A Physics Based Multi-Resolution Model for the Simulation of Turbulent Gases and Combustion

  • Daniel Barrero
  • Mathias Paulin
  • René Caubet
Conference paper
Part of the Eurographics book series (EUROGRAPH)


We present a technique for modeling the turbulent behavior of gaseous and combustion phenomena, based on the numerical approximation of the fluid’s equations by using a seamless combination of different methods: a volumetric finite differences multi-resolution method, a wavelet model, a hierarchical model of turbulence, and a simplified flamelet model for combustion phenomena.


Flame Front Turbulent Combustion Flame Surface Initial Boundary Condition Voxel Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abry P., “Ondelettes et Turbulences”, Colection Nouveaux Essais, Diderot Editeur, Arts & Sciences, Paris, France, 1997.Google Scholar
  2. 2.
    Barrero D., Hernández J.T., “Modelo para la Simulation de Fenomenos Turbulentos para Ambientes de Realidad Virtual”, CLEI 1996, Bogota, Colombia, 1996.Google Scholar
  3. 3.
    Barrero D., DaDalto L, Paulin M., Caubet R, “Modélisation des Phénomènes Turbulentes dans les Milieux Participantes”, VmeJournées AFIG, Rennes, France, December 1997.Google Scholar
  4. 4.
    Bray K.N.C, Libby P.A., “Topics in Applied Physics”, Vol 44, p.115, Springer-Verlag, 1980.Google Scholar
  5. 5.
    Brodlie K.W. et al., “Review of Visualization Systems”, Advisory Group on Computer Graphics Technical Report, Loughborough University of Technology:Loughborough, Leicestershire, 1995.Google Scholar
  6. 6.
    Cannone M, “Ondelettes, Paraproduits et Navier-Stokes”, Colection Nouveaux Essais, Diderot Editeur, Arts & Sciences, Paris, France, 1995.Google Scholar
  7. 7.
    Computed Fluid Dynamics Journal, IEEE Press, Jan. –Dec. 1994, Jan.–April. 1995.Google Scholar
  8. 8.
    Chen J.X. et al. “Real-Time Fluid Simulation in a Dynamic Virtual Environment”, IEEE Computer Graphics and Applications, pp. 52–61, May-June 1997.Google Scholar
  9. 9.
    Chiba N., Ohkawa S, Muraoka K, Miura M, “Two-dimensional Simulation of Flames, Smoke and the Spread of Fire”, J. of Vis. And Comp. Animation, 5,pp.37–54, 1994.CrossRefGoogle Scholar
  10. 10.
    Ebert D.S., Musgrave F.K., Peachey D., Perlin K., Worley S., “Texturing and Modeling a procedural approach”, Academic Press Inc., Cambridge MA, 1994.Google Scholar
  11. 11.
    Ebert D.S., Carlson W.E., Parent R.E., “Solid Spaces and Inverse Particle Systems for controlling the Animation of Gases and Fluids”, The Visual Comp., 10, 1994.Google Scholar
  12. 12.
    Foley J. et al. “Computer Graphics Principle and Practice”, USA, Addison Wesley, 1992.Google Scholar
  13. 13.
    Foster N., Metaxas D., “Modeling the Motion of a Hot, Turbulent Gas”, ACM Computer Graphics, SIGGRAPH 97, Addison Wesley, August 1997.Google Scholar
  14. 14.
    Foster N., Metaxas D., “Realistic Animation of Liquids”, Graphics Models and Image Proc., 58(5), pp 471–483, 1996.CrossRefGoogle Scholar
  15. 15.
    Foster N., Metaxas D., “Controlling Fluid Animation”, Proceedings of CGI’97, 1997.Google Scholar
  16. 16.
    Marble F.E, Broadwell J., “The coherent flame model for turbulent chemical reactions”, Project SQUID, Report TRW-9-PU, 1977.Google Scholar
  17. 17.
    Karamcheti K, “Principles of Ideal Fluid Aerodynamics”, 2nd edition, Kreiger, 1980Google Scholar
  18. 18.
    Kass M. , .Miller G., “Rapid, Stable Fluid Dynamics for Computer Graphics”, ACM Computer Graphics, SIGGRAPH 90, pp. 19–57, August 1990.Google Scholar
  19. 19.
    Kuo K.C., “Principles of Combustion”, John Wiley Intersci., 1986Google Scholar
  20. 20.
    Post F.H., van Walsum T., “Fluid Flow Visualization, in Focus on Scientific Visualization”, Springer-Verlag, 1993.Google Scholar
  21. 21.
    Pope S, Cheng W, “The stochastic flamelet model of turbulent prernixed combustion”, Twenty Second Symposium on Combustion, p. 781, The Combustion Institute, 1988.Google Scholar
  22. 22.
    Reeves, T et al. “Approximate and Probabilistic Algorithms for Shading and Rendering Particle Systems”, ACM Computer Graphics, SIGGRAPH 85, pp.313–322, July 1985.Google Scholar
  23. 23.
    Rogallo R.S., Moin P., “Numerical Simulation of Turbulent Flows”, Annual Review of Fluid Mechanics, pp. 99–137, 1984.Google Scholar
  24. 24.
    Stam J., Fiume E., “Turbulent Wind Fields for Gaseous Phenomena”, ACM Computer Graphics, SIGGRAPH 93, pp 369–373, Addison Wesley, August 1993.Google Scholar
  25. 25.
    Stam J., Fiume E., “Depicting Fire and Other Gaseous Phenomena Using Diffusion Processes”, ACM Computer Graphics, SIGGRAPH 95, pp. 129–136, Addison Wesley, August 1995.Google Scholar
  26. 26.
    Stam J., “Multi-Scale Stochastic Modeling of Complex Natural Phenomena”. Ph.D. Thesis, Dept. Of Computer Science, University of Toronto, 1995.Google Scholar
  27. 27.
    Streeter V.L., “Mecanica de los Fluidos”, Colombia, McGraw Hill, Octava Editión, 1995.Google Scholar
  28. 28.
    Williams FA., “Combustion Theory”, 2nd ed., Benjamin Cummings, Menlo Park, 1985.Google Scholar
  29. 29.
    Yaeger L et al. “Combining Physical and Visual Simulation — Creation of the Plane Jupiter for the film 2010”, ACM Computer Graphics, SIGGRAPH 86, pp.85–93, Addison Wesley, 1986.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Daniel Barrero
    • 1
  • Mathias Paulin
    • 1
  • René Caubet
    • 1
  1. 1.IRITToulouseFrance

Personalised recommendations