Magnetic Field Effects on Carrier Transport

  • Arokia Nathan
  • Henry Baltes
Part of the Computational Microelectronics book series (COMPUTATIONAL)


The domain of magnetic signals ranges from the very weak biomagnetic fields (∼ 10 fT) to the very high fields associated with superconducting coils (∼ 10 T) (see [1–6]). As a measure of the field strength H, we use the related magnetic induction B whose unit is 1 tesla = 1 Vs/m2 and is related to the field strength as: B = μ0 H in vacuum, where μ0 is the free space permeability. In this very large span of over 15 orders of magnitude in field strength, the lower limit of field strengths (< 1 μT) requires relatively sophisticated detection devices and techniques [4], such as the flux-gate magnetometer, fiber optic magnetometer, nuclear magnetic resonance, and the superconducting quantum interference device, while the higher field strengths can be resolved by semiconductor magnetic sensors. Our discussion on the modeling issues will be restricted to the latter. Here, the signals are associated with geomagnetism (30–60 μT), magnetic storage media (∼ 1 mT), permanent magnets for contactless sensing (5–100 mT), and current carrying conductors (∼1 mT at 10 A) [6]. These signals lend themselves to two categories of direct and indirect applications [1–3]. Direct applications include measurement of the geomagnetic field, reading of magnetic storage media, identification of magnetic patterns in cards and banknotes, and control of magnetic apparatus. In indirect applications, a non-magnetic signal is detected via the magnetic field which is used as an intermediate carrier. Examples include voltage-free current detection and watt-hour meters, and contactless sensors, based on mechanical displacement of a permanent magnet, for detection of linear or angular displacement and velocity.


Carrier Transport Hall Mobility Hall Coefficient Magnetic Field Dependence Magnetic Sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baltes, H. P., Popovic, R. S., Integrated Semiconductor Magnetic Field Sensors, Proc. IEEE, 74 (1986), 1107–1132.CrossRefGoogle Scholar
  2. [2]
    Middelhoek, S., Audet, S. A., Silicon Sensors, London: Academic Press, 1989.Google Scholar
  3. [3]
    Baltes, H., Nathan, A., Integrated Magnetic Sensors, in: Sensors, Grandke, T., Ko, W. H. (Eds.), Chapt. 7, Weinheim: VCH, 1989, pp. 195–215.CrossRefGoogle Scholar
  4. [4]
    Lenz, J. E., A Review of Magnetic Sensors, Proc. IEEE, 78 (1990), 973–989.CrossRefGoogle Scholar
  5. [5]
    Popovic, R. S., Hall Effect Devices, Bristol: Adam Hilger, 1991.Google Scholar
  6. [6]
    Baltes, H., Castagnetti, R., Magnetic Sensors, in: Semiconductor Sensors, Sze, S. M. (Ed.), Chapt. 5, New York: Wiley, 1994, pp. 205–269.Google Scholar
  7. [7]
    Baltes, H., Allegretto, W., Nathan, A., Microsensor Modeling, in: Simulation of Semiconductor Devices and Processes, Vol. 3, Baccarani, G., Rudan, M. (Eds.), Bologna: Tecnoprint, 1988, pp. 563–577.Google Scholar
  8. [8]
    Nathan, A., Baltes, H., Sensor Modeling, in: Sensors, Grandke T., Ko, W. H. (Eds.), Chapt. 3, Weinheim: VCH, 1989, pp. 45–47.Google Scholar
  9. [9]
    Nathan, A., Baltes, H., Allegretto, W., Review of Physical Models for Numerical Simulation of Semiconductor Microsensors, IEEE Trans. on CAD of ICAS, 9 (1990), 1198–1208.Google Scholar
  10. [10]
    Allegretto, W., Nathan, A., Baltes, H., Numerical Analysis of Magnetic-Field-Sensitive Bipolar Devices, IEEE Trans. CAD of ICAS, 10 (1991), 501–511.Google Scholar
  11. [11]
    Andor, L., Baltes, H. P., Nathan, A., Schmidt-Weinmar, H. G., Carrier Transport in Semiconductor Magnetic Field Sensors, Technical Digest, IEEE IEDM, Washington, 1983, pp. 635–638.Google Scholar
  12. [12]
    Baltes, H. P., Andor, L., Nathan, A., Schmidt-Weinmar, H. G., Two-Dimensional Numerical Analysis of a Silicon Magnetic Field Sensor, IEEE Trans. Electron Devices, ED-31 (1984), 996–999.CrossRefGoogle Scholar
  13. [13]
    Schmidt-Weinmar, H. G., Andor, L., Baltes, H. P., Nathan, A., Numerical Modeling of Silicon Magnetic Field Sensors: Magnetoconcentration Effects in Split-Metal-Contact Devices, IEEE Trans. Magnetics, MAG-20 (1984), 975–978.CrossRefGoogle Scholar
  14. [14]
    Andor, L., Baltes, H. P., Nathan, A., Schmidt-Weinmar, H. G., Numerical Modeling of Magnetic-Field-Sensitive Semiconductor Devices, IEEE Trans. Electron Devices, ED-32 (1985), 1224–1230.CrossRefGoogle Scholar
  15. [15]
    Nathan, A., Huiser, A. M. J., Baltes, H. P., Two-Dimensional Numerical Modeling of Magnetic Field Sensors in CMOS Technology, IEEE Trans. Electron Devices, ED-32 (1985), 1212–1219.CrossRefGoogle Scholar
  16. [16]
    Nathan, A., Andor, L., Baltes, H. P., Schmidt-Weinmar, H. G., Modeling of a Dual Drain NMOS Magnetic Field Sensor, IEEE J. Solid-State Circuits, SC-20 (1985), 819–821.CrossRefGoogle Scholar
  17. [17]
    Allegretto, W., Mun, Y. S., Nathan, A., Baltes, H. P., Optimization of Semiconductor Magnetic Field Sensors Using Finite Element Analysis, Proc. NASECODE IV Conf., Dublin: Boole Press, 1985, pp. 129–133.Google Scholar
  18. [18]
    Nathan, A., Allegretto, W., Baltes, H. P., Sugiyama, Y., Modeling of Hall Devices Under Locally Inverted Magnetic Field, IEEE Electron Device Letts., EDL-8 (1987), 1–3.CrossRefGoogle Scholar
  19. [19]
    Nathan, A., Allegretto, W., Baltes, H. P., Sugiyama, Y., Carrier Transport in Semiconductor Detectors of Magnetic Domains, IEEE Trans. Electron Devices, ED-34 (1987), 2077–2085.CrossRefGoogle Scholar
  20. [20]
    Allegretto, W., Nathan, A., Baltes, H. P., Two-Dimensional Numerical Analysis of Silicon Bipolar Magnetotransistors, Proc. NASECODE V Conf., Boole Press: Dublin, 1987, pp. 87–92.Google Scholar
  21. [21]
    Nathan, A., Allegretto, W., Joerg, W., Baltes, H., Numerical Modeling of Bipolar Action in Magnetotransistors, Digest of Technical Papers, Transducers’ 87, Tokyo, 1987, pp. 519-522.Google Scholar
  22. [22]
    Nathan, A., Allegretto, W., Baltes, H. P., Galvanomagnetic Transport in p-n Junctions, Sensors and Materials, 1 (1988), 1–6.Google Scholar
  23. [23]
    Nathan, A., Maenaka, K., Allegretto, W., Baltes, H. P., Nakamura, T., The Hall Effect in Magnetotransistors, IEEE Trans. Electron Devices, ED-36 (1989), 108–117.CrossRefGoogle Scholar
  24. [24]
    Riccobene, C., Wachutka, G., Baltes, H., Two-Dimensional Numerical Analysis of Novel Magnetotransistors with Partially Removed Substrate, Technical Digest, IEEE IEDM, San Francisco, 1992, pp. 513–516.Google Scholar
  25. [25]
    Riccobene, C., Wachutka, G., Bürgler, J. F., Baltes, H., Operating Principle of Dual Collector Magnetotransistors Studied by Two-Dimensional Simulation, IEEE Trans. Electron Devices, 41 (1994), 32–41.CrossRefGoogle Scholar
  26. [26]
    Riccobene, C., Wachutka, G., Baltes, H., Numerical Study of Structural Variants of Bipolar Magnetotransistors, Sensors and Materials, 6 (1994), 159–178.Google Scholar
  27. [27]
    Riccobene, C., Gartner, K., Wachutka, G., Baltes, H., Fichtner, W., First Three-Dimensional Numerical Analysis of Magnetic Vector Probe, Technical Digest, IEEE IEDM, San Francisco, 1994, pp. 727–730.Google Scholar
  28. [28]
    Riccobene, C., Gartner, K., Wachutka, G., Baltes, H., Fichtner, W., Full Three-Dimensional Numerical Analysis of Multi-Collector Magnetotransistors with Directional Sensitivity, Sensors and Actuators A, 46-47 (1995), 289–293.CrossRefGoogle Scholar
  29. [29]
    Riccobene, C., Multidimensional Analysis of Galvanomagnetic Effects in Magnetotransistors, Ph.D. Dissertation, ETH Zürich, No. 11077, Switzerland, 1995.Google Scholar
  30. [30]
    Hälg, B., Popovic, R. S., How to Liberate Integrated Sensors from Encapsulation Stress, Sensors and Actuators, A21-A23 (1990), 908–910.Google Scholar
  31. [31]
    Nathan, A., Manku, T., Modeling the Piezo-Hall Effects in n-Doped Silicon Devices, Appl. Phys. Letts., 62 (1993), 2947–2949.CrossRefGoogle Scholar
  32. [32]
    Manku, T., Nathan, A., O, N., Aflatooni, K., Allegretto, W., Modeling of Encapsulation Stress Effects on Output Response of Hall Sensors, Sensors and Materials, 6 (1994), 225–234.Google Scholar
  33. [33]
    Aflatooni, K., Strained Silicon Hall Effect Devices, M.A. Sc. Thesis, University of Waterloo, Waterloo, Ontario N2L 3G1, 1994.Google Scholar
  34. [34]
    in’t Hout, S. R., Middelhoek, S., High Temperature Silicon Hall Sensor, Sensors and Actuators, A37-A38 (1993), 26–32.Google Scholar
  35. [35]
    Rudin, S., Wachutka, G., Baltes, H., Thermal Effects in Magnetic Microsensor Modeling, Sensors and Actuators A, 25-27 (1991), 731–735.CrossRefGoogle Scholar
  36. [36]
    Nathan, A., Manku, T., The Thermomagnetic Carrier Transport Equation, Sensors and Actuators A, 36 (1993), 193–197.CrossRefGoogle Scholar
  37. [37]
    Paul, O., Baltes, H., Measuring Thermogalvanomagnetic Properties of Polysilicon for the Optimization of CMOS Sensors, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 606-609.Google Scholar
  38. [38]
    Nathan, A., Bhatnagar, Y. K., Tang, D. D., Magnetic Field Bit Resolution of Integrated Circuit Polysilicon Hall Elements, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 896-899.Google Scholar
  39. [39]
    Schneider, M., Korvink, J. G., Baltes, H., Magnetostatic Modeling of an Integrated Microconcentrator, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 9–12.Google Scholar
  40. [40]
    Nathan, A., Baltes, H., Integrated Silicon Magnetotransistors — High Sensitivity or High Resolution?, Sensors and Actuators, A21-A23 (1990), 780–785.Google Scholar
  41. [41]
    Nathan, A., Baltes, H., Briglio, D. R., Doan, M. T., Noise Correlation in Dual-Collector Magnetotransistors, IEEE Trans. Electron Devices, ED-36 (1989), 1073–1075.CrossRefGoogle Scholar
  42. [42]
    Moharjerzadeh, S., Nathan, A., Modeling Noise Correlation Behaviour in Dual-Collector Magnetotransistors Using Small Signal Equivalent Circuit Analysis, IEEE Trans. Electron Devices, 43 (1996), 883–888.CrossRefGoogle Scholar
  43. [43]
    Popovic, R. S., Hälg, B., Nonlinearity in Hall Devices and Its Compensation, Solid-State Electron., 31 (1988), 1681–1688.CrossRefGoogle Scholar
  44. [44]
    van den Boom, J. M., Kordic, S., Offset Reduction in Hall Plates: Simulations and Experiments, Sensors and Actuators, 18 (1989), 179–193.CrossRefGoogle Scholar
  45. [45]
    Munter, P. J. A., A Low-Offset Spinning-Current Hall Plate, Sensors and Actuators, A21-A23 (1990), 743–746.Google Scholar
  46. [46]
    O, N., Nathan, A., Extracting MOS Parameter Variations from Dual-Drain MOSFET Offset, IEEE Trans. Electron Devices, 44 (1997), 1084–1090.CrossRefGoogle Scholar
  47. [47]
    Madelung, O., Introduction to Solid State Theory, Berlin: Springer-Verlag, 1978.CrossRefGoogle Scholar
  48. [48]
    Madelung, O., Halbleiter, in: Encyclopedia of Physics, Vol. XX, Flügge, S. (Ed.), Berlin: Springer, 1957, pp. 1–243.Google Scholar
  49. [49]
    Callen, H. B., Thermodynamics, New York: Wiley, 1960.MATHGoogle Scholar
  50. [50]
    Sze, S. M., Physics of Semiconductor Devices, New York: Wiley, 1981.Google Scholar
  51. [51]
    Beer, A. C., Galvanomagnetic Effects in Semiconductors, New York: Academic Press, 1963.MATHGoogle Scholar
  52. [52]
    Selberherr, S., Analysis and Simulation of Semiconductor Devices, Vienna: Springer-Verlag, 1984.Google Scholar
  53. [53]
    Suhl, H., Shockley, W., Concentrating Holes and Electrons by Magnetic Fields, Phys. Rev., 75 (1949), 1617–1618.CrossRefGoogle Scholar
  54. [54]
    Norton, P., Braggins, T., Levinstein, H., Impurity and Lattice Scattering Parameters as Determined from Hall and Mobility Analysis in n-Type Silicon, Phys. Rev. B, 8 (1973), 5632–5653.CrossRefGoogle Scholar
  55. [55]
    Landolt-Bornstein, Numerical and Functional Relationships in Science and Technology, in: Semiconductors, Vol. III/17a, Berlin: Springer, 1982.Google Scholar
  56. [56]
    Herring, C., Vogt, E., Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering, Phys. Rev., 101 (1956), 944–961.CrossRefMATHGoogle Scholar
  57. [57]
    Okta, E., Sakata, M., Temperature Dependence of Hall Factor in Low Compensated n-Type Silicon, Jpn. J. Appl. Phys., 17 (1978), 1795–1804.CrossRefGoogle Scholar
  58. [58]
    del Alamo, J. A., Swanson, R. M., Measurement of Hall Scattering Factor in Phosphorus-Doped Silicon, J. Appl. Phys., 57 (1985), 2314–2317.CrossRefGoogle Scholar
  59. [59]
    Lin, J. F., Li, S. S., Linares, L. C., Teng, K. W., Theoretical Analysis of Hall Factor and Hall Mobility in p-Type Silicon, Solid-State Electron., 24 (1981), 827–833.CrossRefGoogle Scholar
  60. [60]
    Kachlishvili, Z. S., Galvanomagnetic and Recombination Effects in Semiconductors in Strong Electric Fields, Phys. Stat. Sol. (a), 33 (1976), 15–51.CrossRefGoogle Scholar
  61. [61]
    Heinrich, H., Kriechbaum M., Galvanomagnetic Effects of Hot Electrons in n-Type Silicon, J. Phys. Chem. Solids, 31 (1970), 927–938.CrossRefGoogle Scholar
  62. [62]
    Kordic, S., Offset Reduction and Three-dimensional Field Sensing with Magnetotransistors, Ph.D. Dissertation, Delft University of Technology, The Netherlands, 1987.Google Scholar
  63. [63]
    Kordic, O. N., Magnetic Sensor Arrays with CCD Readout, Ph.D. Dissertation, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1996.Google Scholar
  64. [64]
    Brunetti, R., Jacoboni, C., Nava, F., Reggiani, L., Bosman, G., Zijlstra, R. J. J., Diffusion Coefficient of Electrons in Silicon, J. Appl. Phys., 52 (1981), 6713–6722.CrossRefGoogle Scholar
  65. [65]
    Nougier, J.-P., Fluctuations and Noise of Hot Carriers in Semiconductor Materials and Devices, IEEE Trans. Electron Devices, 41 (1994), 2034–2047.CrossRefGoogle Scholar
  66. [66]
    Long, D., Myers, J., Scattering Anisotropics in n-Type Silicon, Phys. Rev., 120 (1960), 39–44.CrossRefGoogle Scholar
  67. [67]
    Samoilovich, A. G., Ya Korenblit, I., Dakhovskii, I. V., Anisotropic Electron Scattering by Ionized Impurities, Soviet Phys-Doklady, 6 (1962), 606–608.Google Scholar
  68. [68]
    Jacobini, C., Canali, C., Ottaviani, G., AlberigiQuaranta, A., A Review of Some Charge Transport Properties of Silicon, Solid-State Electron., 20 (1977), 77–89.CrossRefGoogle Scholar
  69. [69]
    Asche, M., Gribnikov, Z. S., Ivastchenko, V. M., Kostial, H., Mitin, V. V., Conductivity and Transverse Fields in n-Si for Currents in the 110 and 100 Planes, Phys. Stat. Sol. (B): Basic Research, 114 (1982), 429–438.CrossRefGoogle Scholar
  70. [70]
    Lau, J., Ko, P. K., Chan, P. C. H., Modelling of Split-Drain Magnetic Field-Effect Transistor (MAGFET), Sensors and Actuators A, 49 (1995), 155–162.CrossRefGoogle Scholar
  71. [71]
    O, N., Nathan, A., CCD-Based Sensor Array for Magnetic Pattern Recognition, Technical Digest, IEEE IEDM, Washington, 1995, pp. 167–170.Google Scholar
  72. [72]
    Popovic, R. S., The Vertical Hall-Effect Device, IEEE Electron Device Letts., EDL-5 (1984), 357–358.CrossRefGoogle Scholar
  73. [73]
    Huiser, A. M. J., Baltes, H., Numerical Modeling of Vertical Hall-Effect Devices, IEEE Electron Device Letts., EDL-5 (1984), 482–484.CrossRefGoogle Scholar
  74. [74]
    Sheu, B. J., Scharfetter, D. L., Ko, P. K., Jeng, M.-C., BSIM: Berkeley Short-Channel IGFET Model for MOS Transistors, IEEE J. Solid-State Circuits, SC-22 (1987), 558–566.CrossRefGoogle Scholar
  75. [75]
    van der Tol, M. J., Chamberlain, S. G., Potential and Electron Distribution Model for the Buried-Channel MOSFET, IEEE Trans. Electron Devices, ED-36 (1989), 670–689.Google Scholar
  76. [76]
    Thangaraj, D., Nathan, A., The Discretization of Anisotropic Drift-Diffusion Equations, Technical Report, UW E & CE 97-11, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1997.Google Scholar
  77. [77]
    Ristic, L., Baltes, H., Smy, T. J., Filanovsky, I., Suppressed Sidewall Injection Magnetotransistor with Focussed Injection and Carrier Double Deflection, IEEE Electron Device Letts., EDL-8 (1987), 395–397.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Arokia Nathan
    • 1
  • Henry Baltes
    • 2
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Physical Electronics LaboratoryETH HoenggerbergZürichSwitzerland

Personalised recommendations