Advertisement

Thermal Non-Uniformity Effects on Carrier Transport

  • Arokia Nathan
  • Henry Baltes
Part of the Computational Microelectronics book series (COMPUTATIONAL)

Abstract

Physical properties of semiconductor materials and devices are sensitive to variations in temperature, whether generated from the ambient or internally in a device or integrated circuit (IC). While the variations in temperature associated with the ambient can be treated as uniform (isothermal) relative to device dimensions, internal heat generation is highly localized giving rise to a temperature gradient, which constitutes a non-isothermal signal. Various methods can be employed for detection of thermal signals. For measurement of ambient temperature, we can employ the highly predictable and stable temperature dependence of the base-emitter voltage V BE of a bipolar junction transistor. Together with co-integrated biasing, signal correction, and amplification circuitry, they provide an output voltage or current that is proportional to absolute temperature (PTAT) [1, 2]. On-chip temperature gradients or non-isothermal signals transduced by physical signals, not necessarily from the thermal domain (see [3, 4]), can be detected using thermoelectric or thermoresistive effects. Our discussion of modeling issues will be restricted to non-isothermal signals and related microtransducers; models pertinent to isothermal signals are reviewed in Chapt. 2.

Keywords

Heat Transfer Thermal Conductivity Heat Transport Seebeck Coefficient Carrier Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Meijer, G. C. M., van Herwaarden, A. W., Thermal Sensors, Bristol: Adam Hilger, 1994.Google Scholar
  2. [2]
    van Herwaarden, A. W., Meijer, G. C. M., Thermal Sensors, in: Semiconductor Sensors, Sze, S. M. (Ed.), Chapt. 7, New York: Wiley, 1994, pp. 331–382.Google Scholar
  3. [3]
    van Herwaarden, A. W., Sarro, P. M., Thermal Sensors Based on the Seebeck Effect, Sensors and Actuators, 10 (1986), 321–346.CrossRefGoogle Scholar
  4. [4]
    Baltes, H., Paul, O., Jaeggi, D., Thermal CMOS Sensors — An Overview, in: Sensors Update, Baltes, H., Göpel, W., Hesse, J. (Eds.), Weinheim: VCH, 1996, pp. 121–142.Google Scholar
  5. [5]
    Tabata, O., Fast-Response Silicon Flow Sensor with an On-Chip Fluid Temperature Sensing element, IEEE Trans. Electron Devices, 33 (1986), 361–365.CrossRefGoogle Scholar
  6. [6]
    Johnson, R. G., Higashi, R. E., A Highly Sensitive Silicon Chip Microtransducer for Air Flow and Differential Pressure Sensing Applications, Sensors and Actuators, 11 (1987), 63–72.MATHCrossRefGoogle Scholar
  7. [7]
    Tai, Y., Muller, R. S., Lightly Doped Polysilicon Bridge as an Anemometer, Digest of Technical Papers, Transducers’ 87, Tokyo, 1987, pp. 360-363.Google Scholar
  8. [8]
    Stemme, G., A CMOS Integrated Silicon Gas-Flow Sensor with Pulse-Modulated Output, Sensors and Actuators, 14 (1988), 293–303.CrossRefGoogle Scholar
  9. [9]
    Qin-Yi, T., Jin-Biao, H., Integrated Multi-Function Sensor for Flow Velocity, Temperature and Vacuum Measurements, Sensors and Actuators, 19 (1989), 3–11.CrossRefGoogle Scholar
  10. [10]
    van Oudheusden, B. W., Huijsing, J. H., Integrated Silicon Flow-Direction Sensor, Sensors and Actuators, 16 (1989), 109–119.CrossRefGoogle Scholar
  11. [11]
    Moser, D., Lenggenhager, R., Baltes, H., Silicon Gas Flow Sensors Using Industrial CMOS and Bipolar IC Technology, Sensors and Actuators A, A25-A27 (1991), 577–581.CrossRefGoogle Scholar
  12. [12]
    van Oudheusden, B. W., Silicon Thermal Flow Sensors, Sensors and Actuators A, 30 (1992), 5–26.CrossRefGoogle Scholar
  13. [13]
    Nagata, M., Swart, N. R., Stevens, M., Nathan, A., Thermal Based Micro Flow Sensor Optimization Using Coupled Electrothermal Numerical Simulations, Digest of Technical Papers, Vol. 2, Transducer’s’ 95, Stockholm, 1995, pp. 447–450.Google Scholar
  14. [14]
    van Herwaarden, A. W., Sarro, P. M., Floating-Membrane Thermal Vacuum Sensor, Sensors and Actuators, 14 (1988), 259–268.CrossRefGoogle Scholar
  15. [15]
    Mastrangelo, C. H., Muller, R. S., μ-Pirani Pressure Gauge with Digital Readout, Digest of Technical Papers, Transducers’ 91, San Francisco, 1991, pp. 245-248.Google Scholar
  16. [16]
    Völklein, F., Schnelle, W., A Vacuum Microsensor for the Low-Vacuum Range, Sensors and Materials, 3 (1991), 41–48.Google Scholar
  17. [17]
    Robinson, A. M., Haswell, P., Lawson, R. P. W., Parameswaran, M., A Thermal Conductivity Microstructural Pressure Sensor Fabricated in Standard Complementary Metal-Oxide Semiconductor, Rev. Sci. Instrum., 63 (1992), 2026–2029.CrossRefGoogle Scholar
  18. [18]
    Baltes, H., Moser, D., CMOS Vacuum Sensors and Other Applications of CMOS Thermopiles, Digest of Technical Papers, Transducers’ 93, Yokohama, Japan, 1993, pp. 736-741.Google Scholar
  19. [19]
    Bonne, U., Kubisiak, D., Burstproof, Thermal Pressure Sensor for Gases, Technical Digest, IEEE Solid-State Sensors and Actuators Workshop, Hilton Head Is., 1994, pp. 78–81.Google Scholar
  20. [20]
    Swart, N. R., Nathan, A., An Integrated CMOS Polysilicon Coil-Based Micro-Pirani Gauge with High Heat Transfer Efficiency, Technical Digest, IEEE IEDM, San Francisco, 1994, pp. 135–138.Google Scholar
  21. [21]
    Paul, O., Brand, O., Lenggenhager, R., Baltes, H., Vacuum Gauging with Compleentary Metal-Oxide-Semiconductor Microsensors, J. Vac. Sci. Technology, A13 (1995), 503–508.CrossRefGoogle Scholar
  22. [22]
    Paul, O., Baltes, H., Novel Fully CMOS-Compatible Vacuum Sensor, Sensors and Actuators A, 46-47 (1995), 143–146.CrossRefGoogle Scholar
  23. [23]
    Gajda, M. A., Ahmed, H., Applications of Thermal Silicon Sensors on Membranes, Sensors and Actuators A, 49 (1995), 1–9.CrossRefGoogle Scholar
  24. [24]
    Suehle, J. S., Cavicchi, R. E., Gaitan, M., Semancik, S., Tin Oxide Gas Sensor Fabricated Using CMOS Micro-Hotplates and in-situ Processing, IEEE Electron Device Letts., 14 (1993), 118–120.CrossRefGoogle Scholar
  25. [25]
    Cavicchi, R. E., Suehle, J. S., Chaparala, P., Kreider, K. G., Micro-Hotplate Gas Sensor, Technical Digest, IEEE Solid-State Sensors and Actuators Workshop, Hilton Head Is., 1994, pp. 53–56.Google Scholar
  26. [26]
    Swart, N. R., Nathan, A., Design Optimization of Integrated Microhotplates, Sensors and Actuators A, 43 (1994), 3–10.CrossRefGoogle Scholar
  27. [27]
    Baltes, H., Moser, D., Lenggenhager, R., Brand, O., Jaeggi, D., Thermomechanical Microtransducers by CMOS and Micromachining, Micromechanical Sensors, Actuators, and Systems, 32 (1991), 61–75.Google Scholar
  28. [28]
    Jaeggi, D., Lerne, C. A., O’Leary, P., Baltes, H., Improved CMOS AC Power Sensor, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 462-465.Google Scholar
  29. [29]
    Yoon, E., Wise, K. D., A Wideband Monolithic RMS-DC Converter Using Micro-machined Diaphragm Structures, IEEE Trans. Electron Devices, 41 (1994), 1666–1668.CrossRefGoogle Scholar
  30. [30]
    Wood, R. A., Han, C.-J., Kruse, P. W., Integrated Uncooled Infrared Detector Imaging Array, Technical Digest, IEEE Solid-State Sensors and Actuators Workshop, Hilton Head Is., 1992, pp. 132–135.Google Scholar
  31. [31]
    Lenggenhager, R., CMOS Thermoelectric Infrared Sensors, Ph.D. Dissertation, ETH Zürich, No. 10744, Switzerland, 1994.Google Scholar
  32. [32]
    Lenggenhager, R., Jaeggi, D., Malcovati P., Duran, H., Baltes, H., Doering, E., CMOS Membrane Infrared Sensors and Improved TMAHW Etchant, Technical Digest, IEEE IEDM, San Francisco, 1994, pp. 531–534.Google Scholar
  33. [33]
    Srinivas, T. A. S., Timans, P. J., Ahmed, H., A High-Performance Infrared Detector Using MOS Technology, Sensors and Materials, 8 (1996), 317–326.Google Scholar
  34. [34]
    Parameswaran, M., Robinson, A. M., Blackburn, D. L., Gaitan, M., Geist, J., Micromachined Thermal Radiation Emitter from a Commercial CMOS Process, IEEE Electron Device Letts., 12 (1991), 57–59.CrossRefGoogle Scholar
  35. [35]
    Mastrangelo, C. H., Yeh, J. H.-J., Muller, R. S., Electrical and Optical Characteristics of Vacuum-Sealed Polysilicon Microlamps, IEEE Transactions on Electron Devices, 39 (1992), 1363–1375.CrossRefGoogle Scholar
  36. [36]
    Cole, B. E., Han, C.-J., Higashi, R. E., Ridley, J., Holmen, J., Anderson, J., Nielsen, D., Marsh, H., Newstrom, K., Zins, C., Wilson, P., Beaudoin, K., 512 × 512 Infrared Scene Projector Array for Low-Background Simulations, Technical Digest, IEEE Solid-State Sensors and Actuators Workshop, Hilton Head Is., 1994, pp. 7–12.Google Scholar
  37. [37]
    Bouwstra, S., Kemna, P., Legtenberg, R., Thermally Excited Resonating Membrane Mass Flow Sensor, Sensors and Actuators, 20 (1989), 213–223.CrossRefGoogle Scholar
  38. [38]
    Brand, O., Baltes, H., Baldenweg, U, Thermally Excited Silicon Oxide Beam and Bridge Resonators in CMOS Technology, IEEE Trans. Electron Devices, 40 (1993), 1745–1753.CrossRefGoogle Scholar
  39. [39]
    Brand, O., Micromachined Resonators for Ultrasound Based Proximity Sensing, Ph.D. Dissertation, ETH Zürich, No. 10896, Switzerland, 1994.Google Scholar
  40. [40]
    Mastrangelo, C. H., Thermal Applications of Microbridges, Ph.D. Dissertation, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA, 1991.Google Scholar
  41. [41]
    van Oudheusden, B. W., The Thermal Modelling of a Flow Sensor Based on Differential Convective Heat Transfer, Sensors and Actuators A, 29 (1991), 93–106.CrossRefGoogle Scholar
  42. [42]
    Wachutka, G., Lenggenhager, R., Moser, D., Baltes, H., Analytical 2D-Model of CMOS Micromachined Gas Flow Sensors, Digest of Technical Papers, Transducers’ 91, San Francisco, 1991, pp. 22-25.Google Scholar
  43. [43]
    Dillner, U., Thermal Modeling of Multilayer Membranes for Sensor Applications, Sensors and Actuators A, 41-42 (1994), 260–267.CrossRefGoogle Scholar
  44. [44]
    van Duyn, D. C., Munter, P. J. A., Finite-Element Modelling of Thermoelectric Materials and Devices, Sensors and Actuators A, 32 (1992), 413–418.CrossRefGoogle Scholar
  45. [45]
    Allegretto, W., Shen, B., Lai, Z., Robinson, A. M., Numerical Modelling of Time Response of CMOS Micromachined Thermistor Sensor, Sensors and Materials, 6 (1994), 71–83.Google Scholar
  46. [46]
    Swart, N. R., Heat Transport in Thermal-Based Microsensors, Ph.D. Thesis, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1994.Google Scholar
  47. [47]
    Jaeggi, D., Funk, J., Häberli, A., Baltes, H., Overall System Analysis of a CMOS Thermal Converter, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 112–115.Google Scholar
  48. [48]
    Kriegl, W., Steiner, P., Folkmer, B., Lang, W., MICROTHERM: A Program for Thermal Modelling of Microstructures, Sensors and Actuators A, 46-47 (1995), 637–639.CrossRefGoogle Scholar
  49. [49]
    Nathan, A., Microtransducer CAD, Proc. ESSDERC’ 96, Baccarani, G., Rudan, M. (Eds.), Bologna, 1996, pp. 707-715.Google Scholar
  50. [50]
    Mayer, F., Paul, O., Baltes, H., Influence of Design Geometry and Packaging on the Response of Thermal CMOS Flow Sensors, Digest of Technical Papers, Vol. 1, Transducers’ 95, Stockholm, 1995, pp. 528–531.Google Scholar
  51. [51]
    Park, S., Kim, H., Kang, Y., Study of Flow Sensor Using Finite Difference Method, Sensors and Materials, 7 (1995), 43–51.Google Scholar
  52. [52]
    Mayer, F., Salis, G., Funk, J., Paul, O., Baltes, H., Scaling of Thermal CMOS Gas Flow Microsensors: Experiment and Simulation, Proc. IEEE MEMS, 1996, pp. 116-121.Google Scholar
  53. [53]
    Akimori, H., Owada, N., Taneoka, T., Uda, H., Reliability Study of Polycrystalline Silicon Thin Film Resistors Used in LSI Under Thermal and Electrical Stress, Proc. IEEE Int. Reliability Phys. Symp., 1990, pp. 276-280.Google Scholar
  54. [54]
    Swart, N. R., Nathan, A., Reliability Study of Polysilicon for Microhotplates, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1994, pp. 119–122.Google Scholar
  55. [55]
    Swart, N. R., Parameswaran, M., Nathan, A., Optimization of the Dynamic Response of an Integrated Silicon Thermal Scene Simulator, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 750-753.Google Scholar
  56. [56]
    Paul, O. M., Korvink, J., Baltes, H., Determination of the Thermal Conductivity of CMOS 1C Polysilicon, Sensors and Actuators A, 41-42 (1994), 161–164.CrossRefGoogle Scholar
  57. [57]
    Kells, K., Müller, S., Fichtner, W., Simulating Temperature Effects in Multi-Dimensional Silicon Devices with Generalized Boundary Conditions, Simulation of Semiconductor Devices and Processes, Vol. 4, Fichtner, W., Aemmer, D. (Eds.), Zürich: Hartung-Gorre, 1991, pp. 141–148.Google Scholar
  58. [58]
    Ciampolini, P., Pierantoni, A., Baccarani, G., Three-Dimensional Self-Consistent Modeling of MOS Devices Under Non-Isothermal Regime, Simulation of Semiconductor Devices and Processes, 4, Fichtner, W., Aemmer, D. (Eds)., Zürich: Hartung-Gorre, 1991, pp. 149–156.Google Scholar
  59. [59]
    Middlehoek, S., Audet, S. A., Silicon Sensors, New York: Academic Press, 1989.Google Scholar
  60. [60]
    Callen, H. B., Thermodynamics, 2nd Ed., New York: Wiley, 1961.Google Scholar
  61. [61]
    Madelung, O., Introduction to Solid-State Theory, Berlin: Springer-Verlag, 1981.Google Scholar
  62. [62]
    Wachutka, G. K., Rigorous Thermodynamic Treatment of Heat Generation and Conduction in Semiconductor Device Modeling, IEEE Trans. CAD of ICAS, 9 (1990), 1141–1149.Google Scholar
  63. [63]
    Selberherr, S., Analysis and Simulation of Semiconductor Devices, Vienna: Springer-Verlag, 1984.Google Scholar
  64. [64]
    van Herwaarden, A. W., The Seebeck Effect in Silicon ICs, Sensors and Actuators, 6 (1984), 245–254.CrossRefGoogle Scholar
  65. [65]
    Blatt, F. J., Physics of Electronic Conduction in Solids, New York: McGraw-Hill, 1968.Google Scholar
  66. [66]
    Seeger, K., Semiconductor Physics, 3rd Ed., Berlin: Springer-Verlag, 1985.Google Scholar
  67. [67]
    Geballe, T. H., Hull, G. W., Seebeck Effect in Silicon, Phys. Rev., 98 (1955), 940–947.CrossRefGoogle Scholar
  68. [68]
    Völklein, F., Review of the Thermoelectric Efficiency of Bulk and Thin-Film Materials, Sensors and Materials, 8 (1996), 389–408.Google Scholar
  69. [69]
    Paul, O., von Arx, M., Baltes, H., Process-Dependent Thermophysical Properties of CMOS IC Thin Films, Digest of Technical Papers, Vol. 1, Transducers’ 95, Stockholm, 1995, pp. 178–181.Google Scholar
  70. [70]
    Völklein, F., Baltes, H., Thermoelectric Properties of Polysilicon Films Doped with Phosphorus and Boron, Sensors and Materials, 3 (1992), 325–334.Google Scholar
  71. [71]
    Lahiji, G. R., Wise K. D., A Batch-Fabricated Silicon Thermopile Infrared Detector, IEEE Trans. Electron Devices, ED-29 (1982), 14–22.CrossRefGoogle Scholar
  72. [72]
    Jones, D. I., Le Comber, P. G., Spear, W. E., Thermoelectric Power in Phosphorous Doped Amorphous Silicon, Philosophical Magazine, 36 (1977), 541–551.CrossRefGoogle Scholar
  73. [73]
    Kodato, S., Nishida, S., Konagai, M., Takahashi, K., High-conductivity a-Si: H:F Film and Its Performance for a Power Sensor and a Strain Gauge, J. Non-Crystalline Solids, 59/60 (1983), 1207–1210.CrossRefGoogle Scholar
  74. [74]
    Bhatnagar, Y. K., Nathan, A., A Thermal Sensor Based on the Seebeck-Effect in a-Si: H, International Conf. on Amorphous Semiconductors, Cambridge, 1993.Google Scholar
  75. [75]
    Kodato, S., Naitoh, Y., Kuroda, K., The Seebeck Effect in Highly Conductive μc Ge: H Films and Its Application to Sensors, Sensors and Actuators A, 34 (1992), 161–166.CrossRefGoogle Scholar
  76. [76]
    Dehé, A., Pavlidis, D., Hong, K., Hartnagel, H. L., InGaAs/InP Thermoelectric Infrared Sensor Utilizing Surface Bulk Micromachining Technology, IEEE Trans. Electron Devices, 44 (1997), 1052–1059.CrossRefGoogle Scholar
  77. [77]
    Chong, N., Srinivas, T. A. S., Ahmed, H., Performance of GaAs Microbridge Thermocouple Infrared Detectors, J. of Microelectromechanical Systems, 6 (1997), 136–141.CrossRefGoogle Scholar
  78. [78]
    Völklein, F., Wiegand, A., Baier, V., High-Sensitivity Radiation Thermopiles Made of Bi-Sb-Te Films, Sensors and Actuators A, 29 (1991), 87–91.CrossRefGoogle Scholar
  79. [79]
    Ziman, J. M., Principles of the Theory of Solids, 2nd Ed., Cambridge: Cambridge University Press, 1972.Google Scholar
  80. [80]
    Glassbrenner, C. J., Slack, G. A., Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point, Phys. Rev., 134 (1964), A1058–A1069.CrossRefGoogle Scholar
  81. [81]
    Maycock, P. D., Thermal Conductivity of Silicon, Germanium, III-V Compounds and III-V Alloys, Solid-State Electron., 10 (1967), 161–168.CrossRefGoogle Scholar
  82. [82]
    Brinson, M. E., Dunstan, W., Thermal Conductivity and Thermoelectric Power of Heavily Doped n-Type Silicon, J. Phys. C: Solid State Physics, 3 (1970), 483–491.CrossRefGoogle Scholar
  83. [83]
    Paul, O., von Arx, M., Baltes, H., CMOS IC Layers: Complete Set of Thermal Conductivities, Semiconductor Characterization Workshop, NIST, Jan. 1995, AIP, 1996, pp. 197-201.Google Scholar
  84. [84]
    Tai, Y. C., Mastrangelo, C. H., Müller, R. S., Thermal Conductivity of Heavily Doped LPCVD Polycrystalline Silicon Films, J. Appl. Phys., 63 (1988), 1442–1447.CrossRefGoogle Scholar
  85. [85]
    Völklein, F., Baltes, H., A Microstructure for Measurement of Thermal Conductivity of Polysilicon Thin Films, J of Microelectromechanical Systems, 1 (1992), 193–196.CrossRefGoogle Scholar
  86. [86]
    Slack, G. A., Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond, J. Appl. Phys., 35 (1964), 3460–3466.CrossRefGoogle Scholar
  87. [87]
    Hummel, R. E., Electronic Properties of Materials, 2nd Ed., Berlin: Springer-Verlag, 1993.Google Scholar
  88. [88]
    Liley, P.E., Heat Exchanger Handbook, Vol. 5, New York: Hemisphere, 1983.Google Scholar
  89. [89]
    Touloukian, S., Powell, R. W., Ho, C. Y., Klemens, P. G., Thermophysical Properties of Matter, Vols. 1-2, New York: Plenum Press, 1970.Google Scholar
  90. [90]
    Stärz, T., Schmidt, U., Völklein, F., Microsensor for in situ Thermal Conductivity Measurements of Thin Films, Sensors and Materials, 7 (1995), 395–403.Google Scholar
  91. [91]
    Kumar, S., Vradis, G. C., Thermal Conduction by Electrons Along Thin Films: Effects of Thickness According to Boltzmann Transport Theory, Micromechanical Sensors, Actuators, and Systems, 32 (1991), 89–101.Google Scholar
  92. [92]
    Kittel, C., Interpretation of the Thermal Conductivity of Glasses, Phys. Rev., 75 (1949), 972–974.CrossRefGoogle Scholar
  93. [93]
    Schafft, H. A., Suehle, J. S., Mirel, P. G. A., Thermal Conductivity Measurements of Thin-Film Silicon Dioxide, Proc. IEEE Int. Conf. on Microelectronic Test Structures, Vol. 2, 1989, pp. 121–125.Google Scholar
  94. [94]
    Orchard-Webb, J. H., A New Structure for Measuring the Thermal Conductivity of Integrated Circuit Dielectrics, Proc. IEEE Int. Conf. on Microelectronic Test Structures, Vol. 4, 1991, pp. 41–45.Google Scholar
  95. [95]
    Kleiner, M. B., Kühn, S. A., Weber, W., Thermal Conductivity Measurements of Thin Silicon Dioxide Films in Integrated Circuits, IEEE Trans. Electron Devices, 43 (1996), 1602–1609.CrossRefGoogle Scholar
  96. [96]
    Mastrangelo, C. H., Tai, Y. C., Müller, R. S., Thermophysical Properties of Low-Residual Stress, Silicon-Rich, LPCVD Silicon Nitride Films, Sensors and Actuators A, 21-23 (1990), 856–860.CrossRefGoogle Scholar
  97. [97]
    Eriksson, P., Andersson, J. Y., Stemme, G., Thermal Characterization of Surface-Micromachined Silicon Nitride Membranes for Thermal Infrared Detectors, J. of Microelectromechanical Systems, 6 (1997), 55–61.CrossRefGoogle Scholar
  98. [98]
    von Arx, M., Paul, O., Baltes, H., Test Structures to Measure the Heat Capacity of CMOS IC Layer Sandwiches, Proc. IEEE Int. Conf. on Microelectronic Test Structures, Monterey, 1997, pp. 203-208.Google Scholar
  99. [99]
    Mastrangelo, C. H., Muller, R. S., Thermal Diffusivity of Heavily Doped Low Pressure Chemical Vapor Deposited Polycrystalline Silicon Films, Sensors and Materials, 3 (1988), 133–142.Google Scholar
  100. [100]
    Paul, O., Baltes, H., Measuring Thermogalvanomagnetic Properties of Polysilicon for the Optimization of CMOS Sensors, Digest of Technical Papers, Transducers’ 93, 1993, pp. 606-609.Google Scholar
  101. [101]
    Popovic, R. S., Hall Effect Devices, Bristol: Adam Hilger, 1991.Google Scholar
  102. [102]
    Nathan, A., Manku, T., The Thermomagnetic Carrier Transport Equation, Sensors and Actuators A, 36 (1993), 193–197.CrossRefGoogle Scholar
  103. [103]
    Rudin, S., Wachutka, G., Baltes, H., Thermal Effects in Magnetic Microsensor Modeling, Sensors and Actuators A, 25-27 (1991), 731–735.CrossRefGoogle Scholar
  104. [104]
    Kays, W. M., Crawford, M. E., Convective Heat and Mass Transfer, New York: McGraw-Hill, 1993.Google Scholar
  105. [105]
    Harrington, R. F., Field Computation by Moment Methods, New Jersey: IEEE Press, 1993.CrossRefGoogle Scholar
  106. [106]
    Özisik, M. N., Basic Heat Transfer, New York: McGraw-Hill, 1977.Google Scholar
  107. [107]
    Rohsenow, W. M., Choi, H., Heat, Mass, and Momentum Transfer, New Jersey: Prentice-Hall, Englewood Cliffs, 1961.Google Scholar
  108. [108]
    Berman, A., Total Pressure Measurements in Vacuum Technology, Orlando: Academic Press, 1985.Google Scholar
  109. [109]
    Dushman, S., Scientific Foundations of Vacuum Technique, New York: Wiley, 1962.Google Scholar
  110. [110]
    Stevens, M. E., CMOS Electrothermal Microsensors for Flow and Pressure Measurement, M.A. Sc. Thesis, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1996.Google Scholar
  111. [111]
    Nathan, A., Swart, N. R., Quasi Three-Dimensional Simulation of Heat Transport in Thermal-Based Microsensors, in: Simulation of Semiconductor Devices and Processes, Vol. 6, Ryssel, H., Pichler, P. (Eds.), 1995, pp. 30-33.Google Scholar
  112. [112]
    Allegretto, W., Shen, B., Haswell, P., Lai, Z., Robinson, A. M., Numerical Modeling of a Micromachined Thermal Conductivity Gas Pressure Sensor, IEEE Trans. CAD of ICAS, 13 (1994), 1247–1256.Google Scholar
  113. [113]
    Rohsenow, W. M., Hartnett, J. P., Handbook of Heat Transfer, New York: McGraw-Hill, 1973.Google Scholar
  114. [114]
    Sellars, J. R., Tribus, M., Klein, J. S., Heat Transfer to Laminar Flow in a Round Tube or Flat Conduit — the Gratez Problem Extended, Trans ASME, 78 (1956), 441–448.Google Scholar
  115. [115]
    Hirsch, C., Numercial Computation of Internal and External Flow, Vol. 1, Fundamentals of Numerical Discretization, New York: Wiley, 1989.Google Scholar
  116. [116]
    Swart, N. R., Stevens, M., Nathan, A., Karanassios, V., A Flow-Insensitive Thermal Conductivity Microsensor and Its Application to Binary Gas Mixtures, Sensors and Materials, 9 (1997), 387–394.Google Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Arokia Nathan
    • 1
  • Henry Baltes
    • 2
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Physical Electronics LaboratoryETH HoenggerbergZürichSwitzerland

Personalised recommendations