Skip to main content

Basic Electronic Transport

  • Chapter
Microtransducer CAD

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 192 Accesses

Abstract

In contrast to very large scale integrated (VLSI) devices, microtransducers have relatively large dimensions and are not in the race to push the limits of feature size into the submicron regime. Thus with microtransducers, it is reasonable to assume a static picture for electrical transport in the device, whereby the mobile charge carriers are in equilibrium with the host lattice. This permits the use of the classical model comprising Poisson’s equation, which relates the electrostatic potential and space charge in the device, and the electron and hole continuity equations, which account for charge conservation, with current density relations based on the drift-diffusion formulation. Effects of non-static transport have become very important in VLSI devices where the active device dimensions are reaching scales (nm) where the carrier transit time becomes comparable to the collision time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Selberherr, S., Analysis and Simulation of Semiconductor Devices, Vienna: Springer-Verlag, 1984.

    Google Scholar 

  2. Baccarani, G., Rudan, M., Guerrieri, R., Ciampolini, P., Physical Models for Numerical Device Simulation, in: Process and Device Modeling, Engl, W. L. (Ed.), Amsterdam: North-Holland, 1986, pp. 107–158.

    Google Scholar 

  3. Kittel, C., Introduction to Solid State Physics, 6th Ed., New York: Wiley, 1986.

    Google Scholar 

  4. Nye, J. F., Physical Properties of Crystals, Oxford: Oxford University Press, 1957.

    MATH  Google Scholar 

  5. SUPREM, Integrated Circuits Laboratory (ICL), Department of Electrical Engineering, Stanford University, CA, USA. http://www-tcad.stanford.edu/tcad/org.html.

    Google Scholar 

  6. Street, R. A., Hydrogenated Amorphous Silicon, Cambridge: Cambridge University Press, 1991.

    Book  Google Scholar 

  7. McKelvey, J. F., Solid State and Semiconductor Physics, New York: Harper & Row, 1966.

    Google Scholar 

  8. Sze, S. M., Physics of Semiconductor Devices, New York: Wiley, 1981.

    Google Scholar 

  9. Madarasz, F. L., Lang, J. E., Hemeger, P. M., Effective Mass for p-Type Si, J. Appl. Phys., 52 (1981), 4646–4648.

    Article  Google Scholar 

  10. Manku, T., Electronic Transport Properties of Strained and Relaxed Si 1-x Ge x Alloys, Ph.D. Dissertation, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1993.

    Google Scholar 

  11. Jain, S. C., Germanium-Silicon Strained Layers and Heterostructures, New York: Academic Press, 1994.

    Google Scholar 

  12. Mock, M. S., Transport Equations in Heavily Doped Silicon, and the Current Gain of a Bipolar Transistor, Solid-State Electronics, 16 (1973), 1251–1259.

    Article  Google Scholar 

  13. van Overstraeten, R. J., de Man, H. J., Mertens, R. P., Transport Equations in Heavy Doped Silicon, IEEE Trans. Electron Devices, ED-20 (1973), 290–298.

    Article  Google Scholar 

  14. Slotboom, J. W., de Graaff, H. C., Measurements of Bandgap Narrowing in Si Bipolar Transistors, Solid-State Electronics, 19 (1976), 857–862.

    Article  Google Scholar 

  15. Slotboom, J. W., de Graaff, H. C., Bandgap Narrowing in Silicon Bipolar Transistors, IEEE Trans. Electron Devices, ED-24 (1976), 1123–1125.

    Google Scholar 

  16. Slotboom, J. W., The pn-Product in Silicon, Solid-State Electronics, 20 (1977), 279–283.

    Article  Google Scholar 

  17. Mertens, R. P., van Meerenbergen, J. L., Nijs, J. F., van Overstraeten, R. J., Measurement of the Minority Carrier Transport Parameters in Heavily-Doped Silicon, IEEE Trans. Electron Devices, ED-27 (1980), 949–955.

    Article  Google Scholar 

  18. Tang, D. D., Heavy Doping Effects in p-n-p Bipolar Transistors, IEEE Trans. Electron Devices, ED-27 (1980), 563–570.

    Article  Google Scholar 

  19. Klaassen, D. B. M., Slotboom, J. W., de Graaff, H. C., Unified Apparent Bandgap Narrowing in n-and p-Type Silicon, Solid-State Electronics, 35 (1992), 125–129.

    Article  Google Scholar 

  20. Klaassen, D. B. M., A Unified Mobility Model for Device Simulation, Technical Digest, IEEE IEDM, San Francisco, 1990, pp. 357–360.

    Chapter  Google Scholar 

  21. Klaassen, D. B. M., A Unified Mobility Model for Device Simulation-I. Model Equations and Concentration Dependence, Solid-State Electronics, 35 (1992), 953–959.

    Article  Google Scholar 

  22. Klaassen, D. B. M., A Unified Mobility Model for Device Simulation—II. Temperature Dependence of Carrier Mobility and Lifetime, Solid-State Electronics, 35 (1992), 961–967.

    Article  Google Scholar 

  23. del Alamo, J., Swirhun, S., Swanson, R. M., Simultaneous Measurement of Hole Lifetime, Hole Mobility and Bandgap Narrowing in Heavily Doped n-Type Silicon, Technical Digest, IEEE IEDM, Washington, 1985, pp. 290–293.

    Google Scholar 

  24. del Alamo, J., Swirhun, S., Swanson, R. M., Measuring and Modeling Minority Carrier Transport in Heavily Doped Silicon, Solid-State Electronics, 28 (1985), 47–54.

    Article  Google Scholar 

  25. Swirhun, S. E., Kwark, Y.-H., Swanson, R. M., Measurement of Electron Lifetime, Electron Mobility and Band-Gap Narrowing in Heavily Doped p-Type Silicon, Technical Digest, IEEE IEDM, Los Angeles, 1986, pp. 24–27.

    Google Scholar 

  26. del Alamo, J., Swanson, R. M., Measurement of Steady-state Minority-Carrier Transport Parameters in Heavily Doped n-Type Silicon, IEEE Trans. Electron Devices, ED-34 (1987), 1580–1589.

    Article  Google Scholar 

  27. Marshak, A. H., van Vliet, K. M., Electrical Current in Solids with Position-Dependent Band Structure, Solid-State Electronics, 21 (1987), 417–427.

    Article  Google Scholar 

  28. Seeger, K., Semiconductor Physics, 3rd Ed., Berlin: Springer-Verlag, 1985.

    Google Scholar 

  29. Ridley, B. K., Quantum Processes in Semiconductors, Oxford: Clarendon Press, 1988.

    Google Scholar 

  30. Conwell, E. M., Weisskopf, V. F., Theory of Impurity Scattering in Semiconductors, Phys. Rev., 77 (1950), 388–390.

    Article  MATH  Google Scholar 

  31. Brooks, H., Scattering by Ionized Impurities in Semiconductors, Phys. Rev., 83 (1951), 879.

    Google Scholar 

  32. Fiegna, C., Sangiorgi, E., Modeling of High Energy Electrons at the Microscopic Level, IEEE Trans. Electron Devices, 40 (1993), 619–627.

    Article  Google Scholar 

  33. Nathan, A., Ershov, M., Pearsall, T. P., Assessment of Matthiessen’s Rule for Calculation of Carrier Mobility in Semiconductors, Technical Report, UW E&CE 96-10, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1996.

    Google Scholar 

  34. Ziman, J. H., Electrons and Phonons, Oxford: Oxford University Press, 1960.

    MATH  Google Scholar 

  35. Pearsall, T. P., Takeda, Y., Failure of Matthiessen’s Rule in the Calculation of Carrier Mobility and Alloy Scattering Effects in Ga0.47 In0.53 As, Electron. Lett., 17 (1981), 573–574.

    Article  Google Scholar 

  36. Caughey, D. M., Thomas, R. E., Carrier Mobilities in Silicon Empirically Related to Doping and Field, Proc. IEEE, 52 (1967), 2192–2193.

    Article  Google Scholar 

  37. Arora, N. D., Hauser, J. R., Roulston, D. J., Electron and Hole Mobilities as a Function of Concentration and Temperature, IEEE Trans. Electron Devices, ED-29 (1982), 292–295.

    Article  Google Scholar 

  38. Masetti, G., Severi, M., Solmi, S., Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon, IEEE Trans. Electron Devices, ED-30 (1983), 764–769.

    Article  Google Scholar 

  39. Engl, W. L., Dirks, H. K., Meinerzhagen, B., Device Modeling, Proc. IEEE, 71 (1983), 10–33.

    Article  Google Scholar 

  40. O, N., Nathan, A., CCD-Based Magnetic Field Imaging, IEEE Trans. Electron Devices, 44 (1997), 1653–1657.

    Article  Google Scholar 

  41. Canali, C., Majni, G., Minder, R., Ottaviani, G., Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature, IEEE Trans. Electron Devices, ED-22 (1975), 1045–1047.

    Article  Google Scholar 

  42. Selberherr, S., Hänscn, W., Seavey, M., Slotboom, J., The Evolution of the MINIMOS Mobility Model, Solid-State Electronics, 33 (1990), 1425–1436.

    Article  Google Scholar 

  43. Fossum, J. G., Computer Aided Numerical Analysis of Silicon Solar Cells, Solid-State Electronics, 19 (1976), 269–277.

    Article  Google Scholar 

  44. Dziewior, J., Schmid, W., Auger Coefficient for Highly-Doped and Highly Excited Silicon, Appl. Phys. Letts., 31 (1977), 346–348.

    Article  Google Scholar 

  45. Pike, G. E., Seager, C. H., The dc Voltage Dependence of Semiconductor Grain-Boundary Resistance, J. Appl. Phys., 50 (1979), 3414–3422.

    Article  Google Scholar 

  46. Kamins, T., Polycrystalline Silicon for Integrated Circuit Applications, Boston: Kluwer Academic Publishers, 1988.

    Book  Google Scholar 

  47. Seto, J. Y. W., The Electrical Properties of Polycrystalline Silicon Thin Films, J. Appl. Phys., 46 (1975), 5247–5254.

    Article  Google Scholar 

  48. Kamins, T. I., Hall Mobility in Chemically Deposited Polycrystalline Silicon, J. Appl. Phys., 42 (1971), 4357–4365.

    Article  Google Scholar 

  49. Baccarani, G., Riccò, B., Spadini, G., Transport Properties of Polycrystalline Silicon Films, J. Appl. Phys., 49 (1978), 5565–5570.

    Article  Google Scholar 

  50. Mandurah, M. M., Saraswat, K. C., Kamins, T. I., A Model for Conduction in Polycrystalline Silicon-Part I: Theory, IEEE Trans. Electron Devices, ED-28 (1981), 1163–1171.

    Article  Google Scholar 

  51. Mandurah, M. M., Saraswat, K. C., Kamins, T. I., A Model for Conduction in Polycrystalline Silicon-Part II: Comparison of Theory and Experiment, IEEE Trans. Electron Devices, ED-28 (1981), 1171–1176.

    Article  Google Scholar 

  52. Mandurah, M. M., Saraswat, K. C., Helms, C. R., Kamins, T. I., Dopant Segregation in Polycrystalline Silicon, J. Appl. Phys., 51 (1980), 5755–5763.

    Article  Google Scholar 

  53. Kamins, T. I., Cass, T. R., Structure of Chemically Deposited Polycrystalline Silicon Films, Thin Solid Films, 16 (1973), 147–165.

    Article  Google Scholar 

  54. Ghosh, A. K., Fishman, C., Feng, T., Theory of the Electrical and Photovoltaic Properties of Polycrystalline Silicon, J. Appl. Phys., 51 (1980), 446–454.

    Article  Google Scholar 

  55. de Graaff, H. C., Huybers, M., de Groot, J. G., Grain Boundary States and the Characteristics of Lateral Polysilicon Diodes, Solid-State Electronics, 25 (1982), 67–71.

    Article  Google Scholar 

  56. Baccarani, G., Impronta, M., Riccò, B., I-V Characteristics of Polycrystalline Silicon Resistors, Rev. Phys. Appl., 13 (1978), 777–782.

    Article  Google Scholar 

  57. Stevens, M. E., CMOS Electrothermal Microsensors for Flow and Pressure Measurements, M.A. Sc. Thesis, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1996.

    Google Scholar 

  58. Volklein, F., Baltes, H., Thermoelectric Properties of Polysilicon Films Doped with Phosphorus and Boron, Sensors and Materials, 3 (1992), 325–334.

    Google Scholar 

  59. Shen, B., Allegretto, W., Hu, M., Yu, B., Robinson, A. M., Lawson, R., Simulation and Physical Response of Negative TCR Polysilicon Micromachined Structures, Canadian J. Phys. (Suppl.), 74 (1996), S147–S150.

    Article  Google Scholar 

  60. Mastrangelo, C. H., Muller, R. S., Thermal Diffusivity of Heavily Doped Low Pressure Chemical Vapor Deposited Polycrystalline Silicon Films, Sensors and Materials, 3 (1988), 133–142.

    Google Scholar 

  61. Mastrangelo, C. H., Yeh, J. H. J., Muller, R. S., Electrical and Optical Characteristics of Vacuum Sealed Polysilicon Microlamps, IEEE Trans. Electron Devices, ED-39 (1992), 1363–1375.

    Article  Google Scholar 

  62. Allegretto, W., Shen, B., Lai, Z., Robinson, A. M., Numerical Modeling of Time Response of CMOS Micromachined Thermistor Sensor, Sensors and Materials, 6 (1994), 71–83.

    Google Scholar 

  63. Paul, O., von Arx, M., Baltes, H., Process-Dependent Thermophysical Properties of CMOS IC Thin Films, Digest of Technical Papers, Vol. 1, Transducers’ 95, Stockholm, 1995, pp. 178–181.

    Google Scholar 

  64. Hummel, R. E., Electronic Properties of Materials, 2nd Ed., Berlin: Springer-Verlag, 1993.

    Google Scholar 

  65. Paul, O., Baltes, H., Novel Fully CMOS-Compatible Vacuum Sensor, Sensors and Actuators A, 46-47 (1995), 143–146.

    Article  Google Scholar 

  66. Nagata, M., Swart, N., Stevens, M., Nathan, A., Thermal Based Micro Flow Sensor Optimization Using Coupled Electrothermal Numerical Simulations, Digest of Technical Papers, Transducers’ 95, Vol. 2, Stockholm, 1995, pp. 447–450.

    Google Scholar 

  67. Allegretto, W., Nathan, A., Baltes, H., Numerical Analysis of Magnetic-Field-Sensitive Bipolar Devices, IEEE Trans. CAD of ICAS, 10 (1991), 501–511.

    Google Scholar 

  68. Riccobene, C., Wachutka, G., Bürgler, J. F., Baltes, H., Operating Principle of Dual Collector Magnetotransistors Studied by Two-Dimensional Simulation, IEEE Trans. Electron Devices, 41 (1994), 32–41.

    Article  Google Scholar 

  69. Thangaraj, D., Nathan, A., The Discretization of Anisotropic Drift-Diffusion Equations, Technical Report, UW E&CE 97-11, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag/Wien

About this chapter

Cite this chapter

Nathan, A., Baltes, H. (1999). Basic Electronic Transport. In: Microtransducer CAD. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6428-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6428-0_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7321-3

  • Online ISBN: 978-3-7091-6428-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics