Treatment of Diseases of the Central Nervous System Using Encapsulated Cells

  • A. F. Hottinger
  • P. Aebischer
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 25)


The use of neuroactive substances as therapeutic agents represents a major focus of today’s neurobiology. The delivery of these substances to the CNS is however complicated by several factors including low oral and trans-dermal availability and short half-lives (Battler et al. 1993). The blood brain barrier (BBB) further prevents the passage of most molecules from the circulation to the brain tissue (Poduslo and Curran 1996). To reach the CNS, these molecules have therefore to be directly injected into the brain with an adequate delivery system, such as a pump. This method is however of limited use for long term applications due to the instability of the therapeutic molecules (Penn et al. 1997) and the risk of infection linked to the need for repeated refilling. Implantation of cells that have been genetically modified to release therapeutic molecules represents an alternative that can circumvent the above mentioned limitations. The cells can be implanted in specific targets allowing the localized continuous release of bioactive molecules. This approach has been used successfully in various models of neurodegenerative diseases. This technique is however limited by the immune rejection in case of non autologous sources and potential tumor formation with the use of cell lines (Jaeger 1985) preventing clinical applications. One solution to these problems is the technology of encapsulation. The transplanted cells are surrounded by a selectively permeable biocompatible membrane, preventing the dissemination of the cells as well as immune rejection.


Amyotrophic Lateral Sclerosis Neurotrophic Factor Chromaffin Cell Amyotrophic Lateral Sclerosis Patient Ciliary Neurotrophic Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aebischer P, Buchser E, Joseph JM, Favre J, de Tribolet N, Lysaght M, Rudnick S, Goddard M (1994) Transplantation in humans of encapsulated xenogeneic cells without immunosuppression. A preliminary report. Transplantation 58: 1275–1277PubMedCrossRefGoogle Scholar
  2. 2.
    Aebischer P, Goddard M, Tresco PA (1993) Cell encapsulation for the nervous system. In: Goosen MFA (ed) Fundamentals of animal cell encapsulation and immobilization. Boca Raton, Florida, pp 197–220Google Scholar
  3. 3.
    Aebischer P, Lysaght MJ (1995) Immunoisolation and cellular transplantation. Xeno 3: 43–48Google Scholar
  4. 4.
    Aebischer P, Pochon NA, Heyd B, Deglon N, Joseph JM, Zurn AD, Baetge EE, Hammang JP, Goddard M, Lysaght M, Kaplon F, Kajo AC, Schluepp M, Hirt L, Regli F, Porchet F, de Tribolet N (1996) Gene therapy for amyotrophic lateral sclerosis (ALS) using a polymer encapsulated xenogenic cell line engineered to secrete hCNTF. Hum Gene Ther 7: 851–860PubMedCrossRefGoogle Scholar
  5. 5.
    Aebischer P, Tresco PA, Winn SR, Greene LA, Jaeger CB (1991) Long-term cross-species brain transplantation of a polymer-encapsulated dopamine-secreting cell line. Exp Neurol 111: 269–275PubMedCrossRefGoogle Scholar
  6. 6.
    ALS CNTF treatment study (ACTS) Study group (1996) A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurology 46: 1244–1249CrossRefGoogle Scholar
  7. 7.
    Andres PL, Hedlund W, Finison L, Conlon T, Felmus M, Munsat TL (1986) Quantitative motor assessment in amyotrophic lateral sclerosis. Neurology 36: 937–941PubMedCrossRefGoogle Scholar
  8. 8.
    Battler A, Scheinowitz M, Bor A, Hasdai D, Vered Z, Di Segni E, Varda-Bloom N, Nass D, Engelberg S, Eldar M (1993) Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 22: 2001–2006PubMedCrossRefGoogle Scholar
  9. 9.
    Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33: 87–107PubMedCrossRefGoogle Scholar
  10. 10.
    Bjorklund A, Stenevi U, Dunnett SB, Gage FH (1982) Cross-species neural grafting in a rat model of Parkinson’s disease. Nature 298: 652–654PubMedCrossRefGoogle Scholar
  11. 11.
    Blomer U, Naldini L, Verma IM, Trono D, Gage FH (1996) Applications of gene therapy to the CNS. Hum Mol Genet 5: 1397–1404PubMedGoogle Scholar
  12. 12.
    Brundin P, Nilsson OG, Strecker RE, Lindvall O, Astedt B, Bjorklund A (1986) Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp Brain Res 65: 235–240PubMedCrossRefGoogle Scholar
  13. 13.
    Buchser E, Goddard M, Heyd B, Joseph JM, Favre J, de Tribolet N, Lysaght M, Aebischer P (1996) Immunoisolated xenogenic chromaffin cell therapy for chronic pain. Initial clinical experience. Anesthesiology 85: 1005–1012PubMedCrossRefGoogle Scholar
  14. 14.
    Curtis R, Adryan KM, Zhu Y, Harkness PJ, Lindsay RM, DiStefano PS (1993) Retrograde axonal transport of ciliary neurotrophic factor is increased by peripheral nerve injury. Nature 365: 253–255PubMedCrossRefGoogle Scholar
  15. 15.
    Curtis R, Scherer SS, Somogyi R, Adryan KM, Ip NY, Zhu Y, Lindsay RM, DiStefano PS (1994) Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve. Neuron 12: 191–204PubMedCrossRefGoogle Scholar
  16. 16.
    Décosterd I, Buchser E, Gilliard N, Saydoff J, Zum AD, Aebischer P (1998) Intrathecal implants of bovine chromaffin cells alleviate mechano-allodynia in a rat model of neuropathic pain. Pain (in press)Google Scholar
  17. 17.
    Emerich DF, Lindner MD, Winn SR, Chen EY, Frydel BR, Kordower JH (1996) Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington’s disease. Neuroscience 16: 5168–5181PubMedGoogle Scholar
  18. 18.
    Emerich DF, Winn SR, Hantraye PM, Peschanski M, Chen EY, Chu YP, McDermott P, Baetge EE, Kordower JH (1997) Protective effect of encapsulated cells producing neurotrophic factor Cntf in a monkey model of huntingtons disease. Nature 386: 395–399PubMedCrossRefGoogle Scholar
  19. 19.
    Fantuzzi G, Benigni F, Sironi M, Conni M, Carelli M, Cantoni L, Shapiro L, Dinarello CA, Sipe JD, Ghezzi P (1995) Ciliary neurotrophic factor (CNTF) induces serum amyloid A, hypoglycaemia and anorexia, and potentiates IL-1 induced corticosterone and IL-6 production in mice. Cytokine 7: 150–156PubMedCrossRefGoogle Scholar
  20. 20.
    Freed WJ, Poltorak M, Becker JB (1990) Intracerebral adrenal medulla grafts: a review. Exp Neurol 110: 139–166PubMedCrossRefGoogle Scholar
  21. 21.
    Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20: 269–287PubMedCrossRefGoogle Scholar
  22. 22.
    Ginzburg R, Seltzer Z (1990) Subarachnoid spinal cord transplantation of adrenal medulla suppresses chronic neuropathic pain behavior in rats. Brain Res 523: 147–150PubMedCrossRefGoogle Scholar
  23. 23.
    Gusella JF, MacDonald ME (1995) Huntington’s disease. Cell Biology 6:21–28Google Scholar
  24. 24.
    Hama AT, Pappas GD, Sagen J (1996) Adrenal medullary implants reduce transsynaptic degeneration in the spinal cord of rats following chronic constriction nerve injury. Exp Neurol 137: 81–93PubMedCrossRefGoogle Scholar
  25. 25.
    Hama AT, Sagen J (1993) Reduced pain-related behavior by adrenal medullary transplants in rats with experimental painful peripheral neuropathy. Pain 52: 223–231PubMedCrossRefGoogle Scholar
  26. 26.
    Hama AT, Sagen J (1994) Alleviation of neuropathic pain symptoms by xenogeneic chromaffin cell grafts in the spinal subarachnoid space. Brain Res 651: 183–193PubMedCrossRefGoogle Scholar
  27. 27.
    Hart DN, Fabre JW (1981) Demonstration and characterization of la-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J Exp Med 154: 347–361PubMedCrossRefGoogle Scholar
  28. 28.
    Horellou P, Lundberg C, Le Bourdelles B, Wictorin K, Brundin P, Kaien P, Bjorklund A, Mallet J (1991) Behavioural effects of genetically engineered cells releasing dopa and dopamine after intracerebral grafting in a rat model of Parkinson’s disease. J Physiol 85: 158–170Google Scholar
  29. 29.
    Horellou P, Mallet J (1997) Gene therapy for Parkinsons disease. Mol Neurobiol 15: 241–256PubMedCrossRefGoogle Scholar
  30. 30.
    Jaeger CB (1985) Immunocytochemical study of PC12 cells grafted to the brain of immature rats. Exp Brain Res 59: 615–624PubMedCrossRefGoogle Scholar
  31. 31.
    Joseph JM, Goddard MB, Mills J, Padrun V, Zurn A, Zielinski B, Favre J, Gardaz JP, Mosimann F, Sagen J, Christenson L, Aebischer P (1994) Transplantation of encapsulated bovine chromaffin cells in the sheep subarachnoid space: a preclinical study for the treatment of cancer pain. Cell Transplant 3: 355–364PubMedGoogle Scholar
  32. 32.
    Kordower JH, Fiandaca MS, Notter MF, Hansen JT, Gash DM (1990) NGF-like trophic support from peripheral nerve for grafted rhesus adrenal chromaffin cells. J Neurosurg 73: 418–428PubMedCrossRefGoogle Scholar
  33. 33.
    Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237: 1154–1162PubMedCrossRefGoogle Scholar
  34. 34.
    Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210: 908–910PubMedCrossRefGoogle Scholar
  35. 35.
    Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130–1132PubMedCrossRefGoogle Scholar
  36. 36.
    Livett BG, Dean DM, Whelan LG, Udenfriend S, Rossier J (1981) Co-release of enkephalin and catecholamines from cultured adrenal chromaffin cells. Nature 289: 317–319PubMedCrossRefGoogle Scholar
  37. 37.
    Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 119: 45–54PubMedCrossRefGoogle Scholar
  38. 38.
    Miller RG, Bryan WW, Dietz MA, Munsat TL, Petajan JH, Smith SA, Goodpasture JC (1996a) Toxicity and tolerability of recombinant human ciliary neurotrophic factor in patients with amyotrophic lateral sclerosis. Neurology 47: 1329–1331PubMedCrossRefGoogle Scholar
  39. 39.
    Miller RG, Petajan JH, Bryan WW, Armon C, Barohn RJ, Goodpasture JC, Hoagland RJ, Parry GJ, Ross MA, Stromatt SC (1996b) A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. rhCNTF ALS Study Group. Ann Neurol 39: 256–260PubMedCrossRefGoogle Scholar
  40. 40.
    Mitsumoto H, Ikeda K, Klinkosz B, Cedarbaum JM, Wong V, Lindsay RM (1994) Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265: 1107–1110PubMedCrossRefGoogle Scholar
  41. 41.
    Mittoux V, Joseph JM, Palfi S, Condé F, Zurn AD, Dautry C, Peschanski M, Aebischer P, Hantraye P (1998) Neuroprotective and behavioral effects of encapsulated CNTF-producing fibroblasts in a chronic primate model of Huntington’s disease. In: CNTF and associates: from gene to therapy. Paris, pp 52–54Google Scholar
  42. 42.
    Norris FH, Jr., Calanchini PR, Fallat RJ, Panchari S, Jewett B (1974) The administration of guanidine in amyotrophic lateral sclerosis. Neurology 24: 721–728PubMedCrossRefGoogle Scholar
  43. 43.
    Ortega JD, Sagen J, Pappas GD (1992) Short-term immunosuppression enhances long-term survival of bovine chromaffin cell xenografts in rat CNS. Cell Transplant 1: 33–41PubMedGoogle Scholar
  44. 44.
    Ossipov MH, Lopez Y, Bian D, Nichols ML, Porreca F (1997) Synergistic antinociceptive interactions of morphine and clonidine in rats with nerve-ligation injury. Anesthesiology 86: 196–204PubMedCrossRefGoogle Scholar
  45. 45.
    Palfi S, Joseph J-M, Condé F, Braguglia D, Mittoux V, Zurn AD, Riche D, Peschanski M, Aebischer P, Hantraye P (1998) Transplantation of polymer encapsulated GDNF-secreting xenogeneic cells leads to prolonged functional recovery in late stage parkinsonian baboons (submitted)Google Scholar
  46. 46.
    Penn RD, Kroin JS, York MM, Cedarbaum JM (1997) Intrathecal ciliary neurotrophic factor delivery for treatment of amyotrophic lateral sclerosis (phase I trial). Neurosurgery 40: 94–99PubMedGoogle Scholar
  47. 47.
    Poduslo JF, Curran GL (1996) Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain research. Mol Brain Res 36: 280–286PubMedCrossRefGoogle Scholar
  48. 48.
    Pollard HB, Pazoles CJ, Creutz CE, Scott JH, Zinder O, Hotchkiss A (1984) An osmotic mechanism for exocytosis from dissociated chromamn cells. J Biol Chem 259: 1114–1121PubMedGoogle Scholar
  49. 49.
    Portenoy RK (1993) Cancer pain management. Semin Oncol 20: 19–35PubMedGoogle Scholar
  50. 50.
    Puntillo K, Casella V, Reid M (1997) Opioid and benzodiazepine tolerance and dependence: application of theory to critical care practice. Heart Lung 26: 317–324PubMedCrossRefGoogle Scholar
  51. 51.
    Sagen J, Pappas GD, Perlow MJ (1986a) Adrenal medullary tissue transplants in the rat spinal cord reduce pain sensitivity. Brain Res 384: 189–194PubMedCrossRefGoogle Scholar
  52. 52.
    Sagen J, Pappas GD, Pollard HB (1986b) Analgesia induced by isolated bovine chromaffin cells implanted in rat spinal cord. Proc Natl Acad Sci USA 83: 7522–7526PubMedCrossRefGoogle Scholar
  53. 53.
    Sagen J, Wang H, Hama AT, Pappas GD (1995) Adrenal chromaffin cells: preparation and use in pain models. In: Ricordi C (ed) Austin, LandesGoogle Scholar
  54. 54.
    Sagen J, Wang H, Tresco PA, Aebischer P (1993) Transplants of immuno-logically isolated xenogeneic chromaffin cells provide a long-term source of pain-reducing neuroactive substances. J Neurosci 13: 2415–2423PubMedGoogle Scholar
  55. 55.
    Sagot Y, Tan SA, Baetge E, Schmalbruch H, Kato AC, Aebischer P (1995) Polymer encapsulated cell lines genetically engineered to release ciliary neuro-trophic factor can slow down progressive motor neuronopathy in the mouse. Eur J Neurosci 7: 1313–1322PubMedCrossRefGoogle Scholar
  56. 56.
    Sambrook T, Fritsch EF, Maniatis T (1989) Molecular cloning. In: Harbor CS (ed) A laboratory manual. New YorkGoogle Scholar
  57. 57.
    Schueler SB, Sagen J, Pappas GD, Kordower JH (1995) Long-term viability of isolated bovine adrenal medullary chromaffin cells following intrastriatal transplantation. Cell Transplant 4: 55–64PubMedCrossRefGoogle Scholar
  58. 58.
    Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde YA (1992a) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360: 757–759PubMedCrossRefGoogle Scholar
  59. 59.
    Sendtner M, Kreutzberg GW, Thoenen H (1990) Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 345:440–441PubMedCrossRefGoogle Scholar
  60. 60.
    Sendtner M, Schmalbruch H, Stockli KA, Carroll P, Kreutzberg GW, Thoenen H (1992b) Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature 358: 502–504PubMedCrossRefGoogle Scholar
  61. 61.
    Siuciak JA, Altar CA, Wiegand SJ, Lindsay RM (1994) Antinociceptive effect of brain-derived neurotrophic factor and neurotrophin-3. Brain Res 633: 326–330PubMedCrossRefGoogle Scholar
  62. 62.
    Sloan DJ, Wood MJ, Charlton HM (1991) The immune response to intra-cerebral neural grafts. Trends Neurosci 14: 341–346PubMedCrossRefGoogle Scholar
  63. 63.
    Snider WD, Johnson EM Jr (1989) Neurotrophic molecules. Ann Neurol 26: 489–506PubMedCrossRefGoogle Scholar
  64. 64.
    Tandan R, Bradley WG (1985a) Amyotrophic lateral sclerosis: part 1. Clinical features, pathology, and ethical issues in management. Ann Neurol 18: 271–280PubMedCrossRefGoogle Scholar
  65. 65.
    Tandan R, Bradley WG (1985b) Amyotrophic lateral sclerosis: part 2. Etiopathogenesis. Ann Neurol 18: 419–431PubMedCrossRefGoogle Scholar
  66. 66.
    The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971–983CrossRefGoogle Scholar
  67. 67.
    Tseng JL, Baetge EE, Zurn AD, Aebischer P (1997) Gdnf reduces drug-induced rotational behavior after medial forebrain bundle transection by a mechanism not involving striatal dopamine. J Neurosci 17: 325–333PubMedGoogle Scholar
  68. 68.
    Uchida K, Takamatsu K, Kaneda N, Toya S, Tsukada Y, Kurosawa Y, Fujita K, Nagatsu T, Kohsaka S (1989) Synthesis of L-3,4-dihydroxyphenylalanine by tyrosine hydroxylase cDNA-transfected C6 cells: application for intracerebral grafting. J Neurochem 53: 728–732PubMedCrossRefGoogle Scholar
  69. 69.
    Unsicker K (1993) The trophic cocktail made by adrenal chromaffin cells. Exp Neurol 123: 167–173PubMedCrossRefGoogle Scholar
  70. 70.
    Unsicker K, Krieglstein K (1996) Growth factors in chromaffin cells. Prog Neurobiol 48: 307–324PubMedCrossRefGoogle Scholar
  71. 71.
    Vaquero J, Arias A, Oya S, Zurita M (1991) Chromamn allografts into arachnoid of spinal cord reduce basal pain responses in rats. Neuroreport 2: 149–151PubMedCrossRefGoogle Scholar
  72. 72.
    Verhofstad AA, Coupland RE, Colenbrander B (1989) Immunohistochemical and biochemical analysis of the development of the noradrenaline-and adrenaline-storing cells in the adrenal medulla of the rat and pig. Arch Histol Cytol 52: 351–360PubMedCrossRefGoogle Scholar
  73. 73.
    Widner H, Brundin P (1988) Immunological aspects of grafting in the mammalian central nervous system. A review and speculative synthesis. Brain Res 472: 287–324PubMedGoogle Scholar
  74. 74.
    Winn SR, Tresco PA, Zielinski B, Greene LA, Jaeger CB, Aebischer P (1991) Behavioral recovery following intrastriatal implantation of microencapsulated PC 12 cells. Exp Neurol 113: 322–329PubMedCrossRefGoogle Scholar
  75. 75.
    Winnie AP, Pappas GD, Das Gupta TK, Wang H, Ortega JD, Sagen J (1993) Subarachnoid adrenal medullary transplants for terminal cancer pain. A report of preliminary studies. Anesthesiology 79: 644–653PubMedCrossRefGoogle Scholar
  76. 76.
    Yaksh TL, Reddy SV (1981) Studies in the primate on the analgetic effects associated with intrathecal actions of opiates, alpha-adrenergic agonists and baclofen. Anesthesiology 54: 451–467PubMedCrossRefGoogle Scholar
  77. 77.
    Yan Q, Elliott J, Snider WD (1992) Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 360: 753–755PubMedCrossRefGoogle Scholar
  78. 78.
    Yan Q, Matheson C, Lopez OT (1995) In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373: 341–344PubMedCrossRefGoogle Scholar
  79. 79.
    Yu W, Hao JX, Xu XJ, Saydoff J, Haegerstrand A, Hokfelt T, Wiesenfeldhallin Z (1998) Long-term alleviation of allodynia-like behaviors by intrathecal implantation of bovine chromamn cells in rats with spinal cord injury. Pain 74: 115–122PubMedCrossRefGoogle Scholar
  80. 80.
    Zielinski BA, Aebischer P (1994) Chitosan as a matrix for mammalian cell encapsulation. Biomaterials 15: 1049–1056PubMedCrossRefGoogle Scholar
  81. 81.
    Zurn AD, Baetge EE, Hammang JP, Tan SA, Aebischer P (1994) Glial cell line-derived neurotrophic factor (GDNF), a new neurotrophic factor for motoneurones. Neuroreport 6: 113–118PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • A. F. Hottinger
    • 1
  • P. Aebischer
    • 1
  1. 1.Gene Therapy Center and Surgical Research DivisionCentre Hospitalier Universitaire Vaudois, Lausanne University Medical SchoolLausanne-CHUVSwitzerland

Personalised recommendations