Immune modulation by proteins secreted from cells infected by vaccinia virus

  • G. L. Smith
  • J. A. Symons
  • A. Alcamí
Part of the Archives of Virology. Supplementa book series (ARCHIVES SUPPL, volume 15)


Vaccinia virus comprises the live vaccine that was used for vaccination against smallpox. Following the eradication of smallpox, vaccinia virus was developed as an expression vector that is now used widely in biological research and vaccine development. In recent years vaccinia virus and other p oxviruses have been found to express a collection of proteins that block parts of the host response to infection. Some of these proteins are secreted from the infected cell where they bind and neutralise host cytokines, chemokines and interferons (IFN). In this paper three such proteins that bind interleukin (IL)-1β, type I IFNs and CC chemokines are described. The study of these immunomodulatory molecules is enhancing our understanding of virus pathogenesis, yielding fundamental information about the immune system, and providing new molecules that have potential application for the treatment of immunological disorders or infectious diseases.


Vaccinia Virus Recombinant Baculovirus Smallpox Vaccination Myxoma Virus Variola Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguado B, Seltnes IP, Smith GL (1992) Nucleotide sequence of 21.8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. J Gen Virol 73: 2 887–2 902CrossRefGoogle Scholar
  2. 2.
    Alcamí A, Smith GL (1992) A soluble receptor for interleukin-IL-lβ encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71: 153–167PubMedCrossRefGoogle Scholar
  3. 3.
    Alcamí A, Smith GL (1995) Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J Virol 69: 4 633–4 639Google Scholar
  4. 4.
    Alcamí A, Smith GL (1996) A mechanism for the inhibition of fever by a virus. Proc Natl Acad Sci USA 93: 11029–11034PubMedCrossRefGoogle Scholar
  5. 5.
    Alcamí A, Symons JA, Collins PD, Williams TJ, Smith GL (1998) Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J Immunol 160: 624–633PubMedGoogle Scholar
  6. 6.
    Amano H, Ueda Y, Tagaya I (1979) Orthopoxvirus strains defective in surface antigen induction. J Gen Virol 44: 265–269PubMedCrossRefGoogle Scholar
  7. 7.
    Antoine G, Scheiflinger F, Dorner F, Falkner FG (1998) The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244: 365–396PubMedCrossRefGoogle Scholar
  8. 8.
    Baggiolini M, Dewald B, Moser B (1997) Human chemokines: an update. Annu Rev Immunol 15: 675–705PubMedCrossRefGoogle Scholar
  9. 9.
    Baxby D (1981) Jenner’s smallpox vaccine. The riddle of the origin of vaccinia virus. Heinemann, LondonGoogle Scholar
  10. 10.
    Beattie E, Tartaglia J, Paoletti E (1991) Vaccinia-virus encoded eIF-2α homolog abrogates the antiviral effect of interferon. Virology 183: 419–422PubMedCrossRefGoogle Scholar
  11. 11.
    Berger EA (1997) HIV entry and tropism: the chemokine receptor connection. AIDS 11: S3–16PubMedGoogle Scholar
  12. 12.
    Blake NW, Kettle S, Law KM, Gould K, Bastin J, Townsend AR, Smith GL (1995) Vaccinia virus serpins B13R and B22R do not inhibit antigen presentation to class I-restricted cytotoxic T lymphocytes. J Gen Virol 76: 2 393–2 398CrossRefGoogle Scholar
  13. 13.
    Blanchard TJ, Alcamí A, Andrea P, Smith GL (1998) Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 79: 1 159–1 167Google Scholar
  14. 14.
    Bosworth N, Towers P (1989) Scintillation proximity assay. Nature 341: 167–168PubMedCrossRefGoogle Scholar
  15. 15.
    Chang H-W, Watson JC, Jacobs BL (1992) The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci USA 89: 4 825–4 829Google Scholar
  16. 16.
    Cochran MA, Puckett C, Moss B (1985) In vitro mutagenesis of the promoter region for a vaccinia virus gene: evidence for tandem early and late regulatory signals. J Virol 54: 30–37PubMedGoogle Scholar
  17. 17.
    Colamonici OR, Domanski P, Sweitzer SM, Larner A, Buller RML (1995) Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem 270: 15 974–15 978Google Scholar
  18. 18.
    Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ (1995) Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med 182: 1169–1174PubMedCrossRefGoogle Scholar
  19. 19.
    Dinarello CA (1996) Biological basis for interleukin-1 in disease. Blood 87: 2 095–2 147Google Scholar
  20. 20.
    Fenner F, Anderson DA, Arita I, Jezek Z, Ladnyi ID (1988) Smallpox and its eradication. World Health Organisation, GenevaGoogle Scholar
  21. 21.
    Goebel SJ, Johnson GP, Perkus ME, Davis SW, Winslow JP, Paoletti E (1990) The complete DNA sequence of vaccinia virus. Virology 179: 247–266PubMedCrossRefGoogle Scholar
  22. 22.
    Graham KA, Lalani AS, Macen JL, Ness TL, Barry M, Liu L, Lucas A, Clark-Lewis I, Moyer RW, McFadden G (1997) The Tl/35 kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology 229: 12–24PubMedCrossRefGoogle Scholar
  23. 23.
    Horuk R, Chitnis CE, Darbonne WC, Colby TJ, Rybicki A, Hadley TJ, Miller LH (1993) A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261: 1182–1184PubMedCrossRefGoogle Scholar
  24. 24.
    Howard ST, Chan YS, Smith GL (1991 ) Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumor necrosis factor receptor family. Virology 180: 633–647PubMedCrossRefGoogle Scholar
  25. 25.
    Jenner E (1798) An enquiry into the causes and effects of variolae vaccinae, a disease discovered in some western countries of England, particularly Gloucestershire, and known by the name of cow pox. Reprinted by Cassell, 1896, LondonGoogle Scholar
  26. 26.
    Kozak W, Zheng H, Conn CA, Soszynski D, vander Ploeg LH, Kluger MJ (1995) Thermal and behavioral effects of lipopolysaccharide and influenza in interleukin-1 beta-deficient mice. Am J Physiol 269: 969–977Google Scholar
  27. 27.
    Lane JM, Ruben FL, Neff JM, Millar JD (1969) Complications of smallpox vaccination, 1968. National surveillance in the United States. N Engl J Med 281: 1 201–1 208Google Scholar
  28. 28.
    Liptakova H, Kontsekova E, Alcamí A, Smith GL, Kontsek P (1997) Analysis of an interaction between the soluble vaccinia virus-coded type I interferon (IFN)-receptor and human IFN-alphal and IFN-alpha2. Virology 232: 86–90PubMedCrossRefGoogle Scholar
  29. 29.
    Mackett M, Smith GL, Moss B (1982) Vaccinia virus: a selectable eukaryotic cloninig and expression vector. Proc Natl Acad Sci USA 79: 7 415–7 419CrossRefGoogle Scholar
  30. 30.
    Mackett M, Smith GL, Moss B (1984) General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J Virol 49: 857–864PubMedGoogle Scholar
  31. 31.
    Massung RF, Liu LI, Qi J, Knight JC, Yuran TE, Kerlavage AR, Parsons JM, Venter JC, Esposito JJ (1994) Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201: 215–240PubMedCrossRefGoogle Scholar
  32. 32.
    McMahan CJ, Slack JL, Mosley B, Cosman D, Lupton SD, Brunton LL, Grubin CE, Wignall JM, Jenkins NA, Branan CI, Copeland NG, Huebner K, Croce CM, Cannizzarro LA, Benjamin D, Dower SK, Spriggs MK, Sims JE (1991) A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types. EMBO J 10: 2821–2 832PubMedGoogle Scholar
  33. 33.
    Morikawa S, Ueda Y (1993) Characterization of vaccinia surface antigen expressed by recombinant baculovirus. Virology 193: 753–761PubMedCrossRefGoogle Scholar
  34. 34.
    Moss B (1996) Poxviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields Virology. Lippincott-Raven Press, New York, vol 2, pp 2637–2671Google Scholar
  35. 35.
    Moss B, Winters E, Coopper JA (1981) Deletion of a 9,000-base-pair segment of the vaccinia virus genome that encodes nonessential polypeptides. J Virol 40: 387–395PubMedGoogle Scholar
  36. 36.
    Mossman K, Nation P, Macen J, Garbutt M, Lucas A, McFadden G (1996) Myxoma virus M-T7, a secreted homolog of the interferon-gamma receptor, is a critical virulence factor for the development of myxomatosis in European rabbits. Virology 215: 17–30PubMedCrossRefGoogle Scholar
  37. 37.
    Mossman K, Upton C, Buller RM, McFadden G (1995) Species specificity of ectromelia virus and vaccinia virus interferon-gamma binding proteins. Virology 208: 762–769PubMedCrossRefGoogle Scholar
  38. 38.
    Novick D, Cohen B, Rubinstein M (1994) The human interferon a/b receptor: characterization and molecular cloning. Cell 77: 391–400PubMedCrossRefGoogle Scholar
  39. 39.
    Panicali D, Paoletti E (1982) Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc Natl Acad Sci USA 79: 4 927–4 931CrossRefGoogle Scholar
  40. 40.
    Patel AH, Gaffney DF, Subak-Sharpe JH, Stow ND (1990) DNA sequence of the gene encoding a major secreted protein of vaccinia virus, strain Lister. J Gen Virol 71: 2013–2021PubMedCrossRefGoogle Scholar
  41. 41.
    Premack BA, Schall TJ (1996) Chemokine receptors: gateways to inflammation and infection. Nature Med 2: 1 174–1 178Google Scholar
  42. 42.
    Shchelkunov SN, Massung RF, Esposito JJ (1995) Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses. Virus Res 36: 107–118PubMedCrossRefGoogle Scholar
  43. 43.
    Smith CA, Smith TD, Smolak PJ, Friend D, Hagen H, Gernart M, Park L, Pickup DJ, Torrance D, Mohler K, Schooley K, Goodwin RG (1997) Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits β chemokine activity yet lacks sequence homology to known chemokine receptors. Virology 236: 316–327PubMedCrossRefGoogle Scholar
  44. 44.
    Smith GL, Chan YS (1991 ) Two vaccinia virus proteins structurally related to interleukin-1 receptor and the immunoglobulin superfamily. J Gen Virol 72: 511–518PubMedCrossRefGoogle Scholar
  45. 45.
    Smith GL, Mackett M, Moss B (1983) Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature 302: 490–495PubMedCrossRefGoogle Scholar
  46. 46.
    Smith GL, Symons JA, Alcamí A (1998) Poxviruses; interfering with interferon. Semin Virol 8: 409–418CrossRefGoogle Scholar
  47. 47.
    Smith GL, Symons JA, Khanna A, Vanderplasschen A, Alcamí A (1997) Vaccinia virus immune evasion. Immunol Rev 159: 137–154PubMedCrossRefGoogle Scholar
  48. 48.
    Spriggs M, Hruby DE, Maliszewski CR, Pickup DJ, Sims JE, Buller RML, Vanslyke J (1992) Vaccinia and cowpox viruses encode a novel secreted interleukin-1 binding protein. Cell 71: 145–152PubMedCrossRefGoogle Scholar
  49. 49.
    Symons JA, Alcamí A, Smith GL (1995) Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81: 551–560PubMedCrossRefGoogle Scholar
  50. 50.
    Ueda Y, Ito M, Tagaya I (1969) A specific surface antigen induced by poxvirus. Virology 38:180-182Google Scholar
  51. 51.
    Ueda Y, Morikawa S, Matsuura Y (1990) Identification and nucleotide sequence of the gene encoding a surface antigen induced by vaccinia virus. Virology 177: 588–594PubMedCrossRefGoogle Scholar
  52. 52.
    Ueda Y, Tagaya I (1973) Induction of skin resistance to vaccinia virus in rabbits by vaccinia-soluble early antigens. J Exp Med 138: 1 033–1 043CrossRefGoogle Scholar
  53. 53.
    Ueda Y, Tagaya I, Amano H, Ito M (1972) Studies on the early antigens induced by vaccinia virus. Virology 49: 794–800PubMedCrossRefGoogle Scholar
  54. 54.
    Upton C, Mossman K, McFadden G (1992) Encoding of a homolog of IFN-γreceptor by myxoma virus. Science 258: 1 369–1 372CrossRefGoogle Scholar
  55. 55.
    Uzé G, Lutfalla G, Gresser I (1990) Genetic transfer of α functional human interferon a receptor into mouse cells: cloning and expression of its cDNA. Cell 60: 225–234PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • G. L. Smith
    • 1
  • J. A. Symons
    • 1
  • A. Alcamí
    • 1
  1. 1.Sir William Dunn School of PathologyUniversity of OxfordOxfordUK

Personalised recommendations