The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis

  • H. Feldmann
  • V. E. Volchkov
  • V. A. Volchkova
  • H.-D. Klenk
Part of the Archives of Virology. Supplementa book series (ARCHIVES SUPPL, volume 15)


Filoviruses cause systemic infections that can lead to severe hemor- rhagic fever in human and non-human primates. The primary target of the virus appears to be the mononuclear phagocytic system. As the virus spreads through the organism, the spectrum of target cells increases to include endothelial cells, fibroblasts, hepatocytes, and many other cells. There is evidence that the filovirus glycoprotein plays an important role in cell tropism, spread of infection, and pathogenicity. Biosynthesis of the glycoprotein forming the spikes on the virion surface involves cleavage by the host cell protease furin into two disulfide linked subunits GP1 and GP2. GP1 is also shed in soluble form from infected cells. Different strains of Ebola virus show variations in the cleavability of the glycoprotein, that may account for differences in pathogenicity, as has been observed with influenza viruses and paramyxoviruses. Expression of the spike glycoprotein of Ebola virus, but not of Marburg virus, requires transcriptional editing. Unedited GP mRNA yields the nonstructural glycoprotein sGP, which is secreted extensively from infected cells. Whether the soluble glycoproteins GP1 and sGP interfere with the humoral immune response and other defense mechanisms remains to be determined.


Influenza Virus Disseminate Intravascular Coagulation Newcastle Disease Virus Hemorrhagic Fever Fusion Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson ED, Thomas L, Hayflick JS, Thomas G (1993) Inhibition of HIV-1 gp 160-dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant. J Biol Chem 268: 24 887–24891Google Scholar
  2. 2.
    Barr PJ (1991) Mammalian subtilisins: the long-sought dibasic processing endopro-teases. Cell 66: 1–3PubMedCrossRefGoogle Scholar
  3. 3.
    Becker S, Spiess M, Klenk H-D (1995) The asialoglycoprotein receptor is a potenital liver-specific receptor for Marburg virus. J Gen Virol 76: 393–399PubMedCrossRefGoogle Scholar
  4. 4.
    Becker S, Klenk H-D, Mühlberger E (1996) Intracellular transport and processing of the Marburg virus surface protein in vertebrate and insect cells. Virology 225: 145–155PubMedCrossRefGoogle Scholar
  5. 5.
    Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemag-glutinin at the pH of membrane fusion. Nature 371: 37–43PubMedCrossRefGoogle Scholar
  6. 6.
    Chambers P, Pringle CR, Easton AJ (1990) Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. Gen Virol 71: 3 075–3 080CrossRefGoogle Scholar
  7. 7.
    Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89: 263–273PubMedCrossRefGoogle Scholar
  8. 8.
    Carr CM, Kim PS (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 21: 823–832CrossRefGoogle Scholar
  9. 9.
    Ellis DS, Bowen ETW, Simpson DIH (1978) Ebola virus: a comparison, at ultrastructural level, of the behaviour of the Sudan and Zaire strains in monkeys. Br J Exp Pathol 59: 584–593PubMedGoogle Scholar
  10. 10.
    Feldmann H, Klenk H-D (1996) Marburg and Ebola viruses. Adv Virus Res 47: 1–52PubMedCrossRefGoogle Scholar
  11. 11.
    Feldmann H, Will C, Schikore M, Slenczka W, Klenk H-D (1991) Glycosylation and oligomerization of the spike protein of Marburg virus. Virology 182: 353–356PubMedCrossRefGoogle Scholar
  12. 12.
    Feldmann H, Bugany H, Mahner F, Klenk H-D, Drenckhahn D, Schnittler H-J (1996) Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. J Virol 70: 2208–2214PubMedGoogle Scholar
  13. 13.
    Feldmann H, Mühlberger E, Randolf A, Will C, Kiley MP, Sanchez A, Klenk H-D (1992) Marburg virus, a filovirus: messenger RNAs, gene order, and regulatory elements of the replication cycle. Virus Res 24: 1–19PubMedCrossRefGoogle Scholar
  14. 14.
    Feldmann H, Volchkov VE, Klenk H-D (1997) Filovirus Marburg et Ebola. Ann Inst Pasteur 8: 207–222Google Scholar
  15. 15.
    Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272: 872–877PubMedCrossRefGoogle Scholar
  16. 16.
    Fisher-Hoch SP, Brammer TL, Trappier SG, Hutwagner LC, Farrar BB, Ruo SL, Brown BG, Hermann LM, Perez-Oronoz GI, Goldsmith CS, Hanes MA, McCormick JB (1992) Pathogenic potential of Filoviruses: role of geographic origin of primate host and virus strain. J Infect Dis 166: 753–763PubMedCrossRefGoogle Scholar
  17. 17.
    Fisher-Hoch SP, Platt GS, Neild GH, Southee T, Baskerville A, Raymond RT, Lloyd G, Simpson DIH (1985) Pathophysiology of shock and hemorrhage in a fulminating viral infection (Ebola). J Infect Dis 152: 887–894PubMedCrossRefGoogle Scholar
  18. 18.
    Gallaher WR (1996) Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses. Cell 85: 477–478PubMedCrossRefGoogle Scholar
  19. 19.
    Geisbert TW, Jahrling PB, Hanes MA, Zack PM (1992) Association of Ebola-related Reston virus particles and antigen with tissue lesions of monkeys imported to the United States. J Comp Path 106: 137–152PubMedCrossRefGoogle Scholar
  20. 20.
    Geyer H, Will C, Feldmann H, Klenk H-D, Geyer R (1992) Carbohydrate structure of Marburg virus glycoprotein. Glycobiology 2: 299–312PubMedCrossRefGoogle Scholar
  21. 21.
    Hallenberger S, Moulard M, Sordel M, Klenk H-D, Garten W (1997) The role of eukary-otic subtilisin-like endoproteases for the activation of human immunodeficiency virus glycoproteins in natural host cells. J Virol 71: 1 036–1 045Google Scholar
  22. 22.
    Horimoto T, Nakayama K, Smeekens SP, Kawaoka Y (1994) Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol 68: 6 074–6 078Google Scholar
  23. 23.
    Klenk H-D, Garten W (1994a) Activation cleavage of viral spike proteins by host proteases. In: Wimmer E (ed) Cellular receptors for animal viruses, Cold Spring Harbor Laboratory Press, New York, pp 241–280Google Scholar
  24. 24.
    Klenk H-D, Garten W (1994b) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2: 39–43PubMedCrossRefGoogle Scholar
  25. 25.
    Klenk H-D, Rott R (1988) The molecular biology of influenza virus pathogenicity. Adv Virus Res 34: 247–281PubMedCrossRefGoogle Scholar
  26. 26.
    Klenk H-D, Volchkov VE, Feldmann H (1998) Two strings to the bow of Ebola virus. Nature Med 4: 388–389PubMedCrossRefGoogle Scholar
  27. 27.
    Molloy SS, Thomas L, van Slyke JK, Stenberg PE, Thomas G (1994) Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J 13: 18–33PubMedGoogle Scholar
  28. 28.
    Murphy FA, Simpson DIH, Whitfield SG, Zlotnik I, Carter GB (1971) Marburg virus infection in monkeys. Lab Invest 24: 279–291PubMedGoogle Scholar
  29. 29.
    Ryabchikova EI, Kolesnikova LV, Tkachev VK, Pereboeva LA, Baranova SG, Rassadkin JN (1994) Ebola infection in four monkey species. Ninth International Conference on negative strand RNA viruses, Estoril, Portugal, p 164Google Scholar
  30. 30.
    Sanchez A, Kiley MP (1987) Identification and analysis of Ebola virus messenger RNA. Virology 157: 414–420PubMedCrossRefGoogle Scholar
  31. 31.
    Sanchez A, Kiley MP, Holloway BP, Auperin DD (1993) Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res 29: 215–240PubMedCrossRefGoogle Scholar
  32. 32.
    Sanchez A, Yang ZY, Xu L, Nabel GJ, Crews T, Peters CJ (1998) Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol 72: 6 442–6 447Google Scholar
  33. 33.
    Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST (1996) The virion glyco-protein of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci USA 93: 3 602–3 607Google Scholar
  34. 34.
    Schäfer W, Stroh A, Berghöfer S, Seiler J, Vey M, Kruse ML, Kern HF, Klenk H-D, Garten W (1995) Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBOJ 14: 2424–2435Google Scholar
  35. 35.
    Schnittler HJ, Mahner F, Drenckhahn D, Klenk H-D, Feldmann H (1993) Replication of Marburg virus in human endothelial cells. A possible mechanism for the development of viral hemorrhagic disease. J Clin Invest 91: 1 301–1 309CrossRefGoogle Scholar
  36. 36.
    Schnittler H-J, Feldmann H (1999) Molecular pathogenesis of filovirus infections: role of macrophages and endothelial cells. Curr Topics Microbiol Immunol 235: 175–204CrossRefGoogle Scholar
  37. 37.
    Seidah NG, Hamelin J, Mamarbachi M, Dong W, Tadro H, Mbikay M, Chretien M, Day R (1996) cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proc Natl Acad Sci USA 93: 3 388–3 393CrossRefGoogle Scholar
  38. 38.
    Simpson DIH, Zlotnik I, Rutter DA (1968) Vervet monkey disease. Experimental infection of guinea pigs and monkeys with the causative agent. Br J Exp Pathol 49: 458–464PubMedGoogle Scholar
  39. 39.
    Skehel JJ, Bayley PM, Brown EB, Martin SR, Waterfield MD, White JM, Wilson IA, Wiley DC (1982) Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci USA 79: 968–972PubMedCrossRefGoogle Scholar
  40. 40.
    Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whittl MA, Kawaoka Y (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci USA 94: 14764–14769PubMedCrossRefGoogle Scholar
  41. 41.
    Vey M, Schäfer W, Reis B, Ohuchi R, Britt W, Garten W, Klenk H-D, Radsak K (1995) Proteolytic processing of human cytomegalovirus glycoprotein B (gp UL55) is mediated by the human endoprotease furin. Virology 206: 746–749PubMedCrossRefGoogle Scholar
  42. 42.
    Volchkov VE, Becker S, Volchkova VA, Ternovoj VA, Kotov AN, Netesov SV, Klenk H-D (1995) GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214: 421–430PubMedCrossRefGoogle Scholar
  43. 43.
    Volchkov VE, Blinov VM, Netesov SV (1992) The envelope glycoprotein of Ebola virus contains an immunosuppressive like domain similar to oncogenic retovirus. FEBS Lett 305: 181–184PubMedCrossRefGoogle Scholar
  44. 44.
    Volchkov VE, Blinov VM, Kotov AN, Chepurnov AA, Netesov SV (1993) The full-length nucleotide sequence of the Ebola virus. IXth International Congress of Virology, Glasgow, Scotland, P52–2Google Scholar
  45. 45.
    Volchkov VE, Feldmann H, Volchkova VA, Klenk H-D (1998a) Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci USA 95: 5 762–5 767CrossRefGoogle Scholar
  46. 46.
    Volchkov VE, Volchkova VA, Slenczka W, Klenk H-D, Feldmann H (1998b) Release of viral glycoproteins during Ebola virus infection. Virology 245: 110–119PubMedCrossRefGoogle Scholar
  47. 47.
    Weissenhorn W, Calder LJ, Wharton SA, Skehel JJ, Wiley D (1998) The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. Proc Natl Acad Sci USA 95: 6 032–6 036CrossRefGoogle Scholar
  48. 48.
    Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387: 426–430PubMedCrossRefGoogle Scholar
  49. 49.
    Will C, Mühlberger E, Under D, Slenczka W, Klenk H-D, Feldmann H (1993) Marburg virus gene four encodes the virion membrane protein, a type I transmembrane glycoprotein. J Virol 67: 1203–1210PubMedGoogle Scholar
  50. 50.
    Wise RJ, Barr PJ, Wong PA, Kiefer M, Brake AJ, Kaufman RJ (1990) Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc Natl Acad Sci USA 87: 9 378–9 382CrossRefGoogle Scholar
  51. 51.
    Wool-Lewis RJ, Bates P (1998) Characterization of Ebola virus entry by using pseudo-typed viruses: identification of receptor-deficient cell lines. J Virol 72: 3 155–3 160Google Scholar
  52. 52.
    Yang Z, Delgado R, Xu L, Todd RF, Nabel EG, Sanchez A, Nabel GJ (1998) Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 279: 1 034–1 036CrossRefGoogle Scholar
  53. 53.
    Zaki SR, Peters CJ (1997) Viral hemorrhagic fevers. In: Connor DH, Chandler FW, Schwartz DA, Manz HJ, Lack EE (eds) The pathology of infectious diseases. Appleton and Lange, Norwalk, pp 347–364Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • H. Feldmann
    • 1
  • V. E. Volchkov
    • 1
  • V. A. Volchkova
    • 1
  • H.-D. Klenk
    • 1
  1. 1.Institut für VirologiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations