Basic Electronic Transport

  • Arokia Nathan
  • Henry Baltes
Part of the Computational Microelectronics book series (COMPUTATIONAL)


In contrast to very large scale integrated (VLSI) devices, microtransducers have relatively large dimensions and are not in the race to push the limits of feature size into the submicron regime. Thus with microtransducers, it is reasonable to assume a static picture for electrical transport in the device, whereby the mobile charge carriers are in equilibrium with the host lattice. This permits the use of the classical model comprising Poisson’s equation, which relates the electrostatic potential and space charge in the device, and the electron and hole continuity equations, which account for charge conservation, with current density relations based on the drift-diffusion formulation. Effects of non-static transport have become very important in VLSI devices where the active device dimensions are reaching scales (nm) where the carrier transit time becomes comparable to the collision time.


Barrier Height Trap Density Very Large Scale Integrate Artificial Boundary Isothermal Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Selberherr, S., Analysis and Simulation of Semiconductor Devices, Vienna: Springer-Verlag, 1984.Google Scholar
  2. [2]
    Baccarani, G., Rudan, M., Guerrieri, R., Ciampolini, P., Physical Models for Numerical Device Simulation, in: Process and Device Modeling, Engl, W. L. (Ed.), Amsterdam: North-Holland, 1986, pp. 107–158.Google Scholar
  3. [3]
    Kittel, C., Introduction to Solid State Physics, 6th Ed., New York: Wiley, 1986.Google Scholar
  4. [4]
    Nye, J. F., Physical Properties of Crystals, Oxford: Oxford University Press, 1957.MATHGoogle Scholar
  5. [5]
    SUPREM, Integrated Circuits Laboratory (ICL), Department of Electrical Engineering, Stanford University, CA, USA. Scholar
  6. [6]
    Street, R. A., Hydrogenated Amorphous Silicon, Cambridge: Cambridge University Press, 1991.CrossRefGoogle Scholar
  7. [7]
    McKelvey, J. F., Solid State and Semiconductor Physics, New York: Harper & Row, 1966.Google Scholar
  8. [8]
    Sze, S. M., Physics of Semiconductor Devices, New York: Wiley, 1981.Google Scholar
  9. [9]
    Madarasz, F. L., Lang, J. E., Hemeger, P. M., Effective Mass for p-Type Si, J. Appl. Phys., 52 (1981), 4646–4648.CrossRefGoogle Scholar
  10. [10]
    Manku, T., Electronic Transport Properties of Strained and Relaxed Si 1-x Ge x Alloys, Ph.D. Dissertation, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1993.Google Scholar
  11. [11]
    Jain, S. C., Germanium-Silicon Strained Layers and Heterostructures, New York: Academic Press, 1994.Google Scholar
  12. [12]
    Mock, M. S., Transport Equations in Heavily Doped Silicon, and the Current Gain of a Bipolar Transistor, Solid-State Electronics, 16 (1973), 1251–1259.CrossRefGoogle Scholar
  13. [13]
    van Overstraeten, R. J., de Man, H. J., Mertens, R. P., Transport Equations in Heavy Doped Silicon, IEEE Trans. Electron Devices, ED-20 (1973), 290–298.CrossRefGoogle Scholar
  14. [14]
    Slotboom, J. W., de Graaff, H. C., Measurements of Bandgap Narrowing in Si Bipolar Transistors, Solid-State Electronics, 19 (1976), 857–862.CrossRefGoogle Scholar
  15. [15]
    Slotboom, J. W., de Graaff, H. C., Bandgap Narrowing in Silicon Bipolar Transistors, IEEE Trans. Electron Devices, ED-24 (1976), 1123–1125.Google Scholar
  16. [16]
    Slotboom, J. W., The pn-Product in Silicon, Solid-State Electronics, 20 (1977), 279–283.CrossRefGoogle Scholar
  17. [17]
    Mertens, R. P., van Meerenbergen, J. L., Nijs, J. F., van Overstraeten, R. J., Measurement of the Minority Carrier Transport Parameters in Heavily-Doped Silicon, IEEE Trans. Electron Devices, ED-27 (1980), 949–955.CrossRefGoogle Scholar
  18. [18]
    Tang, D. D., Heavy Doping Effects in p-n-p Bipolar Transistors, IEEE Trans. Electron Devices, ED-27 (1980), 563–570.CrossRefGoogle Scholar
  19. [19]
    Klaassen, D. B. M., Slotboom, J. W., de Graaff, H. C., Unified Apparent Bandgap Narrowing in n-and p-Type Silicon, Solid-State Electronics, 35 (1992), 125–129.CrossRefGoogle Scholar
  20. [20]
    Klaassen, D. B. M., A Unified Mobility Model for Device Simulation, Technical Digest, IEEE IEDM, San Francisco, 1990, pp. 357–360.CrossRefGoogle Scholar
  21. [21]
    Klaassen, D. B. M., A Unified Mobility Model for Device Simulation-I. Model Equations and Concentration Dependence, Solid-State Electronics, 35 (1992), 953–959.CrossRefGoogle Scholar
  22. [22]
    Klaassen, D. B. M., A Unified Mobility Model for Device Simulation—II. Temperature Dependence of Carrier Mobility and Lifetime, Solid-State Electronics, 35 (1992), 961–967.CrossRefGoogle Scholar
  23. [23]
    del Alamo, J., Swirhun, S., Swanson, R. M., Simultaneous Measurement of Hole Lifetime, Hole Mobility and Bandgap Narrowing in Heavily Doped n-Type Silicon, Technical Digest, IEEE IEDM, Washington, 1985, pp. 290–293.Google Scholar
  24. [24]
    del Alamo, J., Swirhun, S., Swanson, R. M., Measuring and Modeling Minority Carrier Transport in Heavily Doped Silicon, Solid-State Electronics, 28 (1985), 47–54.CrossRefGoogle Scholar
  25. [25]
    Swirhun, S. E., Kwark, Y.-H., Swanson, R. M., Measurement of Electron Lifetime, Electron Mobility and Band-Gap Narrowing in Heavily Doped p-Type Silicon, Technical Digest, IEEE IEDM, Los Angeles, 1986, pp. 24–27.Google Scholar
  26. [26]
    del Alamo, J., Swanson, R. M., Measurement of Steady-state Minority-Carrier Transport Parameters in Heavily Doped n-Type Silicon, IEEE Trans. Electron Devices, ED-34 (1987), 1580–1589.CrossRefGoogle Scholar
  27. [27]
    Marshak, A. H., van Vliet, K. M., Electrical Current in Solids with Position-Dependent Band Structure, Solid-State Electronics, 21 (1987), 417–427.CrossRefGoogle Scholar
  28. [28]
    Seeger, K., Semiconductor Physics, 3rd Ed., Berlin: Springer-Verlag, 1985.Google Scholar
  29. [29]
    Ridley, B. K., Quantum Processes in Semiconductors, Oxford: Clarendon Press, 1988.Google Scholar
  30. [30]
    Conwell, E. M., Weisskopf, V. F., Theory of Impurity Scattering in Semiconductors, Phys. Rev., 77 (1950), 388–390.CrossRefMATHGoogle Scholar
  31. [31]
    Brooks, H., Scattering by Ionized Impurities in Semiconductors, Phys. Rev., 83 (1951), 879.Google Scholar
  32. [32]
    Fiegna, C., Sangiorgi, E., Modeling of High Energy Electrons at the Microscopic Level, IEEE Trans. Electron Devices, 40 (1993), 619–627.CrossRefGoogle Scholar
  33. [33]
    Nathan, A., Ershov, M., Pearsall, T. P., Assessment of Matthiessen’s Rule for Calculation of Carrier Mobility in Semiconductors, Technical Report, UW E&CE 96-10, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1996.Google Scholar
  34. [34]
    Ziman, J. H., Electrons and Phonons, Oxford: Oxford University Press, 1960.MATHGoogle Scholar
  35. [35]
    Pearsall, T. P., Takeda, Y., Failure of Matthiessen’s Rule in the Calculation of Carrier Mobility and Alloy Scattering Effects in Ga0.47 In0.53 As, Electron. Lett., 17 (1981), 573–574.CrossRefGoogle Scholar
  36. [36]
    Caughey, D. M., Thomas, R. E., Carrier Mobilities in Silicon Empirically Related to Doping and Field, Proc. IEEE, 52 (1967), 2192–2193.CrossRefGoogle Scholar
  37. [37]
    Arora, N. D., Hauser, J. R., Roulston, D. J., Electron and Hole Mobilities as a Function of Concentration and Temperature, IEEE Trans. Electron Devices, ED-29 (1982), 292–295.CrossRefGoogle Scholar
  38. [38]
    Masetti, G., Severi, M., Solmi, S., Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-, and Boron-Doped Silicon, IEEE Trans. Electron Devices, ED-30 (1983), 764–769.CrossRefGoogle Scholar
  39. [39]
    Engl, W. L., Dirks, H. K., Meinerzhagen, B., Device Modeling, Proc. IEEE, 71 (1983), 10–33.CrossRefGoogle Scholar
  40. [40]
    O, N., Nathan, A., CCD-Based Magnetic Field Imaging, IEEE Trans. Electron Devices, 44 (1997), 1653–1657.CrossRefGoogle Scholar
  41. [41]
    Canali, C., Majni, G., Minder, R., Ottaviani, G., Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature, IEEE Trans. Electron Devices, ED-22 (1975), 1045–1047.CrossRefGoogle Scholar
  42. [42]
    Selberherr, S., Hänscn, W., Seavey, M., Slotboom, J., The Evolution of the MINIMOS Mobility Model, Solid-State Electronics, 33 (1990), 1425–1436.CrossRefGoogle Scholar
  43. [43]
    Fossum, J. G., Computer Aided Numerical Analysis of Silicon Solar Cells, Solid-State Electronics, 19 (1976), 269–277.CrossRefGoogle Scholar
  44. [44]
    Dziewior, J., Schmid, W., Auger Coefficient for Highly-Doped and Highly Excited Silicon, Appl. Phys. Letts., 31 (1977), 346–348.CrossRefGoogle Scholar
  45. [45]
    Pike, G. E., Seager, C. H., The dc Voltage Dependence of Semiconductor Grain-Boundary Resistance, J. Appl. Phys., 50 (1979), 3414–3422.CrossRefGoogle Scholar
  46. [46]
    Kamins, T., Polycrystalline Silicon for Integrated Circuit Applications, Boston: Kluwer Academic Publishers, 1988.CrossRefGoogle Scholar
  47. [47]
    Seto, J. Y. W., The Electrical Properties of Polycrystalline Silicon Thin Films, J. Appl. Phys., 46 (1975), 5247–5254.CrossRefGoogle Scholar
  48. [48]
    Kamins, T. I., Hall Mobility in Chemically Deposited Polycrystalline Silicon, J. Appl. Phys., 42 (1971), 4357–4365.CrossRefGoogle Scholar
  49. [49]
    Baccarani, G., Riccò, B., Spadini, G., Transport Properties of Polycrystalline Silicon Films, J. Appl. Phys., 49 (1978), 5565–5570.CrossRefGoogle Scholar
  50. [50]
    Mandurah, M. M., Saraswat, K. C., Kamins, T. I., A Model for Conduction in Polycrystalline Silicon-Part I: Theory, IEEE Trans. Electron Devices, ED-28 (1981), 1163–1171.CrossRefGoogle Scholar
  51. [51]
    Mandurah, M. M., Saraswat, K. C., Kamins, T. I., A Model for Conduction in Polycrystalline Silicon-Part II: Comparison of Theory and Experiment, IEEE Trans. Electron Devices, ED-28 (1981), 1171–1176.CrossRefGoogle Scholar
  52. [52]
    Mandurah, M. M., Saraswat, K. C., Helms, C. R., Kamins, T. I., Dopant Segregation in Polycrystalline Silicon, J. Appl. Phys., 51 (1980), 5755–5763.CrossRefGoogle Scholar
  53. [53]
    Kamins, T. I., Cass, T. R., Structure of Chemically Deposited Polycrystalline Silicon Films, Thin Solid Films, 16 (1973), 147–165.CrossRefGoogle Scholar
  54. [54]
    Ghosh, A. K., Fishman, C., Feng, T., Theory of the Electrical and Photovoltaic Properties of Polycrystalline Silicon, J. Appl. Phys., 51 (1980), 446–454.CrossRefGoogle Scholar
  55. [55]
    de Graaff, H. C., Huybers, M., de Groot, J. G., Grain Boundary States and the Characteristics of Lateral Polysilicon Diodes, Solid-State Electronics, 25 (1982), 67–71.CrossRefGoogle Scholar
  56. [56]
    Baccarani, G., Impronta, M., Riccò, B., I-V Characteristics of Polycrystalline Silicon Resistors, Rev. Phys. Appl., 13 (1978), 777–782.CrossRefGoogle Scholar
  57. [57]
    Stevens, M. E., CMOS Electrothermal Microsensors for Flow and Pressure Measurements, M.A. Sc. Thesis, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1996.Google Scholar
  58. [58]
    Volklein, F., Baltes, H., Thermoelectric Properties of Polysilicon Films Doped with Phosphorus and Boron, Sensors and Materials, 3 (1992), 325–334.Google Scholar
  59. [59]
    Shen, B., Allegretto, W., Hu, M., Yu, B., Robinson, A. M., Lawson, R., Simulation and Physical Response of Negative TCR Polysilicon Micromachined Structures, Canadian J. Phys. (Suppl.), 74 (1996), S147–S150.CrossRefGoogle Scholar
  60. [60]
    Mastrangelo, C. H., Muller, R. S., Thermal Diffusivity of Heavily Doped Low Pressure Chemical Vapor Deposited Polycrystalline Silicon Films, Sensors and Materials, 3 (1988), 133–142.Google Scholar
  61. [61]
    Mastrangelo, C. H., Yeh, J. H. J., Muller, R. S., Electrical and Optical Characteristics of Vacuum Sealed Polysilicon Microlamps, IEEE Trans. Electron Devices, ED-39 (1992), 1363–1375.CrossRefGoogle Scholar
  62. [62]
    Allegretto, W., Shen, B., Lai, Z., Robinson, A. M., Numerical Modeling of Time Response of CMOS Micromachined Thermistor Sensor, Sensors and Materials, 6 (1994), 71–83.Google Scholar
  63. [63]
    Paul, O., von Arx, M., Baltes, H., Process-Dependent Thermophysical Properties of CMOS IC Thin Films, Digest of Technical Papers, Vol. 1, Transducers’ 95, Stockholm, 1995, pp. 178–181.Google Scholar
  64. [64]
    Hummel, R. E., Electronic Properties of Materials, 2nd Ed., Berlin: Springer-Verlag, 1993.Google Scholar
  65. [65]
    Paul, O., Baltes, H., Novel Fully CMOS-Compatible Vacuum Sensor, Sensors and Actuators A, 46-47 (1995), 143–146.CrossRefGoogle Scholar
  66. [66]
    Nagata, M., Swart, N., Stevens, M., Nathan, A., Thermal Based Micro Flow Sensor Optimization Using Coupled Electrothermal Numerical Simulations, Digest of Technical Papers, Transducers’ 95, Vol. 2, Stockholm, 1995, pp. 447–450.Google Scholar
  67. [67]
    Allegretto, W., Nathan, A., Baltes, H., Numerical Analysis of Magnetic-Field-Sensitive Bipolar Devices, IEEE Trans. CAD of ICAS, 10 (1991), 501–511.Google Scholar
  68. [68]
    Riccobene, C., Wachutka, G., Bürgler, J. F., Baltes, H., Operating Principle of Dual Collector Magnetotransistors Studied by Two-Dimensional Simulation, IEEE Trans. Electron Devices, 41 (1994), 32–41.CrossRefGoogle Scholar
  69. [69]
    Thangaraj, D., Nathan, A., The Discretization of Anisotropic Drift-Diffusion Equations, Technical Report, UW E&CE 97-11, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1997.Google Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Arokia Nathan
    • 1
  • Henry Baltes
    • 2
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Physical Electronics LaboratoryETH HoenggerbergZürichSwitzerland

Personalised recommendations