol. 6, Ryssel, H., Pichler, P., (Eds.), Wien-New York: Springer-Verlag, 1995, pp. 30–33.Google Scholar
  67. [67]
    Nagata, M., Swart, N. R., Stevens, M., Nathan, A., Thermal Based Microflow Sensor Optimization Using Coupled Electrothermal Numerical Simulations, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 447–450.Google Scholar
  68. [68]
    Busch, J. D., Johnson, A. D., Shape-Memory Properties in Ni-Ti Sputter-Deposited Film, J. Appl. Phys., 68 (1990), 6224–6228.Google Scholar
  69. [69]
    Krulevitch, P., Lee, A. P., Ramsey, P. B., Trevino, J. C., Hamilton, J., Northrup, M. A., Thin Film Shape Memory Alloy Microactuators, IEEE J. of Microelectromechanical Systems, 5 (1996), 270–282.Google Scholar
  70. [70]
    Ikuta, K., Shimizu, H., Two-Dimensional Mathematical Model of Shape Memory Alloy and Intelligent SMA-CAD, Proc. IEEE MEMS, Fort Lauderdale, 1993, pp. 87-91.Google Scholar
  71. [71]
    Madill, D. R., Wang, D., The Modeling and L2-Stability of a Shape Memory Alloy Position Control System, Proc. IEEE Int. Conf. on Robotics and Automation, San Diego, 1994, pp. 293-299.Google Scholar
  72. [72]
    Quandt, E., Halene, C., Holleck, H., Feit, K., Kohl, M., Schloßmacher, P., Skokan, A., Skrobanek, K. D., Sputter Deposition of TiNi, TiNiPd and TiPd Films Displaying the Two-Way Shape-Memory Effect, Sensors and Actuators A, 53 (1996), 434–439.Google Scholar
  73. [73]
    Becker, E. W., Ehrfeld, W., Hagmann, P., Maner, A., Münchmeyer, D., Fabrication of Microstructures with High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoformung, and Plastic Moulding (LIGA Process), Microelectronic Engineering, 4 (1986), 35–56.Google Scholar
  74. [74]
    Allen, M. G., Polyimide-Based Processes for the Fabrication of Thick Electroplated Microstructures, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 60-65.Google Scholar
  75. [75]
    Judy, J. W., Muller, R. S., Zappe, H. H., Magnetic Microactuation of Polysilicon Flexure Structures, IEEE J. of Microelectromechancial Systems, 4 (1995), 162–169.Google Scholar
  76. [76]
    Miller, R. A., Burr, G. W., Tai, Y.-C., Psaltis, D., Ho, C.-M., Katti, R. R., Electromagnetic MEMS Scanning Mirrors for Holographic Data Storage, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1996, pp. 183–186.Google Scholar
  77. [77]
    Ohnstein, T. R., Zook, J. D., French, H. B., Guckel, H., Earles, T., Klein, J., Mangat, P., Tunable IR Filters with Integral Electromagnetic Actuators, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1996, pp. 196–199.Google Scholar
  78. [78]
    Taylor, W. P., Allen, M. G., Dauwalter, C. R., A Fully Integrated Magnetically Actuated Micromachined Relay, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1996, pp. 231–234.Google Scholar
  79. [79]
    Wagner, B., Kreutzer, M., Benecke, W., Linear and Rotational Magnetic Micromotors Fabricated Using Silicon Technology, Proc. IEEE MEMS, Travemünde, 1992, pp. 183-189.Google Scholar
  80. [80]
    Ahn, C. H., Kim, Y. J., Allen, M. G., A Planar Variable Reluctance Magnetic Micromotor with Fully Integrated Stator and Coils, IEEE J. of Microelectromechanical Systems, 2 (1993), 165–173.Google Scholar
  81. [81]
    Guckel, H., Christenson, T. R., Skobris, K. J., Klein, J., Karnowsky, M., Design and Testing of Planar Magnetic Micromotor Fabricated by Deep X-Ray Lithography and Electroplating, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 76-79.Google Scholar
  82. [82]
    Zhang, W., Ahn, C. H., A Bi-Directional Magnetic Micropump on a Silicon Wafer, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1996, pp. 94–97.Google Scholar
  83. [83]
    Kruusing, A., Mikli, V., Flow Sensing and Pumping Using Flexible Permanent Magnet Beams, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 299–302.Google Scholar
  84. [84]
    Lowther, D. A., Silvester, P. P., Computer-Aided Design in Magnetics, Berlin: Springer-Verlag, 1985.Google Scholar
  85. [85]
    Cullity, B. D., Introduction to Magnetic Materials, London: Addison-Wesley, 1972.Google Scholar
  86. [86]
    McDonald, P. H., Continuum Mechanics, Boston: PWS Publishing Co., 1996.Google Scholar
  87. [87]
    Livingstone, J. D., Magnetomechanical Properties of Amorphous Metal, Phys. Stat. Sol A, 70 (1982), 591–596.Google Scholar
  88. [88]
    Carr, W. J., Magnetostriction, in: Magnetic Properties of Metals and Alloys, American Society of Metals, Cleveland, Ohio, 1959.Google Scholar
  89. [89]
    Chin, G. Y., Processing Control of Magnetic Properties for Magnetostrictive Transducer Applications, J. Metals, 23, No. 1 (1971), 42–45.Google Scholar
  90. [90]
    Lu, Y., Magnetostrictive Sensors with On-Chip Readout, Ph. D. Dissertation, Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada, 1997.Google Scholar
  91. [91]
    Lu, Y., Nathan, A., Metglass Thin Film with as-Deposited Domain Alignment for Smart Sensor and Actuator Applications, Appl. Phys. Letts., 70 (1997), 526–528. (Erratum: Appl. Phys. Letts., Vol. 12, No. 18, 1998, in press).Google Scholar
  92. [92]
    Honda, T., Arai, K. I., Yamaguchi, M., Fabrication of Actuators Using Magnetostrictive Thin Films, Proc. IEEE MEMS, Oiso, 1994, pp. 51-56.Google Scholar
  93. [93]
    Quandt, E., Seeman, K., Fabrication and Simulation of Magnetostrictive Thin Film Actuators, Sensors and Actuators A, 50 (1995), 105–109.Google Scholar
  94. [94]
    Pan, J. Y., Lin, P., Maseeh, F., Senturia, S. D., Verification of FEM Analysis of Load-Deflection Methods for Measuring Mechanical Properties of Thin Films, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1990, pp. 70–73.Google Scholar
  95. [95]
    Shen, B., Allegretto, W., Ma, Y., Yu, B., Hu, M., Robinson, A. M., Cantilever Micromachined Structures in CMOS Technology with Magnetic Actuation, Sensors and Materials, 9 (1997) 347–362.Google Scholar
  96. [96]
    Moon, F. C., Magneto-Solid Mechanics, New York: Wiley, 1984.Google Scholar
  97. [97]
    Affane, W., Gibbs, M. R. J., Powell, A. L., Performance Modeling of Micromachined Sensor Membranes Coated with Piezomagnetic Material, Sensors and Actuators A, 51 (1996), 219–224.Google Scholar
  98. [98]
    Stanley, J. K., Electrical and Magnetic Properties of Metals, American Society of Metals, Metals Park, Ohio, 1963.Google Scholar
  99. [99]
    Piezoelectricity, Rosen, C. Z., Hiremath, B. V., Newnham, R. (Eds.), New York: American Institute of Physics, 1992.Google Scholar
  100. [100]
    Smits, J. G., Dalke, S. I., Cooney, T. K., The Constituent Equations of Piezoelectric Bimorphs, Sensors and Actuators A, 28 (1991), 41–61.Google Scholar
  101. [101]
    Smits, J. G, Ballato, A., Dynamic Admittance Matrix of Piezoelectric Cantilever Bimorphs, IEEE J. of Micro electromechanical Systems, 3 (1994), 105–112.Google Scholar
  102. [102]
    Benes, E., Gröschl, M., Burger, W., Schmid, M., Sensors Based on Piezoelectric Resonators, Sensors and Actuators A, vol. 48 (1995), 1–21.Google Scholar
  103. [103]
    Flynn, A. M., Tavrow, L. S., Bart, S. F., Brooks, R. A., Ehrlich, D. J., Udayakumar, K. R., Cross, L. E., Piezoelectric Micromotors for Microrobots, IEEE J. of Microelectromechanical Systems, 1 (1992), 44–51.Google Scholar
  104. [104]
    Brice, J. C., Crystals for Quartz Resonators, Rev. Mod. Phys. 57 (1985), 105–146 (also in [99], pp. 35-76).Google Scholar
  105. [105]
    Koos, G. L., Wolfe, J. P., Phonon Focusing in Piezoelectric Crystals: Quartz and Lithium Niobate, Phys. Rev. B., 30 (1984), 3470–3481 (also in [99], pp. 77-88).Google Scholar
  106. [106]
    Bechmann, R., Elastic, Piezoelectric, and Dielectric Constants of Polarized Barium Titanate Ceramics and Some Applications of the Piezoelectric Equations, Jour. of the Acoustical Soc. of America, 28 (1956), 347–350 (also in [99], pp. 155-158).Google Scholar
  107. [107]
    Lovinger, A. J., Ferroelectric Polymers, Science, 220 (1983), 1115–1121 (also in [99], pp. 182-188).Google Scholar
  108. [108]
    Gallantree, H. R., Review of Transducer Applications of Polyvinylidene Fluoride, IEE Proc., 130 (1983), 219–224 (also in [99], pp. 189-194).Google Scholar
  109. [109]
    Tjhen, W., Tamagawa, T., Ye, C.-P., Hsueh, C.-C., Schiller, P., Polla, D. L., Properties of Piezoelectric Thin Films for Micromechanical Devices and Systems, Proc. IEEE MEMS, Nara, 1991, pp. 114-119.Google Scholar
  110. [110]
    Abe, T., Reed, M. L., RF-Magnetron Sputtering of Piezoelectric Lead-Zirconate Titanate Actuator Films Using Composite Targets, Proc. IEEE MEMS, Oiso, 1994, pp. 164-169.Google Scholar
  111. [111]
    Sakata, M., Wakabayashi, S., Goto, H., Totani, H., Takeuchi, M., Yada, T., Sputtered High d 31 Coefficient PZT Thin Film for Micro Actuators, Proc. IEEE MEMS, San Diego, 1996, pp. 263-266.Google Scholar
  112. [112]
    Tiersten, H. F., Linear Piezoelectric Plate Vibrations, New York: Plenum Press, 1969.Google Scholar
  113. [113]
    Safari, A., Sa-gong, G., Giniewicz, J., Newnham, R. E., Composite Piezoelectric Sensors, Proc. 21 st Univ. Conf. Ceramic Sci., Vol. 20, 1986, pp. 445–454 (also in [99], pp. 195-204).Google Scholar
  114. [114]
    Ohara, Y., Miyayama, M., Kuomoto, K., Yanagida, H., PZT-Polymer Piezoelectric Composites: A Design for an Acceleration Sensor, Sensors and Actuators A, 36 (1993), 121–126.Google Scholar
  115. [115]
    Leaver, P., Cunningham, M. J., Jones, B. E., Piezoelectric Polymer Pressure Sensors, Sensors and Actuators, 12 (1987), 225–233.Google Scholar
  116. [116]
    Liu, S. T., Long, D., Pyroelectric Detectors and Materials, Proc. IEEE, 66 (1978), 14–26 (also in [99], pp. 310-322).Google Scholar
  117. [117]
    Andle, J. C., Vetelino, J. F., Acoustic Wave Biosensors, Sensors and Actuators A, 44 (1994), 167–176.Google Scholar
  118. [118]
    Venema, A., (Ed.), Acoustic-Wave-Based Microsensors, Sensors and Actuators A, 44 (1994).Google Scholar
  119. [119]
    Mason, W. P., Electro-Mechanical Transducers and Wave Filters, 3rd Ed., New Jersey: D. van Nostrand, 1948.Google Scholar
  120. [120]
    Schwarzenbach, H. U., Lechner, H., Steinle, B., Baltes, H. P., Schwendimann, P., Calculation of Vibrations of Thick Piezoceramic Disk Resonators, Appl. Phys. Lett, 38 (1981), 854–855.Google Scholar
  121. [121]
    Lerch, R., Finite Element Analysis of Piezoelectric Transducers, Proc. IEEE Ultrasonics Symp., 1988, pp. 643-654.Google Scholar
  122. [122]
    Lerch, R., Piezoelectric and Acoustic Finite Elements as Tools for the Development of Electroacoustic Transducers, Siemens Forsch.-u. Entwickl.-Ber., Bd. 17, Nr. 6 (1988), pp. 283–290.Google Scholar
  123. [123]
    Langer, E., Selberherr, S., Morkowich, P. A., Ringhofer, C. A., Numerical Analysis of Acoustic Wave Generation in Anisotropic Piezoelectric Materials, Sensors and Actuators A, 4 (1983), 71–76.Google Scholar
  124. [124]
    Farnell, G. W., SAW Propagation in Piezoelectric Solids, in: Computer-Aided Design of Surface Acoustic Wave Devices, Collins, J. H., Masotti, L. (Eds.), Amsterdam: Elsevier Scientific, 1976, pp. 1–24.Google Scholar
  125. [125]
    IEEE Standard on Piezoelectricity, Std 176-1987 (also in [99], pp. 235-280).Google Scholar
  126. [126]
    Thompson, P. A., Compressible-Fluid Dynamics, New York: McGraw-Hill, 1972.MATHGoogle Scholar
  127. [127]
    Bächtold, M., Korvink, J. G., Funk, J., Baltes, H., New Convergence Scheme for Self-Consistent Electromechanical Analysis of iMEMS, Technical Digest, IEEE IEDM, Washington, 1995, pp. 605–608.Google Scholar
  128. [128]
    Bühler, J., Funk, J., Steiner, F.-P., Sarro, P. M., Baltes, H., Double Pass Metallization for CMOS Aluminum Actuators, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 360–363.Google Scholar
  129. [129]
    Funk, J. M., Korvink, J. G., Bühler, J., Bächtold, M., Baltes, H., SOLIDIS: ATool for Microactuator Simulation in 3-D, J. of Microelectromechanical Systems, 6 (1997), 70–82.Google Scholar
  130. [130]
    Hornbeck, L. J., Current Status of the Digital Micromirror Device (DMD), for Projection Television Applications, Technical Digest, IEEE IEDM, Washington, 1993, pp. 381–384.Google Scholar
  131. [131]
    MICROCOSM, 201 Willesden Dr., Cary, NC 27513, USA.Google Scholar
  132. [132]
    IntelliSense Corp., 16 Upton Dr., Wilmington, MA 01887, USA.Google Scholar
  133. [133]
    Anderheggen, E., Korvink, J. G., Roos, M., Sartoris, G. E., Schwarzenbach, H. U., SESES User Manual, NM Numerical Modelling GmbH, Thalwil, Switzerland, 1993.Google Scholar
  134. [134]
    Crary, S. B., Zhang, Y., CAEMEMS: An Integrated Computer-Aided Engineering Workbench for Micro-Electro-Mechanical Systems, Proc. IEEE MEMS, 1990, pp. 113-114.Google Scholar
  135. [135]
    ALECSIS, Inst. of Prec. Eng., TU Vienna, Floragasse 7, A-1040 Vienna, Austria.Google Scholar
  136. [136]
    PATRAN, PDA Engineering, Costa Mesta, CA, USA.Google Scholar
  137. [137]
    Geomview, Software Development Group, Geometry Center, University of Minnesota, 1300 South Second Street, Suite 500, Minneapolis, MN 55454, USA. http:// www.geom.umn.edu/welcome.html.Google Scholar
  138. [138]
    Koppelman, G. M., OYSTER, A Three-Dimensional Structural Simulator for Microelectromechanical Design, Sensors and Actuators, 20 (1989), 179–185.Google Scholar
  139. [139]
    Pro/ENGINEER, Parametric Technology, Waltham, MA, USA.Google Scholar
  140. [140]
    Chiyokura, H., Solid Modeling with DESIGNBASE: Theory and Implementation, Reading, MA.: Addison-Wesley, 1988.Google Scholar
  141. [141]
    Osterberg, P., Senturia, S., MEMBUILDER: An Automated 3D Solid Model Construction Program for Microelectromechanical Structures, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 21–24.Google Scholar
  142. [142]
    Shulman, M., Ramaswamy, M., Heytens, M., Senturia, S. D., An Object-Oriented Material-Property Database Architecture for Microelectromechanical CAD, Digest of Technical Papers, Transducers’ 91, San Francisco, 1991, pp. 486-489.Google Scholar
  143. [143]
    Nabors, K., Kim, S., White, J., Senturia, S., FastCap User’s Guide, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA.Google Scholar
  144. [144]
    ANSYS, Inc., 275 Technology Drive, Canonsburg, PA 15317, USA.Google Scholar
  145. [145]
    Maxwell Solver, Ansoft Corp., 4 Station Square, 660 Commerce Court Bldg., Pittsburgh, PA, USA.Google Scholar
  146. [146]
    CEDRAT S. A., 10 Chemin du Pré Carré, 38240 Meylan, France.Google Scholar
  147. [147]
    ADINA, Adina R & D, Inc., 71 Elton Ave., Watertown, MA 02172, USA.Google Scholar
  148. [148]
    IES, Integrated Engineering Software, 46-1313 Border Place, Winnipeg, Manitoba, R3H 0X4, Canada.Google Scholar
  149. [149]
    FIDAP, Fluid Dynamics International, Evanston, Illinois, USA.Google Scholar
  150. [150]
    FLUENT, FLUENT Inc., Centerra Resource Park, 10 Cavendish Court, Lebanon, N. H. 03766-1442, USA.Google Scholar
  151. [151]
    FLOTRAN, see: Ulrich, J., Zengerle, R., Static and Dynamic Flow Simulation of a KOH-Etched Microvalve Using the Finite Element Method, Sensors and Actuators A, 53 (1996), 379–385.Google Scholar
  152. [152]
    FLOTHERM, see, Fotheringham, G., Simulation Methods for Multi-Chip Modules, Sensors and Actuators A, 30 (1992), 157–165.Google Scholar
  153. [153]
    I-DEAS, Structural Dynamics Research Corp, Milford, OH., USA.Google Scholar
  154. [154]
    ABAQUS, Hibbit, Karlsson, and Sorenson, Inc., 1080 Main Street, Pawtucket, RI 02860, USA.Google Scholar
  155. [155]
    MSC/NASTRAN, McNeal-Schwendler Corp., Los Angeles, CA, USA.Google Scholar
  156. [156]
    COSMOS/M, Structural Research Analysis Corp., Santa Monica, CA, USA.Google Scholar
  157. [157]
    FLOWERS, Inst, für Informatik, ETH, CH-8093 Zürich, Switzerland.Google Scholar
  158. [158]
    Lee, K. W., Wise, K. D., SENSIM: A Simulation Program for Solid State Pressure Sensors, IEEE Trans. Electron Devices, 29 (1982), 34–41.Google Scholar
  159. [159]
    TPSIO Benutzerhandbuch, 11th Ed., Reutlingen: T-Programm GmbH, 1989.Google Scholar
  160. [160]
    MARC., MARC Analysis Research Corp., (see 38]).Google Scholar
  161. [161]
    EFCREL, EFDYN, EFCAD, see: Lefèvre, Y., Lajoie-Mazenc, M., Sarraute, E., Lamon, H., First Stop Towards Design, Simulation, Modeling and Fabrication of Electrostatic Micromotors, Sensors and Actuators A, 46-47 (1995), pp. 645–648.Google Scholar
  162. [162]
    PUSI, see: Zengerle, R., Richter, M., Brosinger, F., Richter, A., Sandmaier, H., Performance Simulation of Microminiaturized Membrane Pumps, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 106-109.Google Scholar
  163. [163]
    Klokholm, E., The Measurement of Magnetostriction in Ferromagnetic Thin Films, IEEE Trans. Magn., 12 (1976), 819–821.Google Scholar
  164. [164]
    de Lacheisserie, E. du T., Peuzin, J. C., Magnetostriction and Internal Stresses in Thin Films: The Cantilever Method Revisited, J. of Magnetism and Magnetic Materials, 136 (1994), 189–196.Google Scholar
  165. [165]
    Pham, H. H., Nathan, A., A New Approach for Rapid Evaluation of the Potential Field in Three Dimensions, Proc. Royal Society London A, 455 (1999), 1–39.MathSciNetGoogle Scholar
  166. [166]
    Pham, H. H., Nathan, A., WATCAP: A New Simulation Engine for Interconnect Capacitance Extraction, 1st Canadian Workshop on RF IC Research and Development, Nov. 16, Ottawa, Canada, 1998.Google Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Arokia Nathan
    • 1
  • Henry Baltes
    • 2
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Physical Electronics LaboratoryETH HoenggerbergZürichSwitzerland

Personalised recommendations