Skip to main content

Continuous Monitoring of Cerebrospinal Fluid Acid-Base Balance and Oxygen Metabolism in Patients with Severe Head Injury: Pathophysiology and Treatments for Cerebral Acidosis and Ischemia

  • Conference paper
Neuromonitoring in Brain Injury

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 75))

Summary

Introduction. Continuous monitoring of cerebral acid-base balance and oxygen metabolism has been introduced in neurointensive care settings. The hypothesis of this study utilizing multimodal neuromonitoring modalities is that hyperventilation and hypothermia improve cerebral acidosis through prevention of cerebral ischemia aggravation in patients with severe head injury.

Patients and Methods. Continuous monitoring of cerebrospinal fluid (CSF) pH, PC02, HC03-, base excess (BE), P02, S02, temperature, lactate and pyruvate (La and Py) measurements were conducted in 8 patients with severe head injury. Temperature-corrected CSF parameters were correlated with those in the jugUlar blood including oxygen saturation (Sj02), regional oxygen saturation (rS02), intracranial pressure (lCP) and cerebral perfusion pressure (CPP), jugular blood temperature (Tjb), and endtidal PC02 (PetC02).Therapeutic significance of hyperventilation and hypothermia was evaluated.

Results. I) CSF acidosis was observed in all cases (minimum pH 6.59-7.17) due to increased CSF PCO2 and/or decreased CSF HC03- and tended to associate with abnormal ICP and/or CPP or ischemic episodes indicated by CSF P02 and S02, rS02, and/or Sj02 during monitoring. 2) It was more obvious in CSF than in jugular blood that increased PCO2, La and Py, and/or decreased HC03- resulted in decreased BE and pH. 3) Decreased CSF P02 and S02 only correlated with severe CSF acidosis. 4) Hyperventilation: Decreased PetC02 did not always closely correlate with CSF PC02 decrease and CSFpH increase. 5) Hypothermia: There were negative correlations ofTjb with CSF pH and S02 in all cases. though correlationcoefficients were not always high.

Conclusions. CSF acidosis caused by increased CSF PC02. La and Py, and/or decreased HC03 - tended to associate with abnormal ICP and CPP, and desaturation indicated by CSF S02, rS02, and/or Sj02. Hypothermia rather than hyperventilation tends to improve cerebral acidosis and ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, RJ, Bringas JR, Alonzo G (1994) Cerebrospinal fluid pH and PCO2 rapidly follow arterial blood pH and PCO2 with changes in ventilation. Neurosurgery 34: 466–470

    Article  PubMed  CAS  Google Scholar 

  2. Bloor BM, Fricker J, Hellinger F, Nishioka H, McCutchen J (1961 ) A study of cerebrospinal fluid oxygentension: preliminary experimental and clinical observation. Arch Neurol 4: 37–46

    Article  CAS  Google Scholar 

  3. Charbel FT, Hoffman WE, Misra M, Hannigan K, Ausman JI (1997) Cerebral interstitial tissue oxygen tension, pH, HCO3, CO2. Surg Neurol 48: 414–417

    Article  PubMed  CAS  Google Scholar 

  4. Davson H, Welch K, Segal MB (1987) Acid-base characteristics of the CSF. Physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone Edinburgh, London, pp 453–484

    Google Scholar 

  5. DeSalles AAF, Kontos HA, Ward JD, Marmarou A, Becker DP (1987) Brain tissue pH in severely head-injured patients: a report of three cases. Neurosurgery 20: 297–301

    Article  PubMed  CAS  Google Scholar 

  6. Gulati SC. Sood SC, Bali IM, Kak VK (1980) Cerebral metabolism following brain injury: I. acid-base and PO2 changes. Acta Neurochir ( Wien) 53: 39–46

    Article  CAS  Google Scholar 

  7. Haraldseth O, Gronas T, Southon T, Thommessen L, Borchgrevink G, Jynge P, Gisvold SE, Unsgard G (1992) The effects of brain temperature on temporary global ischemia in rat brain: a 31-phosphorus NMR spectroscopy study. Acta Anaesthesiol Scand 36: 393–399

    Article  PubMed  CAS  Google Scholar 

  8. Hoffman WE, Charbel FT, Edelman G, Hannigan K, Ausman JI (1995) Brain tissue oxygen pressure, carbon dioxide pressure and pH during ischemia. Neurol Res 18: 54–56

    Google Scholar 

  9. Katsura K, Kristian T, Smith M-L, Siesjo BK (1994) Acidosis induced by hypercapnia exaggerates ischemic brain damage. J Cereb Blood Flow Metab 14: 243–250

    Article  PubMed  CAS  Google Scholar 

  10. Kiening KL, Unterberg AW, Bardt TF, Schneider G-H, Lanksch WR (1996) Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg 85: 751–757

    Article  PubMed  CAS  Google Scholar 

  11. King LR, McLaurin RL, Knowles HC Jr (1974) Acid-base balance and arterial and CSF lactate levels following human head injury. J Neurosurg 40: 617–625

    Article  PubMed  CAS  Google Scholar 

  12. Maas AIR, Fleckenstein W, de Jong DA, van Santbrink H (1993) Monitoring cerebral oxygenation: experimental studies and preliminary clinical results of continuous monitoring of cerebrospinal fluid and brain tissue oxygen tension. Acta Neurochir [Suppl] (Wien) 59: 50–57

    CAS  Google Scholar 

  13. Marion DW, Penrod LE, Kelsey SF, Obrist WD, Kochanek PM, Palmer AM, Wisniewski SR, DeKosky ST (1997) Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 336: 540–546

    Article  PubMed  CAS  Google Scholar 

  14. Marmarou A (1992) Intracellular acidosis in human and experimental brain injury. J Neurotrauma 9 [Suppl] 2: s551-s562

    Google Scholar 

  15. Meixensberger J, Dings J, Kuhnigk H, Roosen K (1993) Studies of tissue PO2 in normal and pathological human brain cortex. Acta Neurochir [Suppl] (Wien) 59: 59–63

    Google Scholar 

  16. Metz C, Holzschuh M, Bein T, Woertgen C, Frey A, Frey I, Taeger K, Brawanski A (1996) Moderate hypothermia in patients with severe head injury: cerebral and extracerebral effects. JNeurosurg 85: 533–541

    Article  CAS  Google Scholar 

  17. Muizelaar JP, van der Poel HG, Li Z, Kontos HA, Levasseur JE (1988) Pial arteriolar vessel diameter and CO2 reactivity during prolonged hyperventilation in the rabbit. J Neurosurg 69: 23–927

    Google Scholar 

  18. Nara I, Shiogai T, Tanaka N, Tokitsu M, Saito I (1995) Bilateral simultaneous monitoring of regional cerebrovascular oxygen saturation using near-infrared spectroscopy. In: Tsubokawa T, Marmarou A, Robertson C, Teasdale G (eds) Neurochemical monitoring in the intensive care unit. Springer, Berlin Heidelberg New York Tokyo, pp 218–225

    Chapter  Google Scholar 

  19. Posner JB, Swanson AG, Plum F (1965) Acid-base balance and cerebrospinal fluid. Arch Neurol 12: 479–496

    Article  PubMed  CAS  Google Scholar 

  20. Rossanda M, Gordon E (1970) The oxygen tension of cerebrospinal fluid in patients with brain lesion. Acta Anesthesiol Scand 14: 173–181

    Article  CAS  Google Scholar 

  21. Seitz HD, Ocker K (1977) The prognostic and therapeutic importance of changes in the CSF during the acute stage of brain injury. Acta Neurochir (Wien) 38: 211–231

    Article  CAS  Google Scholar 

  22. Shiozaki T, Sugimoto H, Taneda M, Yeshiva H, Iwai A, Yoshioka T, Sugimoto T (1993) Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg 79: 363–368

    Article  PubMed  CAS  Google Scholar 

  23. Siesjo BK (1972) The regulation of cerebrospinal fluid pH. Kidney Int 1: 360–374

    Article  PubMed  CAS  Google Scholar 

  24. Siesjo BK (1985) Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology. Progress in Brain Research. In: Kogure K, Hossmann K-A, Siesjo BK, Welsh FA (eds) Elsevier Science Publishers, pp 121–154

    Google Scholar 

  25. Siesjo BK, Katsura K. Mellergard P, Ekholm A, Lundgren J, Smith M-L (1993) Acidosis-related brain damage. In: Kogure K, Hossmann K-A, Siesjo BK, Welsh FA (eds). Prog Brain Res 96:23–48

    Google Scholar 

  26. Swain JA, McDonald TJ Jr, Balaban RS, Robbins RC (1991) Metabolism of the heart and brain during hypothermic cardiopulmonary bypass. Ann Thorac Surg 51: 105–109

    Article  PubMed  CAS  Google Scholar 

  27. Tombaugh GC, Sapolsky RM (1990) Mechanistic distinctions between excitotoxic and acidotic hippocampal damage in an in vitro model of ischemia. J Cereb Blood Flow Metab 10: 527–535

    Article  PubMed  CAS  Google Scholar 

  28. van Santbrink H, Maas AIR, Avezaat CJJ (1996) Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery 38: 21–31

    Article  PubMed  Google Scholar 

  29. Yoshida K, Marmarou A (1991) Effects of tromethamine and hyperventilation on brain injury in the cat. J Neurosurg 74: 87–96

    Article  PubMed  CAS  Google Scholar 

  30. Zauner A, Bullock R, Di X, Young HF (1995) Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain. Neurosurgery 37: 1160–1177

    Article  Google Scholar 

  31. Zauner A, Doppenberg EMR, Woodward JJ, Choi SC, Young HF, Bullock R (1997) Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery 41: 1082–1093

    Article  PubMed  CAS  Google Scholar 

  32. Zupping R (1970) Cerebral acid-base and gas metabolism in brain injury. J Neurosurg 33: 498–505

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Shiogai, T., Nara, I., Saruta, K., Hara, M., Saito, I. (1999). Continuous Monitoring of Cerebrospinal Fluid Acid-Base Balance and Oxygen Metabolism in Patients with Severe Head Injury: Pathophysiology and Treatments for Cerebral Acidosis and Ischemia. In: Bullock, R., Marmarou, A., Alessandri, B., Watson, J. (eds) Neuromonitoring in Brain Injury. Acta Neurochirurgica Supplements, vol 75. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6415-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6415-0_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7319-0

  • Online ISBN: 978-3-7091-6415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics