Radiation Effects on Carrier Transport

  • Arokia Nathan
  • Henry Baltes
Part of the Computational Microelectronics book series (COMPUTATIONAL)


The model equations and boundary conditions reviewed in the preceding chapter describe electrical transport in semiconductor microtransducers in the absence of external fields. As summarized in Sect. 2.7, external fields appreciably alter carrier transport by introducing asymmetries in device operation. For example, radiation alters the generation-recombination rate, and hence, the electrical carrier transport in a semiconductor by virtue of its wavelength- and material-dependent absorption. In this chapter, we review the physical effects induced by radiant signals along with associated model equations relevant to simulation and subsequent optimization of optical microtransducers.


Quantum Efficiency Pair Production Carrier Transport Compton Scattering Transverse Electric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Middelhoek, S., Audet, S. A., Silicon Sensors, London: Academic Press, 1989.Google Scholar
  2. [2]
    Audet, S., Radiation Sensors, in: Semiconductor Sensors, Sze, S. M. (Ed.), New York: Wiley, 1994, pp. 271–329.Google Scholar
  3. [3]
    Sze, S. M., Physics of Semiconductor Devices, New York: Wiley, 1981.Google Scholar
  4. [4]
    Kanicki, J. (Ed.), Amorphous and Microcrystalline Semiconductor Devices, Norwood (MA): Artech House, 1992.Google Scholar
  5. [5]
    Bolliger, D., Integration of an Ultraviolet Sensitive Flame Detector, Ph.D. Dissertation, ETH Zürich, No. 11359, Switzerland, 1995.Google Scholar
  6. [6]
    Lenggenhager, R., CMOS Thermoelectric Infrared Sensors, Ph.D. Dissertation, ETH Zürich, No. 10744, Switzerland, 1994.Google Scholar
  7. [7]
    Wood, R. A., Han, C.-J., Kruse, P. W., Integrated Uncooled Infrared Detector Imaging Array, Technical Digest, Solid-State Sensors and Actuators Workshop, Hilton-Head Is., 1992, pp. 132–135.Google Scholar
  8. [8]
    Street, R. A., Antonuk, L. E., Amorphous Silicon Arrays Develop a Medical Image, IEEE Circuits and Devices, July 1993, pp. 38-42.Google Scholar
  9. [9]
    Noorlag, D. J. W., Non-Linear Position Response in Position-Sensitive Photodetectors, Sensors and Actuators, 31 (1982/1983), 1–15.Google Scholar
  10. [10]
    Vecchi, M. C., Rudan, M., Soncini, G., Numerical Simulation of Optical Devices, IEEE Trans. CAD of ICAS, CAD-12 (1993), 1557–1569.Google Scholar
  11. [11]
    Moharjerzadeh, S., Nathan, A., Selvakumar, C. R., Numerical Simulation of a p-n-p-n Color Sensor for Simultaneous Color Detection, Sensors and Actuators, A44 (1994), 119–124.Google Scholar
  12. [12]
    Jenkins, T. M., Nelson, W. R., Rindi, A. (Eds.), Monte Carlo Transport of Electrons and Photons, New York: Plenum Press, 1987.Google Scholar
  13. [13]
    Wolffenbuttel, R. F., Operation of the Silicon Colour Filtering element, Sensors and Actuators, 16 (1989), 13–23.CrossRefGoogle Scholar
  14. [14]
    Glass, A. S., Morf, R., Optimizing the Performance of Spectrally Selective Photodiodes by Simulated Annealing Techniques, Sensors and Actuators, A21-A23 (1990), 564–569.Google Scholar
  15. [15]
    Verzellesi, G., Vecchi, M. C., Zen, M., Rudan, M., Optical Generation in Semiconductor-Device Analysis — A General Purpose Implementation, in: Simulation of Semiconductors and Processes, Vol. 4, Fitchner, W., Aemmer, D. (Eds.), (1991), pp. 57–64.Google Scholar
  16. [16]
    Rossberg, D., Optical Properties of Integrated Infrared Sensor, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 652–655.Google Scholar
  17. [17]
    Bolliger, D., Popovic, R. S., Baltes, H., Integration of a Smart Selective Detector, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 144–147.Google Scholar
  18. [18]
    Smith, R. A., Semiconductors, 2nd Ed., Cambridge: Cambridge University Press, 1978.Google Scholar
  19. [19]
    Hummel, R. E., Electronic Properties of Materials, 2nd Ed., Berlin: Springer-Verlag, 1993.Google Scholar
  20. [20]
    Macleod, H. A., Thin Film Optical Filters, 2nd Ed., Bristol: Adam Hilger, 1986.CrossRefGoogle Scholar
  21. [21]
    Seeger, K., Semiconductor Physics, 3rd Ed., Berlin: Springer-Verlag, 1985.Google Scholar
  22. [22]
    Haas, C., Infrared Absorption in Heavily Doped n-Type Germanium, Phys. Rev., 125 (1962), 1965–1971.CrossRefGoogle Scholar
  23. [23]
    Jain, S. C., Nathan, A., Briglio, D. R., Roulston, D. J., Selvakumar, C. R., Yang, T., Band-to-Band and Free-Carrier Absorption Coefficients in Heavily Doped Silicon at 4K and at Room Temperature, J. Appl. Phys., 69 (1991), 3687–3690.CrossRefGoogle Scholar
  24. [24]
    Vol’fson, A. A., Subashiev, V. K., Fundamental Absorption Edge of Silicon Heavily Doped with Donor or Acceptor Impurities, Sov. Phys. Semicond., 1 (1967), 327–332.Google Scholar
  25. [25]
    Balkanski, M., Aziza, A., Amzallag, E., Infrared Absorption in Heavily Doped n-Type Si, Phys. Stat. Sol., 31 (1969), 323–330.CrossRefGoogle Scholar
  26. [26]
    Schmid, P. E., Optical Absorption in Heavily Doped Silicon, Phys. Rev. B, 23 (1981), 5531–5536.CrossRefGoogle Scholar
  27. [27]
    Macfarlane, G. G., Maclean, T. P., Quarrington, J. E., Roberts, V., Fine Structure in the Absorption-Edge Spectrum of Si, Phys. Rev., 111 (1958), 1245–1254.CrossRefGoogle Scholar
  28. [28]
    Pankove, J. I., Aigrain, P., Optical Absorption of Arsenic-Doped Degenerate Germanium, Phys. Rev., 126 (1962), 956–962.CrossRefGoogle Scholar
  29. [29]
    Wagner, J., Heavily Doped Silicon Studied by Luminescence and Selective Absorption, Solid-State Electron., 28 (1985), 25–30.CrossRefGoogle Scholar
  30. [30]
    Pantelides, S., Selloni, A., Car, R., Energy-Gap Reduction in Heavily Doped Silicon: Causes and Consequences, Solid-State Electron., 28 (1985), 17–24.CrossRefGoogle Scholar
  31. [31]
    Shockley, W., Problems Related to p-n Junctions in Silicon, Czech. J. Phys. B, 11 (1961), 81–121.CrossRefGoogle Scholar
  32. [32]
    Kane, E. O., Electron Scattering by Pair Production in Silicon, Phys. Rev., 159 (1967), 624–631.CrossRefGoogle Scholar
  33. [33]
    Antoncik, E., di Coli, G., Farese, L., Radiation-Ionization Energy and Fano Factor in Semiconductors, Radiation Effects, 5 (1970), 1–13.CrossRefGoogle Scholar
  34. [34]
    Christensen, O., Quantum Efficiency of the Internal Photoelectric Effect in Silicon and Germanium, J. Appl. Phys., 47 (1976), 689–695.CrossRefGoogle Scholar
  35. [35]
    Schneeberger, N., Paul, O., Baltes, H., Optimized Structured Absorbers for CMOS Infrared Detectors, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 648–651.Google Scholar
  36. [36]
    Buhler, J., Funk, J., Steiner, F.-P., Sarro, P. M., Baltes, H., Double Pass Metallization for CMOS Aluminium Actuators, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 360–363.Google Scholar
  37. [37]
    Sampsell, J. B., The Digital Micromirror Device and its Application to Projection Displays, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 24-27.Google Scholar
  38. [38]
    Philipp, H. R., Silicon Dioxide (SiO2) (Glass), in: Handbook of Optical Constants of Solids, Palik, E. D. (Ed.), Orlando: Academic Press, 1985, pp. 749–763. Also Silicon Nitride (Si3N4) (Noncrystalline), as above, pp. 777-774.Google Scholar
  39. [39]
    Hsieh, S. W., Chang, C. Y., Hsu, S. C., Characteristics of Low-Temperature and Low-Energy Plasma-Enhanced Chemical Vapor Deposited SiO2, J Appl. Phys., 74 (1993), 2638–2648.CrossRefGoogle Scholar
  40. [40]
    Kanicki, J., Wagner, P., Comparative Study of PECVD Nitride Films, in: Proc. of the Symp. on Dielectric Films on Compound Semiconductors, Kapoor, V. J., Hankins, K. T. (Eds.), ECS Proc., 1987, pp. 261-274.Google Scholar
  41. [41]
    Benaissa, K., Integrated Silicon Opto-Mechanical Sensors, Ph.D. Dissertation, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1996.Google Scholar
  42. [42]
    Smith, D. Y., Shiles, E., Inokuti, M., The Optical Properties of Metallic Aluminium, in: Handbook of Optical Constants of Solids, Palik, E. D. (Ed.), Orlando: Academic Press, 1985, pp. 369–406.Google Scholar
  43. [43]
    Lynch, D. W., Hunter, W. R., Comments on the Optical Constants of Metals and an Introduction to the Data for Several Metals, in: Handbook of Optical Constants of Solids, Palik, E. D. (Ed.), Orlando: Academic Press, 1985, pp. 275–367.Google Scholar
  44. [44]
    Berning, P. H., Hass, G., Madden, R. P., Reflectance-Increasing Coatings for the Vacuum Ultraviolet and Their Applications, J. Opt. Soc. Am., 50 (1960), 586–597.CrossRefGoogle Scholar
  45. [45]
    Endriz, J. G., Spicer, W. E., Study of Aluminum Films. I. Optical Studies of Reflectance Drops and Surface Oscillations on Controlled-Roughness Films, Phys. Rev. B, 4 (1971), 4144–4159.CrossRefGoogle Scholar
  46. [46]
    Tait, W. H., Radiation Detection, London: Butterworths, 1980.Google Scholar
  47. [47]
    Debertin, K., Helmer, R. G., Gamma-and X-Ray Spectrometry with Semiconductor Detectors, Amsterdam: North-Holland, 1988.Google Scholar
  48. [48]
    Tove, P. A., Review of Semiconductor Detectors for Nuclear Radiation, Sensors and Actuators, 5 (1984), 103–117.CrossRefGoogle Scholar
  49. [49]
    Halles, E. E., Goulding, F. S., in: Handbook of Semiconductors, Vol. 4, Moss, T. S., Hilsum, C. (Eds.), Amsterdam: North-Holland, 1981, pp. 799–825.Google Scholar
  50. [50]
    Nahum, A. E., Overview of Photon and Electron Monte Carlo, in: Monte Carlo Transport of Electrons and Photons, Jenkins, T. M., Nelson, W. R., Rindi, A. (Eds.), New York: Plenum Press, 1987, pp. 3–20.Google Scholar
  51. [51]
    Lux, I., Koblinger, L., Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, Boca Raton: CRC Press, 1991.Google Scholar
  52. [52]
    Berger, M. J., Hubell, J. H., XCOM: Photon Cross Sections on a Personal Computer, National Bureau of Standards Report NBSIR 87-3597, 1987.Google Scholar
  53. [53]
    Ford, R. L., Nelson, W. R., The EGS Code System: Computer Programs for the Monte Carlo Simulation of Electromagnetic Cascade Showers (Version 3), Stanford Linear Accelerator Center Report SLAC-210, 1978.Google Scholar
  54. [54]
    Seltzer, S. M., Berger, M. J., Electron and Photon Transport in Multilayer Media: Notes on the Monte Carlo Code ZTRAN, National Bureau of Standards Report NBSIR 84-2931, 1984. See also Int. J. Appl Radiat. Isot., 38 (1987), 349–364.CrossRefGoogle Scholar
  55. [55]
    Halbleib, J. A., Mehlhorn, T. A., ITS: The Integrated Tiger Series of Coupled Electron/ Photon Monte Carlo Transport Codes, Sandia National Laboratories Report SAND 84-0073, 1984. See also Nucl. Sci. Eng., 92 (1986), 338–339.Google Scholar
  56. [56]
    Nelson, W. R., Hirayama, H., Rogers, D. W. O., The EGS4 Code System, Stanford Linear Accelerator Center Report SLAC-265, 1985.Google Scholar
  57. [57]
    SUPREM, Integrated Circuits Laboratory (ICL), Department of Electrical Engineering, Stanford University, CA, USA. Scholar
  58. [58]
    PISCES, Integrated Circuits Laboratory (ICL), Department of Electrical Engineering, Stanford University, CA, USA. Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Arokia Nathan
    • 1
  • Henry Baltes
    • 2
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Physical Electronics LaboratoryETH HoenggerbergZürichSwitzerland

Personalised recommendations