Advertisement

Introduction

  • Arokia Nathan
  • Henry Baltes
Part of the Computational Microelectronics book series (COMPUTATIONAL)

Abstract

Modeling and simulation collectively describe the complex process of constructing models of a device, process, or system, and subsequently imitating its function on a computer [1].

Keywords

Technical Paper Transduction Efficiency Flow Sensor Microelectromechanical System Micro Electro Mechanical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ziegler, B., Theory of Modeling and Simulation, Robert Krieger, 1984.Google Scholar
  2. [2]
    Middelhoek, S., Audet, S. A., Silicon Sensors, New York: Academic Press, 1989.Google Scholar
  3. [3]
    Grandke, T., Ko, W. H. (Eds.), Sensors, Vol. 1, Chapt. 1, Weinheim: VCH, 1989, pp. 1–16.Google Scholar
  4. [4]
    Muller, R. S., Howe, R. T., Senturia, S. D., Smith, R. L., White, R. M. (Eds.), Microsensors, New York: IEEE Press, 1991.Google Scholar
  5. [5]
    Sze, S. M. (Ed.), Semiconductor Sensors, New York: Wiley, 1994.Google Scholar
  6. [6]
    Baltes, H., Future of IC Microtransducers, Sensors and Actuators A, 56 (1996), 179–192.CrossRefGoogle Scholar
  7. [7]
    Baltes, H., Paul, O., Korvink, J. G., Schneider, M., Bühler, J., Schneeberger, N., Jaeggi, D., Malcovati, P., Hornung, M., Häberli, A., von Arx, M., Mayer, F., Funk, J., IC MEMS Microtransducers, Technical Digest, IEEE IEDM, San Francisco, 1996, pp. 521–524.Google Scholar
  8. [8]
    Proceedings, IEEE Micro Electro Mechanical Systems Conference, Nagoya, 1997.Google Scholar
  9. [9]
    Engl, W. L., Dirks, H. K., Meinerzhagen, B., Device Modeling, Proc. IEEE, 71 (1983), 10–33.CrossRefGoogle Scholar
  10. [10]
    Selberherr, S., Analysis and Simulation of Semiconductor Devices, Vienna: Springer-Verlag, 1984.Google Scholar
  11. [11]
    Baccarani, G., Rudan, M., Guerrieri, R., Ciampolini, P., Physical Models for Numerical Device Simulation, in: Process and Device Modeling, Engl, W. L. (Ed.), Amsterdam: North-Holland, 1986, pp. 107–158.Google Scholar
  12. [12]
    Baltes, H., Allegretto, W., Nathan, A., Microsensor Modeling, in: Simulation of Semiconductor Devices and Processes, Vol. 3, Baccarani, G., Rudan, M. (Eds.), Tecnoprint, Bologna, 1988, pp. 563–577.Google Scholar
  13. [13]
    Nathan, A., Baltes, H. P., Sensor Modeling, in: Sensors, Vol. 1, Grandke, T., Ko, W. H. (Eds.), Chapt. 3, Weinheim: VCH, 1989, pp. 45–77.Google Scholar
  14. [14]
    Nathan, A., Baltes, H., Allegretto, W., Review of Physical Models for Numerical Simulation of Semiconductor Microsensors, IEEE Trans. on CAD of ICAS, 9 (1990), 1198–1208.Google Scholar
  15. [15]
    Senturia, S. D., Harris, R. M., Johnson, B. P., Kim, S., Nabors, K., Shulman, M. A., White, J. K., A Computer-Aided Design System for Microelectromechanical Systems (MEMCAD), IEEE J. of Microelectromechanical Systems, 1 (1992), 3–14.CrossRefGoogle Scholar
  16. [16]
    Nathan, A. (Ed.), Special Issue on Microsensor Modeling, Sensors and Materials, Vol. 6, Nos. 2-4, 1994.Google Scholar
  17. [17]
    Senturia, S. D., CAD for Microelectromechanical Systems, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 5-8.Google Scholar
  18. [18]
    Baltes, H., Korvink, J. G., Paul, O., Numerical Modelling and Materials Characterization for Integrated Micro Electro Mechanical Systems, in: Simulation of Semiconductor Devices and Processes, Vol. 6, Ryssel, H., Pichler, P. (Eds.), Vienna: Springer-Verlag, 1995, pp. 1–9.CrossRefGoogle Scholar
  19. [19]
    Nathan, A., Microtransducer CAD, Proc. ESSDERC’ 96, Baccarani, G., Rudan, M. (Eds.), Bologna, 1996, pp. 707-715.Google Scholar
  20. [20]
    Korvink, J. G., Bächtold, M., Emmenegger, M., Paganini, R., Ruehl, R., Funk, J., Baltes, H., TCAD for MEMS, Proc. ESSDERC’ 96, Baccarani, G., Rudan, M. (Eds.), Bologna, 1996, pp. A5-A7.Google Scholar
  21. [21]
    Korvink, J. G., Baltes, H., Microsystem Modeling, in: Sensors Update, Baltes, H., Göpel, W., Hesse, J. (Eds.), Chapt. 6, Weinheim: VCH, 1996, pp. 181–209.Google Scholar
  22. [22]
    Senturia, S.D., Microsensors vs. Integrated Circuits: A Study in Contrasts, Technical Digest, IEEE IEDM, Washington, 1989, pp. 3–7.Google Scholar
  23. [23]
    Nagata, M., Swart, N., Stevens, M., Nathan, A., Thermal Based Micro Flow Sensor Optimization Using Coupled Electrothermal Numerical Simulations, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 447–450.Google Scholar
  24. [24]
    Swart, N. R., Heat Transport in Thermal Based Microsensors, Ph.D. Dissertation, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1994.Google Scholar
  25. [25]
    Stevens, M. E., CMOS Electrothermal Microsensors for Flow and Pressure Measurements, M. A. Sc. Dissertation, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1996.Google Scholar
  26. [26]
    Gnudi, A., Ciampolini, P., Guerrieri, R., Rudan, M., Baccarani, G., Sensitivity Analysis for Device Design, IEEE Trans. on CAD of ICAS, CAD-6 (1987), 879–885.Google Scholar
  27. [27]
    Briglio, D. R., Nathan, A., Baltes, H. P., Measurement of Hall Mobility in n-Channel Silicon Inversion Layer, Can. J. Phys., 65 (1987), 842–845.CrossRefGoogle Scholar
  28. [28]
    Maseeh, F., Schmidt, M. A., Allen, M. G., Senturia, S. D., Calibrated Measurements of Elastic Limit, Modulus, and the Residual Stress of Thin Films Using Micromachined Suspended Structures, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1988, pp. 84–87.Google Scholar
  29. [29]
    Paul, O. M., Korvink, J., Baltes, H., Determination of Thermophysical Properties of CMOS Polysilicon, Sensors and Actuators A, 41-42 (1994), 161–164.CrossRefGoogle Scholar
  30. [30]
    Pham, H. H., Nathan, A., Compact MEMS-SPICE Modeling, Sensors and Materials, 10 (1998), 63–75.Google Scholar
  31. [31]
    Swart, N., Nathan, A., Mixed-Mode Device-Circuit Simulation of Thermal-Based Microsensors, Sensors and Materials, 6 (1994), 179–192.Google Scholar
  32. [32]
    CAD for MEMS Workshop, Zürich, Switzerland, March 16–18, 1997.Google Scholar
  33. [33]
    Browne, B. T, Miller, J. J. H. (Eds.), Numerical Analysis of Semiconductor Devices, Proc. NASECODE I Conference, Dublin: Boole Press, 1979.MATHGoogle Scholar
  34. [34]
    Lundstrom, M. S., Schwartz, R. J., Gray, J. L., Transport Equations for the Analysis of Heavily Doped Semiconductor Devices, Solid-State Electron., 24 (1981), 195–202.CrossRefGoogle Scholar
  35. [35]
    Gray, J. L., Two-Dimensional Modeling of Silicon Solar Cells, Ph.D. Dissertation, Purdue University, West Lafayette, USA, 1982.Google Scholar
  36. [36]
    Ciampolini, P., Pierantoni, A., Baccarani, G., Efficient 3-D Simulation of Complex Structures, IEEE Trans. on CAD of ICAS, CAD-10 (1991), 1141–1149.Google Scholar
  37. [37]
    Ciampolini, P., Pierantoni, A., Vecchi, M. C., Rudan, M., Application of General-Purpose Device Simulator to Analysis of Integrated Silicon Microsensors, Sensors and Materials, 6 (1994), 139–157.Google Scholar
  38. [38]
    Mohajerzadeh, S., Nathan, A., Selvakumar, C. R., Numerical simulation of a p-n-p-n Color Sensor for Simultaneous Color Detection, Sensors and Actuators A, 44 (1994), 119–124.CrossRefGoogle Scholar
  39. [39]
    Mimizuka, T., Improvement of Relaxation Method for Hall Plates, Solid-State Electron., 14 (1971), 107–110.CrossRefGoogle Scholar
  40. [40]
    Chwang, R., Smith, B. J., Crowell, C. R., Contact Size Effects on the Van der Pauw Method for Resistivity and Hall Coefficient Measurement, Solid-State Electron., 17 (1974), 1217–1227.CrossRefGoogle Scholar
  41. [41]
    Andor, L., Baltes, H. P., Nathan, A., Schmidt-Weinmar, H. G., Carrier Transport in Semiconductor Magnetic Field Sensors, Technical Digest, IEEE IEDM, Washington, 1983, pp. 635–638.Google Scholar
  42. [42]
    Baltes, H. P., Andor, L., Nathan, A., Schmidt-Weinmar, H. G., Two-Dimensional Numerical Analysis of a Silicon Magnetic Field Sensor, IEEE Trans. Electron Devices, ED-31 (1984), 996–999.CrossRefGoogle Scholar
  43. [43]
    Schmidt-Weinmar, H. G., Andor, L., Baltes, H. P., Nathan, A., Numerical Modeling of Silicon Magnetic Field Sensors: Magnetoconcentration Effects in Split-Metal-Contact Devices, IEEE Trans. Magnetics, MAG-20 (1984), 975–978.CrossRefGoogle Scholar
  44. [44]
    Andor, L., Baltes, H. P., Nathan, A., Schmidt-Weinmar, H. G., Numerical Modeling of Magnetic-Field-Sensitive Semiconductor Devices, IEEE Trans. Electron Devices, ED-32 (1985), 1224–1230.CrossRefGoogle Scholar
  45. [45]
    Nathan, A., Huiser, A. M. J., Baltes, H. P., Two-Dimensional Numerical Modeling of Magnetic Field Sensors in CMOS Technology, IEEE Trans. Electron Devices, ED-32 (1985), 1212–1219.CrossRefGoogle Scholar
  46. [46]
    Nathan, A., Andor, L., Baltes, H. P., Schmidt-Weinmar, H. G., Modeling of a Dual Drain NMOS Magnetic Field Sensor, IEEE J. Solid-State Circuits, SC-20 (1985), 819–821.CrossRefGoogle Scholar
  47. [47]
    Allegretto, W., Mun, Y. S., Nathan, A., Baltes, H. P., Optimization of Semiconductor Magnetic Field Sensors using Finite Element Analysis, Proc. NASECODE IV Conf., Dublin: Boole Press, 1985, pp. 129–133.Google Scholar
  48. [48]
    Baltes, H. P., Popovic, R. S., Integrated Semiconductor Magnetic Field Sensors, Proc. IEEE, 74 (1986), 1107–1132.CrossRefGoogle Scholar
  49. [49]
    Mun, Y., Numerical Modeling of CMOS Magnetic Field Sensors by Finite Element Method, M. Sc. Thesis, University of Alberta, Edmonton, Canada, 1986.Google Scholar
  50. [50]
    Nathan, A., Allegretto, W., Baltes, H. P., Sugiyama, Y., Modeling of Hall Devices Under Locally Inverted Magnetic Field, IEEE Electron Device Letts., EDL-8 (1987), 1–3.CrossRefGoogle Scholar
  51. [51]
    Nathan, A., Allegretto, W., Baltes, H. P., Sugiyama, Y., Carrier Transport in Semiconductor Detectors of Magnetic Domains, IEEE Trans. Electron Devices, ED-34 (1987), 2077–2085.CrossRefGoogle Scholar
  52. [52]
    Allegretto, W., Nathan, A., Baltes, H. P., Two-Dimensional Numerical Analysis of Silicon Bipolar Magnetotransistors, Proc. NASECODE V Conf., Boole Press: Dublin, 1987, pp. 87–92.Google Scholar
  53. [53]
    Nathan, A., Allegretto, W., Joerg, W., Baltes, H., Numerical Modeling of Bipolar Action in Magnetotransistors, Digest of Technical Papers, Transducers’ 87, Tokyo, 1987, pp. 519-522.Google Scholar
  54. [54]
    Nathan, A., Allegretto, W., Baltes, H. P., Galvanomagnetic Transport in p-n Junctions, Sensors and Materials, 1 (1988), 1–6.Google Scholar
  55. [55]
    Nathan, A., Maenaka, K., Allegretto, W., Baltes, H. P., Nakamura, T., The Hall Effect in Magnetotransistors, IEEE Trans. Electron Devices, ED-36 (1989), 108–117.CrossRefGoogle Scholar
  56. [56]
    Allegretto, W., Nathan, A., Baltes, H., Numerical Analysis of Magnetic-Field-Sensitive Bipolar Devices, IEEE Trans. CAD of ICAS, 10 (1991), 501–511.Google Scholar
  57. [57]
    Riccobene, C., Wachutka, G., Baltes, H., Two-Dimensional Numerical Analysis of Novel Magnetotransistors with Partially Removed Substrate, Technical Digest, IEEE IEDM, San Francisco, 1992, pp. 513–516.Google Scholar
  58. [58]
    Korvink, J., An Implementation of the Adaptive Finite Element Method for Semiconductor Sensor Simulation, Ph.D. Dissertation, ETH Zürich, No. 10143, 1993.Google Scholar
  59. [59]
    Nathan, A., Bhatnagar, Y. K., Tang, D. D., Magnetic Field Bit Resolution of Integrated Circuit Polysilicon Hall Elements, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 896-899.Google Scholar
  60. [60]
    Manku, T., Nathan, A., O, N., Aflatooni, K., Allegretto, W., Modeling of Encapsulation Stress Effects on Output Response of Hall Sensors, Sensors and Materials, 6 (1994), 225–234.Google Scholar
  61. [61]
    Aflatooni, K., Strained Silicon Hall Effect Devices, M.A. Sc. Thesis, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1994.Google Scholar
  62. [62]
    Riccobene, C., Wachutka, G., Bürgler, J. F., Baltes, H., Operating Principle of Dual Collector Magnetotransistors Studied by Two-Dimensional Simulation, IEEE Trans. Electron Devices, 41 (1994), 32–41.CrossRefGoogle Scholar
  63. [63]
    Riccobene, C., Wachutka, G., Baltes, H., Numerical Study of Structural Variants of Bipolar Magnetotransistors, Sensors and Materials, 6 (1994), 159–178.Google Scholar
  64. [64]
    Riccobene, C., Gärtner, K., Wachutka, G., Baltes, H., Fichtner, W., First Three-Dimensional Numerical Analysis of Magnetic Vector Probe, Technical Digest, IEEE IEDM, San Francisco, 1994, pp. 727–730.Google Scholar
  65. [65]
    Riccobene, C., Gartner, K., Wachutka, G., Baltes, H., Fichtner, W., Full Three-Dimensional Numerical Analysis of Multi-Collector Magnetotransistors with Directional Sensitivity, Sensors and Actuators A, 46-47 (1995), 289–293.CrossRefGoogle Scholar
  66. [66]
    Riccobene, C., Multidimensional Analysis of Galvanomagnetic Effects in Magnetotransistors, Ph.D. Dissertation, ETH Zürich, Diss. ETH No. 11077, 1995.Google Scholar
  67. [67]
    Schneider, M., Korvink, J. G., Baltes, H., Magnetostatic Modeling of an Integrated Microconcentrator, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 9–12.Google Scholar
  68. [68]
    Nathan, A., Manku, T., Modeling the Piezo-Hall Effects in n-Doped Silicon Devices, Appl. Phys. Letts., 62 (1993), 2947–2949.CrossRefGoogle Scholar
  69. [69]
    Allegretto, W., Nathan, A., Manku, T., Numerical Simulation of Piezo-Hall Effects in n-Doped Silicon Magnetic Sensors, in: Simulation of Semiconductor Devices and Processes, Vol. 5, Selberherr, S., Stipel, H., Strasser, E. (Eds.), Vienna: Springer-Verlag, 1993, pp. 377–380.CrossRefGoogle Scholar
  70. [70]
    Crary, S. B., Thermal Management of Integrated Microsensors, Sensors and Actuators, 12 (1987), 303–312.CrossRefGoogle Scholar
  71. [71]
    van Duyn, D. C., Munter, P. J. A., Finite-Element Modeling of Thermoelectric Materials and Devices, Sensors and Actuators A, 32 (1992), 413–418.CrossRefGoogle Scholar
  72. [72]
    van Duyn, D. C., Modeling and Simulation of Solid-State Transducers: The Thermal and Electrical Energy Domain, Sensors and Actuators A, 41-42 (1994), 268–274.CrossRefGoogle Scholar
  73. [73]
    Swart, N., Nathan, A., Design Optimization of Integrated Microhotplates, Sensors and Actuators A, 43 (1994), 3–10.CrossRefGoogle Scholar
  74. [74]
    Swart, N. R., Nathan, A., An Integrated CMOS Polysilicon Coil-Based Micro-Pirani Gauge with High Heat Transfer Efficiency, Technical Digest, IEEE IEDM, San Francisco, 1994, pp. 135–138.Google Scholar
  75. [75]
    Allegretto, W., Shen, B., Lai, Z., Robinson, A. M., Numerical Modelling of Time Response of CMOS Micromachined Thermistor Sensor, Sensors and Materials, 6 (1994), 71–83.Google Scholar
  76. [76]
    Dillner, U., Thermal Modeling of Multilayer Membranes for Sensor Applications, Sensors and Actuators A, 41-42 (1994), 260–267.CrossRefGoogle Scholar
  77. [77]
    Swart, N. R., Nathan, A., Reliability Study of Polysilicon for Microhotplates, Technical Digest, Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1994, pp. 119–122.Google Scholar
  78. [78]
    Allegretto, W., Shen, B., Haswell, P., Lai, Z., Robinson, A. M., Numerical Modeling of a Micromachined Thermal Conductivity Gas Pressure Sensor, IEEE Trans. CAD of ICAS, 13 (1994), 1247–1256.Google Scholar
  79. [79]
    Nathan, A., Swart, N. R., Quasi Three-Dimensional Simulation of Heat Transport in Thermal-Based Microsensors, in: Simulation of Semiconductor Devices and Processes, Vol. 6, Ryssel, H., Pichler, P. (Eds.), Vienna: Springer-Verlag, 1995, pp. 30–33.CrossRefGoogle Scholar
  80. [80]
    Jaeggi, D., Funk, J., Häberli, A., Baltes, H., Overall System Analysis of a CMOS Thermal Converter, Technical Digest, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 112–115.Google Scholar
  81. [81]
    Park, S., Kim, H., Kang, Y., Study of Flow Sensor Using Finite Difference Method, Sensors and Materials, 7 (1995), 43–51.Google Scholar
  82. [82]
    Funk, J., Modeling and Simulation of IMEMS, Ph.D. Dissertation, ETH Zürich, Diss. ETH No. 11378, 1996.Google Scholar
  83. [83]
    Mayer, F., Salis, G., Funk, J., Paul, O., Baltes, H., Scaling of Thermal CMOS Gas Flow Microsensors: Experiment and Simulation, Proc. IEEE MEMS, San Diego, 1996, pp. 116-121.Google Scholar
  84. [84]
    Rudin, S., Wachutka, G., Baltes, H., Thermal Effects in Magnetic Microsensor Modeling, Sensors and Actuators A, 25-27 (1991), 731–735.CrossRefGoogle Scholar
  85. [85]
    Nathan, A., Manku, T., The Thermomagnetic Carrier Transport Equation, Sensors and Actuators A, 36 (1993), 193–197.CrossRefGoogle Scholar
  86. [86]
    Manku, T., Nathan, A., Electron Drift Mobility for Devices Based on Unstrained and Coherently Strained Si1-xGex grown on <001> Silicon Substrate, IEEE Trans. Electron Devices, 39 (1992), 2082–2089.CrossRefGoogle Scholar
  87. [87]
    Manku, T., Nathan, A., Valence Energy-Band Structure for Strained Group-IV Semiconductors, J. Appl. Phys., 73 (1993), 1205–1213.CrossRefGoogle Scholar
  88. [88]
    Manku, T., Nathan, A., Electrical Properties of Silicon Under Nonuniform Stress, J. Appl. Phys., 74 (1993), 1832–1837.CrossRefGoogle Scholar
  89. [89]
    Nathan, A., Manku, T., Piezoresistance and the Drift-Diffusion Model in Strained Silicon, Simulation of Semiconductor Devices and Processes, Vol. 6, Ryssel, H., Pichler, P. (Eds.), Vienna: Springer-Verlag, 1995, pp. 94–97.CrossRefGoogle Scholar
  90. [90]
    Aflatooni, K., Nathan, A., Heat Transport Properties of Semiconductors Under NonUniform Stress, Appl. Phys. Lett., 66 (1995), 1110–1111.CrossRefGoogle Scholar
  91. [91]
    Aflatooni, K., Hornsey, R., Nathan, A., Thermodynamic Treatment of Mechanical Stress Gradients in Coupled Electro-Thermo-Mechanical Systems, Sensors and Materials, 9 (1997), 449–456.Google Scholar
  92. [92]
    Lee, K. W., Modeling and Simulation of Solid State Pressure Sensors, Ph.D. Dissertation, University of Michigan, Ann Arbor, USA, 1982.Google Scholar
  93. [93]
    Suzuki, S., Yamada, K., Nishihara, M., Hachino, H., Minorikawa, S., Structural Analysis of a Semiconductor Pressure Sensor, Proc., The 1st Sensor Symp., Japan, 1981, pp. 131-133.Google Scholar
  94. [94]
    Lee, K. W., Wise, K. D., Accurate Simulation of High-Performance Silicon Pressure Sensors, Technical Digest, IEEE IEDM, 1981, pp. 471-474.Google Scholar
  95. [95]
    Lee, K. W., Wise, K. D., SENSIM: A Simulation Program for Solid-State Pressure Sensors, IEEE Trans. Electron Devices, ED-29 (1982), 34–41.Google Scholar
  96. [96]
    Suzuki, S., Yagi, Y., Optimum Design of Silicon Pressure Sensor by Nonlinear Finite Element Method, Proc, The 2nd Sensor Symp., Japan, 1982, pp. 163-165.Google Scholar
  97. [97]
    Yamada, K., Nishihara, M., Shimada, S., Tanabe, M., Shimazoe, M., Matsuoka, Y., Nonlinearity of the Piezoresistance Effect of p-Type Silicon Diffused Layers, IEEE Trans. Electron Devices, ED-29 (1982), 71–77.CrossRefGoogle Scholar
  98. [98]
    Bin, T. Y., Huang, R. S., CAPSS: A Thin Diaphragm Capacitive Pressure Sensor Simulator, Sensors and Actuators, 11 (1987), 1–22.CrossRefGoogle Scholar
  99. [99]
    Suzuki, K., Ishihara, T., Hirata, M., Tanigawa, H., Nonlinear Analysis of a CMOS Integrated Silicon Pressure Sensor, IEEE Trans. Electron Devices, ED-34 (1987), 1360–1367.CrossRefGoogle Scholar
  100. [100]
    Barth, P. W., Pourahmadi, F., Mayer, R., Poydock, J., Peterson, K., A Monolithic Silicon Accelerometer with Integral Air Damping and Overrange Protection, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1988, pp. 35–38.Google Scholar
  101. [101]
    Pourahmadi, F., Barth, P., Peterson, K., Modeling of Thermal and Mechanical Stresses in Silicon Microstructures, Sensors and Actuators, A21-A23 (1990), 850–855.Google Scholar
  102. [102]
    Zhang, Y., Crary, S. B., Wise, K. D., Pressure Sensor Design and Simulation Using the CAEMEMS-D Module, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1990, pp. 32–35.Google Scholar
  103. [103]
    Chau, K., Allegretto, W., Ristic, L., Simulation of Silicon Microstructures, Sensors and Materials, 5 (1991), 253–264.Google Scholar
  104. [104]
    Tschan, T., de Rooij, N., Characterization and Modelling of Silicon Piezoresistive Accelerometers Fabricated by a Bipolar-Compatible Process, Sensors and Actuators A, 25-27 (1991), 605–609.CrossRefGoogle Scholar
  105. [105]
    Tschan, T., de Rooij, N., Bezinge, A., Analytical and FEM Modeling of Piezoresistive Silicon Accelerometers: Predictions and Limitations Compared to Experiments, Sensors and Materials, 4 (1992), 189–203.Google Scholar
  106. [106]
    Bergqvist, J., Finite Element Modeling and Characterization of a Silicon Condenser Microphone with a Highly Perforated Backplate, Sensors and Actuators A, 39 (1993), 191–200.CrossRefGoogle Scholar
  107. [107]
    Schellin, R., Mohr, R., A Monolithically-Integrated Transistor Microphone: Modeling and Theoretical Behaviour, Sensors and Actuators A, 37-38 (1993), 666–673.CrossRefGoogle Scholar
  108. [108]
    Peizhong, H., Jianzhong, G., Finite Element Simulation of Thin-Film Strain Resistance, Sensors and Actuators A, 35 (1993), 239–241.CrossRefGoogle Scholar
  109. [109]
    Morikawa, T., Nonomura, Y., Tsukuda, K., Takeuchi, M., Hosono, A., 3-Dimensional Piezoresistive FEM Analysis of a New Combustion Pressure Sensor, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 598-601.Google Scholar
  110. [110]
    Yamada, K., Kuriyama, T., FEM Analysis for Single-Chip Multiaxial Servo Accelerometer, Sensors and Materials, 6 (1994), 211–223.Google Scholar
  111. [111]
    Pourahmadi, F., Review of Modeling Silicon Microsensors and Actuators, Sensors and Materials, 6 (1994), 193–209.Google Scholar
  112. [112]
    Lades, M., Frank, J., Funk, J., Wachutka, G., Analysis of Piezoresistive Effects in Silicon Structures Using Multidimensional Process and Device Simulation, in: Simulation of Semiconductor Devices and Processes, Vol. 6, Ryssel, H., Pichler, P. (Eds.), Vienna: Springer-Verlag, 1995, pp. 22–25.CrossRefGoogle Scholar
  113. [113]
    Ciampolini, P., Pierantoni, A., Rudan, M., A CAD Environment for the Numerical Simulation of Integrated Piezoresistive Transducers, Sensors and Actuators A, 46-47 (1995), 618–622.CrossRefGoogle Scholar
  114. [114]
    Bonse, M. H. W., Mul, C., Spronck, J. W., Finite-Element Modeling as a Tool for Designing Capacitive Position Sensors, Sensors and Actuators A, 46-47 (1995), 266–269.CrossRefGoogle Scholar
  115. [115]
    Kadar, Z., Bossche, A., Mollinger, J., Design of a Single-Crystal Silicon-Based Micromechanical Resonator Using Finite Element Simulations, Sensors and Actuators A, 46-47 (1995), 623–627.CrossRefGoogle Scholar
  116. [116]
    Benaissa, K., Integrated Silicon Opto-Mechanical Sensors, Ph.D. Dissertation, Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1996.Google Scholar
  117. [117]
    Benaissa, K., Nathan, A., IC Compatible Optomechanical Pressure Sensors Using Mach-Zender Interferometry, IEEE Trans. Electron Devices, 43 (1996), 1571–1582.CrossRefGoogle Scholar
  118. [118]
    Funk, J. M., Korvink, J. G., Bühler, J., Bächtold, M., Baltes, H., SOLIDIS: A Tool for Microactuator Simulation in 3-D, IEEE J. of Microelectromechanical Systems, 6 (1997), 70–82.CrossRefGoogle Scholar
  119. [119]
    Thangaraj, D., Nathan, A., Two Dimensional Analysis of Incompressible Viscous Flow in Ducts Using a Rotated Difference Scheme, Sensors and Materials, 8 (1996), 13–22.Google Scholar
  120. [120]
    Athavale, M. M., Yang, H. Q., Przekwas, A. J., Coupled Fluid-Thermo-Structures Simulation Methodology for MEMS Applications, Digest of Technical Papers, Transducers’ 97, Chicago, 1997, pp. 1043-1046.Google Scholar
  121. [121]
    Olsson, A., Stemme, G., Stemme, E., Simulation Studies of Diffuser and Nozzle Elements for Valve-Less Micropumps, Digest of Technical Papers, Transducers’ 97, Chicago, 1997, pp. 1039-1042.Google Scholar
  122. [122]
    Hsing, I.-M., Srinivasan, R., Harold, M. P., Jensen, K. F., Schmidt, M. A., Finite Element Simulation Strategies for Microfluidic Devices with Chemical Reactions, Digest of Technical Papers, Transducers’ 97, Chicago, 1997, pp. 1015-1018.Google Scholar
  123. [123]
    Qiu, X. C., Hu, L., Masliyah, J. C., Harrison, D. J., Understanding Fluid Mechanics within Electrokinetically Pumped Microfluidic Chips, Digest of Technical Papers, Transducers’ 97, Chicago, 1997, pp. 923-926.Google Scholar
  124. [124]
    Cho, Y.-H., Pisano, A. P., Howe, R. T., Viscous Damping Model for Laterally Oscillating Microstructures, IEEE J. of Microelectromechanical Systems, 3 (1994), 81–87.CrossRefGoogle Scholar
  125. [125]
    Zhang, X., Tang, W. C., Viscous Air Damping in Laterally Driven Microresonators, Sensors and Materials, 27 (1995), 415–430.Google Scholar
  126. [126]
    Reuther, H. M., Weinmann, M., Fischer, M., von Münch, W., Aßmus, F., Modeling Electrostatically Deflectable Microstructures and Air Damping Effects, Sensors and Materials, 8 (1996), 251–269.Google Scholar
  127. [127]
    Yang, Y.-J., Senturia, S. D., Numerical Simulation of Compressible Squeezed-Film Damping, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1996, pp. 76–79.Google Scholar
  128. [128]
    Price, R. H., Wood, J. E., Jacobsen, S. C., The Modeling of Electrostatic Forces in Small Electrostatic Actuators, Technical Digest, IEEE Solid-State Sensors and Actuators Workshop, Hilton-Head Is., 1988, pp. 131–135.Google Scholar
  129. [129]
    Price, R. H., Wood, J. E., Jacobsen, S. C., Modeling Considerations for Electrostatic Forces in Electrostatic Microactuators, Sensors and Actuators, 20 (1989), 107–114.CrossRefGoogle Scholar
  130. [130]
    Johnson, B. P., Kim, S., Senturia, S. D., White, J., MEMCAD Capacitance Calculations for Mechanically Deformed Square Diaphragm and Beam Microstructures, Digest of Technical Papers, Transducers’ 91, San Francisco, 1991, pp. 494-497.Google Scholar
  131. [131]
    Nabors, K., White, J., FastCap: A Multipole-Accelerated 3-D Capacitance Extraction Program, IEEE Trans. CAD of ICAS, 10 (1991), 1447–1459.Google Scholar
  132. [132]
    Gilbert, J. R., Osterberg, P. M., Harris, R. M., Ouma, D. O., Cai, X., Pfajfer, A., White, J., Senturia, S. D., Implementation of a MEMCAD System for Electrostatic and Mechanical Analysis of Complex Structures from Mask Descriptions, Proc. IEEE MEMS, Fort Lauderdale, 1993, pp. 207-212.Google Scholar
  133. [133]
    Sandmaier, H., Offereins, H. L., Folkmer, B., CAD Tools for Micromechanics, J. Micromech. Microeng., 3 (1993), 103–106.CrossRefGoogle Scholar
  134. [134]
    Cai, X., Osterberg, P., Yie, H., Gilbert, J., Senturia, S., White, J., Self-Consistent Electromechanical Analysis of Complex 3-D Microelectromechanical Structures Using Relaxation/Multipole-Accelerated Method, Sensors and Materials, 6 (1994), 85–99.Google Scholar
  135. [135]
    Ananthasuresh, G. K., Kota, S., Gianchandani, Y., A Methodical Approach to the Design of Compliant Micromechanisms, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1994, pp. 189–192.Google Scholar
  136. [136]
    Boyd, M. R., Crary, S. B., Giles, M. D., A Heuristic Approach to the Electromechanical Modeling of MEMS Beams, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1994, pp. 123–126.Google Scholar
  137. [137]
    Osterberg, P., Yie, H., Cai, X., White, J., Senturia, S., Self-Consistent Simulation and Modeling of Electrostatically Deformed Diaphragms, Proc. IEEE MEMS, Oiso, 1994, pp. 28-32.Google Scholar
  138. [138]
    Gilbert, J. R., Legtenberg, R., Senturia, S. D., 3D Coupled Electro-Mechanics for MEMS: Applications of CoSolve-EM, Proc. IEEE MEMS, Amsterdam, 1995, pp. 122-127.Google Scholar
  139. [139]
    Stewart, J. T., Finite Element Modeling of Microelectromechanical Structures for Sensing Applications, Proc. SPIE, 2642 (1995), pp. 194–205.CrossRefGoogle Scholar
  140. [140]
    Yie, H., Bart, S. F., White, J., Senturia, S. D., A Computationally Practical Approach to Simulating Complex Surface-Micromachined Structures with Fabrication Non-Idealites, Proc. IEEE MEMS, Amsterdam, 1995, pp. 128-133.Google Scholar
  141. [141]
    Lefevre, Y., Lajoie-Mazenc, M., Sarraute, E., Camon, H., First Steps Towards Design, Simulation, Modeling and Fabrication of Electrostatic Micromotors, Sensors and Actuators A, 46-47 (1995), 645–648.CrossRefGoogle Scholar
  142. [142]
    Lee, J. S., Yoshimura, S., Yagawa, G., Shibaike, N., A CAE System for Micromachines: Its Application to Electrostatic Micro Wobble Actuator, Sensors and Actuators A, 50 (1995), 209–221.MATHCrossRefGoogle Scholar
  143. [143]
    Bächtold, M., Korvink, J. G., Funk, J., Baltes, H., New Convergence Scheme for Self-Consistent Electromechanical Analysis of IMEMS, Technical Digest, IEEE IEDM, Washington, 1995, pp. 605–608.Google Scholar
  144. [144]
    Gilbert, J. R., Ananthasuresh, G. K., Senturia, S. D., 3D Modeling of Contact Problems and Hysteresis in Coupled Electro-Mechanics, Proc. IEEE MEMS, San Diego, 1996, pp. 127-132.Google Scholar
  145. [145]
    Funk, J., Korvink, J. G., Bachtold, M., Buhler, J., Baltes, H., Coupled 3D Thermo-Electro-Mechanical Simulations of Microactuators, Proc. IEEE MEMS, San Diego, 1996, pp. 133-138.Google Scholar
  146. [146]
    Wang, P. K. C., Hadaegh, F. Y., Computation of Static Shapes and Voltages for Micromachined Deformable Mirrors with Nonlinear Electrostatic Actuators, IEEE J. of Microelectromechanical Systems, 5 (1996), 205–220.CrossRefGoogle Scholar
  147. [147]
    Bächtold, M., Efficient 3D Computation of Electrostatic Fields and Forces in Microsystems, Ph.D. Dissertation, ETH Zürich, Diss. ETH No. 12165, 1997.Google Scholar
  148. [148]
    Funk, J., Korvink, J. G., Wachutka, G., Baltes, H., Electro-Thermo-Mechanical Field Analysis Using SESES, in: Simulation of Semiconductor Devices and Processes, Vol. 5, Selberherr, S., Stipel, H., Strasser, E. (Eds.), Vienna: Springer-Verlag, 1993, pp. 347–350.Google Scholar
  149. [149]
    Korvink, J. G., Funk, J., Roos, M., Wachutka, G., Baltes, H., SESES: A Comprehensive MEMS Modelling System, Proc. IEEE MEMS, Oiso, 1994, pp. 22-27.Google Scholar
  150. [150]
    Korvink, J. G., Funk, J., Baltes, H., IMEMS Modeling, Sensors and Materials, 6 (1994), 235–243.Google Scholar
  151. [151]
    Ikuta, K., Shimizu, H., Two Dimensional Mathematical Model of Shape Memory Alloy and Intelligent SMA-CAD, Proc. IEEE MEMS, Fort Lauderdale, 1993, pp. 87-91.Google Scholar
  152. [152]
    Krulevitch, P., Lee, A. P., Ramsey, P. B., Trevino, J. C., Hamilton, J., Northrup, M. A., Thin Film Shape Memory Alloy Microactuators, IEEE J. of Microelectromechanical Systems, 5 (1996), 270–282.CrossRefGoogle Scholar
  153. [153]
    Quandt, E., Seeman, K., Fabrication and Simulation of Magnetostrictive Thin Film Actuators, Sensors and Actuators A, 50 (1995), 105–109.CrossRefGoogle Scholar
  154. [154]
    Schwarzenbach, H. U., Lechner, H., Steinle, B., Baltes, H. P., Schwendimann, P., Calculation of Vibrations of Thick Piezoceramic Disk Resonators, Appl. Phys. Lett., 38 (1981), 854–855.CrossRefGoogle Scholar
  155. [155]
    Langer, E., Selberherr, S., Markowich, P. A., Ringhofer, C. A., Numerical Analysis of Acoustic Wave Generation in Anisotropic Piezoelectric Materials, Sensors and Actuators A, 4 (1983), 71–76.CrossRefGoogle Scholar
  156. [156]
    Lerch, R., Finite Element Analysis of Piezoelectric Transducers, Proc. IEEE Ultrasonics Symp., 1988, pp. 643-654.Google Scholar
  157. [157]
    Lerch, R., Piezoelectric and Acoustic Finite Elements as Tools for the Development of Electroacoustic Transducers, Siemens Forsch.-u. Entwickl.-Ber., Vol. 17, No. 6 (1988), pp. 283–290.Google Scholar
  158. [158]
    Brand, O., Micromachined Resonators for Ultrasound Based Proximity Sensing, Ph.D. Dissertation, ETH Zürich, Diss. ETH No. 10896, 1994.Google Scholar
  159. [159]
    Low, T. S., Guo, W., Modeling of a Three Layer Piezoelectric Bimorph beam with Hysteris, IEEE J. of Microelectromechanical Systems, 4 (1995), 230–237.CrossRefGoogle Scholar
  160. [160]
    Lim, Y.-H., Varandan, V. V., Varandan, V. K., Finite Element Modeling of the Dynamic Response of a MEMS Sensor, Proc. SPIE, 2642 (1995), pp. 233–240.CrossRefGoogle Scholar
  161. [161]
    Koppelman, G. M., OYSTER, a Three-Dimensional Structural Simulator for Micro-Electro-Mechanical Design, Sensors and Actuators, 20 (1989), 179–185.CrossRefGoogle Scholar
  162. [162]
    Maseeh, F., Harris, R. M., Senturia, S. D., A CAD Architecture for Micro-Electro-Mechanical Systems, Proc. IEEE MEMS, Napa Valley, 1990, pp. 44-49.Google Scholar
  163. [163]
    Amster, R., Tavrow, L. S., Flynn, A. M., Intelligent CAD for Micromechanics, Proc. Microsystems Conf., Berlin, 1990, Berlin: Springer-Verlag, 1990, pp. 23–28.Google Scholar
  164. [164]
    Crary, S., Kota, S., Conceptual Design of Micro-Electro-Mechanical Systems, Proc. Microsystems Conf., Berlin, 1990, Berlin: Springer-Verlag, 1990, pp. 17–22.Google Scholar
  165. [165]
    Crary, S., Zhang, Y., CAEMEMS: An Integrated Computer-Aided Engineering Workbench for Micro-Electro-Mechanical Systems, Proc. IEEE MEMS, Napa Valley, 1990, pp. 113-114.Google Scholar
  166. [166]
    Harris, R. M., Maseeh, F., Senturia, S.D., Automatic Generation of a 3-D Solid Model of a Microfabricated Structure, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1990, pp. 36–41.Google Scholar
  167. [167]
    Crary, S., Juma, O., Zhang, Y., Software Tools for Designers of Sensor and Actuator CAE Systems, Digest of Technical Papers, Transducers’ 91, San Francisco. 1991, pp. 498-501.Google Scholar
  168. [168]
    Harris, R. M., Senturia, S. D., A Solution of the Mask Overlay Problem in Microelectromechanical CAD (MEMCAD), Proc. IEEE MEMS, Travemünde, 1992, pp. 58-62.Google Scholar
  169. [169]
    Gilbert, J. R., Osterberg, P. M., Harris, R. M., Ouma, D. O., Cai, X., Pfajfer, A., White, J., Senturia, S. D., Implementation of a MEMCAD System for Electrostatic and Mechanical Analysis of Complex Structures from Mask Descriptions, Proc. IEEE MEMS, Fort Lauderdale, 1993, pp. 207-212.Google Scholar
  170. [170]
    Gogoi, B., Yuen, R., Mastrangelo, C. H., The Automatic Synthesis of Planar Fabrication Process Flows for Surface Micromachined Devices, Proc. IEEE MEMS, Oiso, 1994, pp. 153–157.Google Scholar
  171. [171]
    Poppe, A., Rencz, M., Szekely, V., CAD Framework Concept for the Design of Integrated Microsystems, Proc. SPIE, 2642 (1995), pp. 215–224.CrossRefGoogle Scholar
  172. [172]
    Lo, N. R., Pister, K. S. J., 3DμV — a MEMS 3-D Visualization Package, Proc. SPIE, 2642 (1995), pp. 290–295.CrossRefGoogle Scholar
  173. [173]
    Osterberg, P. M., Senturia, S. D., MEMBUILDER: An Automatic 3D Solid Model Construction Program for Microelectromechanical Structures, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 21–24.Google Scholar
  174. [174]
    Hasanuzzaman, M., Mastrangelo, C. H., MISTIC 1.1: A Process Compiler for Micromachined Devices, Digest of Technical Papers, Vol. 1, Transducers’ 95, Stockholm, 1995, pp. 182–185.Google Scholar
  175. [175]
    He, Y., Harris, R., Napadenski, G., Maseeh, F., A Virtual Prototype Manufacturing Software System for MEMS, Proc. IEEE MEMS, San Diego, 1996, pp. 122-126.Google Scholar
  176. [176]
    Nagler, O., Trost, M., Hillerich, B., Kozlowski, F., Efficient Design and Optimization of MEMS by Integrating Commercial Simulation Tools, Digest of Technical Papers, Transducers’ 97, Chicago, 1997, pp. 1055-1058.Google Scholar
  177. [177]
    Buser, R. A., de Rooij, N. F., CAD for Silicon Anisotropic Etching, Proc. IEEE MEMS, Napa Valley, 1990, pp. 111-112.Google Scholar
  178. [178]
    Sequin, C. H., Computer Simulation of Anisotropic Etching, Digest of Technical Papers, Transducers’ 91, San Francisco, 1991, pp. 801-806.Google Scholar
  179. [179]
    DeLapierre, G., Anisotropie Crystal Etching: A Simulation Program, Sensors and Actuators, 31 (1992), 264–274.Google Scholar
  180. [180]
    Hubbard, T. J., Antonsson, E. K., Emergent Faces in Crystal Etching, IEEE J. of Microelectromechanical Systems, 3 (1994), 19–28.CrossRefGoogle Scholar
  181. [181]
    Tabata, O., Effects of Etching Products and Diffusion on Silicon Anisotropic Etching, Sensors and Materials, Special Issue on CAD for MEMS, 10 (1998) (to appear).Google Scholar
  182. [182]
    van Suchtelen, J., van Veenendaal, E., Nijdam, A. J., Elwenspoek, M., van Enckevort, W. J. P., Computer Simulation of Orientation-Dependent Etching of Silicon, presented at the CAD for MEMS Workshop, Zürich, 1997.Google Scholar
  183. [183]
    Koide, A., Tanaka, S., Simulation of Three-Dimensional Etch Profile of Silicon During Orientation-Dependent Anisotropie Etching, Proc. IEEE MEMS, Nagoya, 1997, pp. 418-423.Google Scholar
  184. [184]
    Senturia, S. D., Smith, R. L., Microsensor Packaging and System Partitioning, Sensors and Actuators, 15 (1988), 221–234.CrossRefGoogle Scholar
  185. [185]
    Fotheringham, G., Simulation Methods for Multi-Chip Modules, Sensors and Actuators A, 30 (1992), 157–165.CrossRefGoogle Scholar
  186. [186]
    Pourahmadi, F., Peterson, K., Package Design of Silicon Micromachined Sensors Using Finite Element Modeling, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 774-778.Google Scholar
  187. [187]
    Lin, Y., Hesketh, P. J., Schuster, J. P., Finite-Element Analysis of Thermal Stresses in a Silicon Pressure Sensor for Various Die-Mount Materials, Sensors and Actuators A, 44(1994), 145–149.CrossRefGoogle Scholar
  188. [188]
    Chin, S.-W., Rajan, S. D., Nagaraj, B. K., Mahalingam, M., Automated Design Tool for Examining Microelectronic Packaging Design Alternatives, IEEE Trans. on Component, Packaging, and Manufacturing Technology, 17 (1994), 76–82.CrossRefGoogle Scholar
  189. [189]
    Michel, B., Schubert, A., Dudek, R., Grosser, V., Experimental and Numerical Investigations of Thermo-Mechanically Stresses Micro-Components, Microsystem Technology, 1 (1994), 14–22.CrossRefGoogle Scholar
  190. [190]
    Koen, E., Pourahmadi, F., Terry, S., A Multilayer Ceramic Package for Silicon Micromachined Accelerometers, Digest of Technical Papers, Vol. 1, Transducers’ 95, Stockholm, 1995, pp. 273–276.Google Scholar
  191. [191]
    Popovic, R. S., Numerical Analysis of MOS Magnetic Field Sensors, Solid-State Electronics, 28 (1985), 711–716.CrossRefGoogle Scholar
  192. [192]
    Caverly, R., Peck, E., A Finite-Element Model and Characterization of the p-i-n Magnetodiode at Microwave Frequencies, Solid-State Electronics, 30 (1987), 473–477.CrossRefGoogle Scholar
  193. [193]
    Swart, N. R., Nathan, A., Flow-Rate Microsensor Modelling and Optimization Using SPICE, Sensors and Actuators A, 34 (1992), 109–122.CrossRefGoogle Scholar
  194. [194]
    Swart, N., Nathan, A., Mixed-Mode Device-Circuit Simulation of Thermal-Based Microsensors, Sensors and Materials, 6 (1994), 179–192.Google Scholar
  195. [195]
    Swart, N., Nathan, A., Coupled Electrothermal Modeling of Microheaters Using SPICE, IEEE Trans. Electron Devices, 41 (1994) 920–925.CrossRefGoogle Scholar
  196. [196]
    Mouthaan, T. J., Krabbenborg, B. H., Thermodynamic Analysis of Semiconductor Structures Using a Device Simulator and Lumped Circuit Modelling, Sensors and Materials, 6 (1994), 125–137.Google Scholar
  197. [197]
    Auerbach, F. J., Meiendres, G., Müller, R., Scheller, G. J. E., Simulation of the Thermal Behaviour of Thermal Flow Sensors by Equivalent Electrical Circuits, Sensors and Actuators A, 41-42 (1994), 275–278.CrossRefGoogle Scholar
  198. [198]
    Massobrio, G., Martinoia, S., Grattarola, M., Use of SPICE for Modeling Silicon-Based Chemical Sensors, Sensors and Materials, 6 (1994), 101–123.Google Scholar
  199. [199]
    Rombach, P., Langheinrich, W., Modelling of a Micromachined Torque Sensor, Sensors and Actuators A, 46-47 (1995), 294–297.CrossRefGoogle Scholar
  200. [200]
    Salim, A., Manku, T., Nathan, A., Modeling of Magnetic Field Sensitivity of Bipolar Magnetotransistors Using HSPICE, IEEE Trans. on CAD of ICAS, 14 (1995), 464–469.Google Scholar
  201. [201]
    Veijola, T., Kuisma, H., Lahdenperä, J., Ryhänen, T., Equivalent-circuit Model of the Squeezed Gas Film in a Silicon Accelerometer, Sensors and Actuators A, 48 (1995), 239–248.CrossRefGoogle Scholar
  202. [202]
    Burstein, A., Kaiser, W. J., The Microelectromechanical Gyroscope — Analysis and Simulation Using SPICE Electronic Simulator, Proc. SPIE, 2642 (1995), pp. 225–232.CrossRefGoogle Scholar
  203. [203]
    Nathan, A., Self-Consistent Network Synthesis for Mixed-Signal Simulations, Int. Rep., No. 95/06, Physical Electronics Laboratory, ETH Zürich, Switzerland, 1995.Google Scholar
  204. [204]
    Shie, J.-S., Chen, Y.-M., Ou-Yang, M., Chou, B. C. S., Characterization and Modeling of Metal-Film Microbolometer, IEEE J. of Microelectromechanical Systems, 5 (1996), 298–306.CrossRefGoogle Scholar
  205. [205]
    Mohajerzadeh, S., Nathan, A., Modeling Noise Correlation Behaviour in Dual-Collector Magnetotransistors Using Small Signal Equivalent Circuit Analysis, IEEE Trans. Electron Devices, 43 (1996), 883–888.CrossRefGoogle Scholar
  206. [206]
    Tilmans, H. A. C., Equivalent Circuit Representation of Electromechanical Transducers: I. Lumped-Parameter Systems, J. Micromech. Microeng., 6 (1996), 157–176.CrossRefGoogle Scholar
  207. [207]
    Ando, S., Tanaka, K., Abe, M., Fishbone Architecture: An Equivalent Mechanical Model of Cochlea and its Application to Sensors and Actuators, Digest of Technical Papers, Transducers’ 97, Chicago, 1997, pp. 1027-1030.Google Scholar
  208. [208]
    Voigt, P., Wachutka, G., Electro-Fluidic Microsystem Modeling Based on Kirchhoffian Network Theory, Digest of Technical Papers, Transducers’ 97, Chicago, 1997, pp. 1019-1022.Google Scholar
  209. [209]
    Romanowicz, B., Lerch, Ph., Renaud, Ph., Fullin, E., de Coulon, Y., Simulation of Integrated Electromagnetic Device Systems, Digest of Technical Papers, Transducers’ 97, Chicago, 1997, pp. 1051-1054.Google Scholar
  210. [210]
    Pham, H. H., Nathan, A., Circuit Modeling and SPICE Simulation of Mixed-Signal Microsystems, Sensors and Materials, Special Issue on CAD for MEMS, 10, No. 7 (1998) (to appear).Google Scholar
  211. [211]
    User’s Guide, Iowa State University Research Foundation (ISURF), Ames, IA 50011, Copyright 1985.Google Scholar
  212. [212]
    PISCES, Integrated Circuits Laboratory (ICL), Department of Electrical Engineering, Stanford University, CA, USA. http://www-tcad.stanford.edu/tcad/org.html.Google Scholar
  213. [213]
    Korvink, J. G., SOLIDIS Reference Manual 1.0, Internal Report No. 95/01, Physical Electronics Laboratory, ETH Zürich, 1995. ISE Integrated Systems Engineering AG, Technopark Zürich, Technoparkstrasse 1, CH-8005 Zürich, Switzerland.Google Scholar
  214. [214]
    Kriegl, W., Steiner, P, Folkmer, B., Lang, W., MICROTHERM: A Program for Thermal Modelling of Microstructures, Sensors and Actuators A, 46-47 (1995), 637–639.CrossRefGoogle Scholar
  215. [215]
    ANSYS Inc., 275 Technology Drive, Canonsburg, PA 15317, USA.Google Scholar
  216. [216]
    MSC/NASTRAN, McNeal-Schwendler Corp., Los Angeles, CA, USA.Google Scholar
  217. [217]
    ADINA, Adina R&D, Inc., 71 Elton Ave., Watertown, MA 02172, USA.Google Scholar
  218. [218]
    Puers, B., Peeters, E., Sansen, W., CAD Tools in Mechanical Sensor Design, Sensors and Actuators, 17 (1989), 423–429.CrossRefGoogle Scholar
  219. [219]
    Schwarzenbach, H. U., Korvink, J. G., Roos, M., Sartoris, G., Anderheggen, E., A Micro Electro Mechanical CAD Extension for SESES, J. Micromech. Microeng., 3 (1993), 118–122.CrossRefGoogle Scholar
  220. [220]
    Anderheggen, E., Korvink, J. G., Roos, M., Sartoris, G. E., Schwarzenbach, H. U., SESES User Manual, NM Numerical Modelling GmbH, Thalwil, Switzerland, 1993.Google Scholar
  221. [221]
    ABAQUS, Hibbit, Karlsson, and Sorenson, Inc., 1080 Main Street, Pawtucket, RI 02860, USA.Google Scholar
  222. [222]
    COSMOS/M, Structural Research Analysis Corp., Santa Monica, CA, USA.Google Scholar
  223. [223]
    I-DEAS, Structural Dynamics Research Corp, Milford, OH., USA.Google Scholar
  224. [224]
    FLOWERS, Inst. für Informatik, ETH, CH-8093 Zürich, Switzerland.Google Scholar
  225. [225]
    TPS10 Benutzerhandbuch, T-Programm GmbH, Reutlingen, 11th Ed., 1989.Google Scholar
  226. [226]
    MARC, MARC Analysis Research Corp., (see [142]).Google Scholar
  227. [227]
    FIDAP, Fluid Dynamics International, Evanston, Illinois, USA.Google Scholar
  228. [228]
    FLUENT, FLUENT Inc., Centerra Resource Park, 10 Cavendish Court, Lebanon, N.H. 03766-1442, USA.Google Scholar
  229. [229]
    FLOTRAN, see, Ulrich, J., Zengerle, R., Static and Dynamic Flow Simulation of a KOH-Etched Microvalve Using the Finite Element Method, Sensors and Actuators A, 53 (1996), 379–385.CrossRefGoogle Scholar
  230. [230]
    FLOTHERM, see, Fotheringham, G., Simulation Methods for Multi-Chip Modules, Sensors and Actuators A, 30 (1992), 157–165.CrossRefGoogle Scholar
  231. [231]
    PUSI, see, Zengerle, R., Richter, M., Brosinger, F., Richter, A., Sandmaier, H., Performance Simulation of Microminiaturized Membrane Pumps, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 106-109.Google Scholar
  232. [232]
    Maxwell Solver, Ansoft Corp., 4 Station Square, 660 Commerce Court Bldg., Pittsburgh, PA, USA.Google Scholar
  233. [233]
    ALECSIS, Inst. of Prec. Eng., TU Vienna, Floragasse 7, 1040 Vienna, Austria.Google Scholar
  234. [234]
    MICROCOSM, 201 Willesden Dr., Cary, NC 27513, USA.Google Scholar
  235. [235]
    IntelliSense Corp., 16 Upton Dr., Wilmington, MA 01887, USA.Google Scholar
  236. [236]
    Nabors, K., Kim, S., White, J., Senturia, S., FastCap User’s Guide, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA.Google Scholar
  237. [237]
    EFCREL, EFDYN, EFCAD, see, Lefèvre, Y., Lajoie-Mazenc, M., Sarraute, E., Lamon, H., First Stop Towards Design, Simulation, Modeling and Fabrication of Electrostatic Micromotors, Sensors and Actuators A, 46-47 (1995), 645–648.CrossRefGoogle Scholar
  238. [238]
    CEDRAT S.A., 10 Chemin du Pré Carré, 38240 Meylan, France.Google Scholar
  239. [239]
    IES, Integrated Engineering Software, 46-1313 Border Place, Winnipeg, Manitoba, R3H 0X4, Canada.Google Scholar
  240. [240]
    PATRAN, PDA Engineering, Costa Mesta, CA, USA.Google Scholar
  241. [241]
    Geomview, Software Development Group, Geometry Center, University of Minnesota, 1300 South Second Street, Suite 500, Minneapolis, MN 55454, USA. http:// www.geom.umn.edu/welcome.html.Google Scholar
  242. [242]
    Pro/ENGINEER, Parametric Technology, Waltham, MA, USA.Google Scholar
  243. [243]
    Asaumi, K., Iriye, Y., Sato, K., Anisotropic-Etching Process Simulation System MICROCAD Analyzing Complete 3D Etching Profiles of Single Crystal Silicon, Proc. IEEE MEMS, Nagoya, 1997, pp. 412-417. MICROCAD, 3-D Etching Simulator, Fuji Research Institute Corp., URL http://www.fuji-ric.co.jp/crab/Google Scholar
  244. [244]
    SUPREM, Integrated Circuits Laboratory (ICL), Department of Electrical Engineering, Stanford University, CA, USA. http://www-tcad.stanford.edu/tcad/org.html.Google Scholar
  245. [245]
    SPICE, Industrial Liaison Program, Research Software Catalog, EECS Department, University of California, Berkeley, USA. http://hera.eecs.berkeley.edu/~software/.Google Scholar
  246. [246]
    Pham, H. H., Nathan, A., A New Approach for Rapid Evaluation of the Potential Field in Three Dimensions, Procedings of Royal Society London A, 455 (1999), 1–39.MathSciNetGoogle Scholar
  247. [247]
    Pham, H. H., Numerical Capacitance Extraction for Large Area Systems, Ph.D. Dissertation, University of Waterloo, Waterloo, Ontario NZL 3G1, Canada, 1998.Google Scholar
  248. [248]
    Pham, H. H., Nathan, A., WATCAP: A New Simulation Engine for Interconnect Capacitance Extraction, 1st Canadian Workshop on RF 1C Research and Development, Nov. 16, Ottawa, Canada, 1998.Google Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Arokia Nathan
    • 1
  • Henry Baltes
    • 2
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Physical Electronics LaboratoryETH HoenggerbergZürichSwitzerland

Personalised recommendations