Advertisement

Genetic Biotechnologies and Cassava-Based Development

  • Ann Marie Thro
  • Martin Fregene
  • Nigel Taylor
  • Krit C. J. J. M. Raemakers
  • Johanna Puonti-Kaerlas
  • Christian Schöpke
  • Richard Visser
  • Ingo Potrykus
  • Claude Fauquet
  • William Roca
  • Clair Hershey
Part of the Plant Gene Research book series (GENE)

Abstract

Cassava (Manihot esculenta Crantz) possesses a number of characteristics which make it an irreplaceable food security for smallholder farmers in certain areas of the tropics, where climate, soils, or societal stresses create particularly difficult conditions. Yet because of other characteristics, and especially historical factors, cassava’s value for improving the quality of life of farm families who depend on it is far less than it could be. One resuit is that cassava remains relatively more important in poor, unfavored areas where there are few crop alternatives — areas where smallholder farmers predominate. Appropriate research and development (R&D) to improve cassava’s productivity and value therefore has unusual and direct linkages to global development objectives: food security, poverty alleviation, equity, and environmental protection.

Keywords

Somatic Embryo Somatic Embryogenesis Bacterial Blight Cassava Root Cassava Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allem AC (1987) Manihot esculenta is a native of the neotropics. FAO IBPGR Plant Genet Resources Newsl 71: 22–24Google Scholar
  2. Angel F, Arias D, Tohme J, Iglesias C, Roca W (1993) Towards the construction of a molecular map of cassava (Manihot esculenta Crantz): comparison of restriction enzymes and probe source in detecting RFLPs. J Biotechnol 31: 103–113Google Scholar
  3. Angel F, Barney VE, Tohme J, Roca WM (1996) Stability of cassava plants at the DNA level after retrieval from 10 years of in-vitro storage. Euphytica 90: 307–313Google Scholar
  4. Bai KV, Asiedu R, Dixon AGO (1993) Cytogenetics of Manihot species and interspecific hybrids. In: Roca WM, Thro AM (eds) Proceedings of the First Scientific Meeting of the Cassava Biotechnology Network, 25–28 August 1992, Cartagena, Colombia. Centro Internacional de Agricultura Tropical, Cali, pp 51–55 (Working Document no 123)Google Scholar
  5. Beeching JR, Marmey P, Gavalda MC, Noirot M, Haysom HR, Hughes MA, Charrier A (1993) An assessment of genetic diversity within a collection of cassava (Manihot esculenta Crantz) germplasm using molecular markers. Ann Bot 72: 515–520Google Scholar
  6. Beeching JR, Han Y, Gómez-Vásquez R, Day RC, Cooper RM (1997a) Wound and defense responses in cassava as related to post-harvest physiological deterioration. Recent Adv Phytochem 32: 231–248Google Scholar
  7. Beeching JR, Han Y, Cooper RM (1997b) Physiological deterioration: towards a molecular understanding. In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting, Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 99–105Google Scholar
  8. Bertram RB (1993) Application of molecular techniques resources of cassava (Manihot esculenta Crantz, Euphorbiacea): interspecific evolutionary relationships and intraspecific characterization. PhD dissertation, University of Maryland, College Park, MarylandGoogle Scholar
  9. Blanshard JM (1995) Cassava starch, structure, properties, and implications for contemporary processing. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 625–638 (Working Document no 150)Google Scholar
  10. Black CC, Sun JD, Byrd G, Brown H (1993) Photosynthetic carbon metabolism in cassava, a reputed C3/C4 crop species. In: Roca WM, Thro AM (eds) Proceedings of the First Scientific Meeting of the Cassava Biotechnology Network, 25–28 August 1992, Cartagena, Colombia. Centro Internacional de Agricultura Tropical, Cali, pp 325–330 (Working Document no 123)Google Scholar
  11. Bohl S, Potrykus I, Puonti-Kaerlas J (1997) Searching for root specific promoters in cassava. In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2 172–175Google Scholar
  12. Bonierbale MW, Maya MM, Claros JL, Iglesias C (1993a) Application of molecular markers to describing the genetic structure of cassava gene pools. In: Roca WM, Thro AM (eds) Proceedings of the First Scientific Meeting of the Cassava Biotechnology Network, 25–28 August 1992, Cartagena, Colombia. Centro Internacional de Agricultura Tropical, Cali, pp 106–122 (Working Document no 123)Google Scholar
  13. Bonierbale MW, Plaisted R, Tanksley SD (1993b) A test of the maximum heterozygosity hypothesis using molecular markers in tetraploid potatoes. Theor Appl Genet 86: 481–491Google Scholar
  14. Botstein D, White RL, Skolnick MH, Davis RW (1980) Construction of a genetic map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314–331Google Scholar
  15. Cereda M P (ed) (1994) Residuos da industralizacao de mandioca no Brazil. Editora Pauliceia, Sao PauloGoogle Scholar
  16. Chambers R, Ghildyal BP (1985) Agricultural research for resource-poor farmers: the farmer first and last model. Agric Admin 20: 1–30Google Scholar
  17. Chiwona-Karltun L, Ngoma J, Mahungu NM, Saka J, Tylleskar T, Rosling H (1997) Reasons for use of “bitter” and toxic cassava in Malawi (Abstract). In: Thro A, Akoroda M (eds) Procceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 95–96Google Scholar
  18. CIAT (1991) Annual Report, Cassava Program, 1987–1991. Centro Internacional de Agricultural Tropical, CaliGoogle Scholar
  19. CIAT (1996) Cassava, the latest facts about an ancient crop: a summary of information on 52 major cassava producing and consuming countries in Africa, Asia, Oceania, Latin America, and the Caribbean. Centro Internacional de Agricultural Tropical, CaliGoogle Scholar
  20. deVicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific cross of tomato. Genetics 134: 585–596Google Scholar
  21. Delgado GE, Rojas C (1993) Cassava “seed” production program by meristem culture in UNPRG, Lambayeque, Peru. In: Roca WM, Thro AM (eds) Proceedings of the First Scientific Meeting of the Cassava Biotechnology Network, 25–28 August 1992, Cartagena, Colombia. Centra Internacional de Agricultura Tropical, Cali, pp 146–148 (Working Document no 123)Google Scholar
  22. Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of the homeologous chromosomes of wheat, rye, and barley. Theor Appl Genet 85: 784–792Google Scholar
  23. Egbe TA, Brauman A, Griffon D, Treche S (1995) Transformation alimentaire du manioc. ORSTOM Editions, ParisGoogle Scholar
  24. Escobar RH, Mafia G, Roca WM (1995) Cryopreservation for long-term conservation of cassava genetic resources. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 190–193 (Working Document no 150)Google Scholar
  25. Escobar RH, Roca WM (1997) Conservation of cassava shoot tips through rapid freezing. In:. Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 214–215Google Scholar
  26. FAO/GIEWS (1995) Food supply situation and crop prospects in sub-Saharan Africa. Special Africa Report, April 1995, Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  27. Fauquet C, Schöpke C, Chavarriaga P, Sangare A, Beachy RN (1993) Genetic engineering technologies to control viruses and their applicatoin to cassava viruses. In: Roca WM, Thro AM (eds) Proceedings of the First Scientific Meeting of the Cassava Biotechnology Network, 25–28 August 1992, Cartagena, Colombia. Centro Internacional de Agricultura Tropical, Cali, pp 190–207 (Working Document no 123)Google Scholar
  28. Fregene MA, Vargas J, Ikea J, Angel F, Tohme J, Asiedu RA, Akorada MO, Roca WM (1994) Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives. Theor Appl Genet 89: 719–727Google Scholar
  29. Fregene MA, Angel F, Rodriguez F, Maya M, Bonierbale M, Tohme J, Iglesias C, Roca WM (1995) A linkage map of cassava (Manihot esculenta Crantz) based on RFLP and RAPD markers. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 49–57 (Working Document no 150)Google Scholar
  30. Fogene MA, Angel F, Gómez R, Rodríguez F, Roca WM, Tohme J, Bonierbale M (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Genet 95: 431–441Google Scholar
  31. Garcia GM, Vega VM, Rodriguez S (1993) Effect of meristem culture on vigor and yield of the cassava clone “Senorita”. In: Roca WM, Thro AM (eds) Proceedings of the First Scientific Meeting of the Cassava Biotechnology Network, 25–28 August 1992, Cartagena, Colombia. Centro Internacional de Agricultura Tropical Cali, 149–153 (Working Document no 123)Google Scholar
  32. Genschik P, Marbach J, Uze M, Feuerman M, Plesse B, Fleck J (1994) Structure and promoter activity of a stress and developmentally regulated polyubiquitin-encoding gene of Nicotiana tabacum. Gene 148: 192–202Google Scholar
  33. Gomez R, Angel F, Bonierbale MW, Rodriguez F, Tohme J, Roca WM (1995) Selecting heterozygous parents and single-dose markers for genetic mapping in cassava. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 113–119 (Working document no 150)Google Scholar
  34. Gomez R, Angel F, Bonierbale M, Rodríguez F, Tohme J, Roca WM (1996) Inheritance of random amplified polymorphic DNA markers in cassava (Manihot esculenta Crantz). Genome 39: 1039–1043Google Scholar
  35. González AE, Schöpke C, Padidam M, Beachy RN, Fauquet C (1997) Transformation of embryogenic suspension cultures of cassava (Manihot esculenta Crantz) with Agrobacterium turnefaciens. In: Abstracts of the 1997 Congress on In Vitro Biology, 14–18 June 1997, Washington DC, USA. In Vitro Cell Dev Biol Plant 33: 56AGoogle Scholar
  36. Graner EA (1942) Genetica de Manihot I: heriteriadade da forma folha e da coloracao da pelicula externa das raices en Manihot utilissima Pohl. Bragantia 2: 13–22Google Scholar
  37. Guo JY, Liu YQ (1995) Rapid propagation of cassava by tissue culture and its application in rural districts in China. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 183–189 (Working Document no 150)Google Scholar
  38. Haseloff J, Arnos B (1995) Green fluorescence progein in plants. Trends Genet 11: 328–329Google Scholar
  39. Haysom HR, McCartney H, Hughes MA, Hughes J, Beeching J (1993) Restriction fragment length polymorphism in cassava (Manihot esculenta Crantz). In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 90–95 (Working Document no 150)Google Scholar
  40. Hershey CH, Ocampo C (1989) New marker genes found in cassava. Cassava Newsl 13: 1–5Google Scholar
  41. Helentjaris T, Weber D, Wright S (1988) Identification of the genome locations of duplicate nucleotide sequences in maize by analysis of restriction fragments length polymorphisms. Genetics 118: 353–363Google Scholar
  42. Henry G, Iglesias C (1993) Problems and opportunity in cassava biotechnology. In: Roca WM, Thro AM (eds) Proceedings of the First Scientific Meeting of the Cassava Biotechnology Network, 25–28 August 1992, Cartagena, Colombia. Centro Internacional de Agricultura Tropical, Cali, pp 432–461 (Working Document no 123)Google Scholar
  43. Henry G, Howeler R (1995) Cassava in China in an era of change: a CBN case study in Southeastern China, August 1994. Centro Internacional de Agricultura Tropical, Cali (Working document no 155)Google Scholar
  44. Herren HR, Neuenschwander P (1991) Biological control of cassava pests in Africa. Annu Rev Entomol 36: 257–283Google Scholar
  45. Hong Y, Stanley J (1996) Virus resistance in Nicotiana benthomiana conferred by African cassava mosaic virus replication-associated protein (AC1) transgene. Mol Plant Microbe Interact 9: 219–225.Google Scholar
  46. Hughes J, Carvalho FJP de C, Hughes MA (1994) Purification, characterization, and cloning of alpha-hydroxynitrile lyase from cassava (Manihot esculenta Crantz). Arch Biochem Biophys 311: 496–520Google Scholar
  47. Hughes MA, Hughes J (1994) Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Sequence 5: 41–19Google Scholar
  48. Hughes MA, Brown K, Pancoro A, Murray BS, Oxtoby E, Hughes J (1992) A molecular and biochemical analysis of the structure of the cyanogenic beta-glucosidase (linamarase) from cassava (Manihot esculenta Crantz). Arch Biochem Biophys 295: 273–279Google Scholar
  49. Hughes MA, Hughes J, Brown R, Liddle S (1997) Recent advances in molecular and biochemical studies of cyanogenesis in cassava: complexity of the cassava genome. In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 77–81Google Scholar
  50. Hussain A, Bushuk W, Ramirez H, Roca WM (1987) Identification of cassava (Manihot esculenta, Crantz) cultivars by electrophoretic patterns of esterase isozyme. Seed Sci Tech 15: 19–22Google Scholar
  51. Iglesias C, Hernandez RLA (1997) Methodology development issues for participatory plant breeding of root and tuber crops. In: CGIAR Systemwide Program on Participatory Research and Gender Analysis for Technology Development and Institutional Innovation (eds) New frontiers in participatory research and gender analysis: proceedings of the International Seminar on Participatory Research and Gender Analysis for Technology Development, 9–14 September 1996, Cali, Colombia. Centro Internacional de Agricultura Tropical, Cali, pp 129–134 (CIAT Publication no 294)Google Scholar
  52. Iglesias C, Mayer J, Chavez, L, Calle F (1997) Genetic potential and stability of carotene content in cassava roots. Euphytica 94: 367–373Google Scholar
  53. IPGRI/CIAT (1994) Establishment and operation of a pilot in vitro active genebank: report of a CIAT-IBPGR Collaborative Project using cassava (Manihot esculenta Crantz) as a model. International Plant Genetic Resources Institute and Centro Internacional de Agricultura Tropical, Rome and CaliGoogle Scholar
  54. Jefferson RA, Kavanagh T, Bevan MW (1987) GUS fusion: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO 6: 3901–3907Google Scholar
  55. Jeffreys A, Wilson JV, Thein L (1985) Hyper variable “minisatellite” regions in human DNA. Nature 314: 67–73Google Scholar
  56. Jos JS, Hrishi (1976) Inheritance of leaf shape in cassava. J Root Crops 2: 10–12Google Scholar
  57. Lefevre F, Charrier A (1993a) Heredity of seventeen isozyme loci in cassava (Manihot esculenta Crantz). Euphytica 66: 171–178Google Scholar
  58. Lefevre F, Charrier A (1993b) Isozyme diversity within African Manihot germplasm. Euphytica 66: 73–80Google Scholar
  59. Li HQ, Huang YW, Liang CY, Guo JY (1995) Improvement of plant regeneration from secondary somatic embryos of cassava. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 289–302 (Working Document no 150)Google Scholar
  60. Li HQ, Sautter C, Potrykus I, Puonti-Kaerlas J (1996) Genetic transformation of cassava (Manihot esculenta Crantz). Nat Biotechnol 14: 736–740Google Scholar
  61. Li HQ, Huang YW, Liang CY, Guo JY, Liu HX, Potrykus I, Puonti-Kaerlas J (1997) Regeneration of cassava plants via shoot organogenesis. Plant Cell Rep 17: 410–414Google Scholar
  62. Liddle S, Hughes J, Hughes MA (1997) Analysis of a cassava root specific b-glucosidase promoter. In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 158–163Google Scholar
  63. Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44: 397–401Google Scholar
  64. Low FC, Atan S, Khoo SL, Jafar H, Tan H, Devos RM, Gale MD (1995) Applying DNA fingerprinting techniques in Hevea studies. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 71–79 (Working Document no 150)Google Scholar
  65. Lozano JC (1986) Cassava bacterial blight: a manageable disease. Plant Dis 70: 1089–1093Google Scholar
  66. Luehrsen KR, DeWet JR, Walbot V (1992) Transient expression analysis in plants using firefly luciferase reporter gene. Methods Enzymol 216: 397–414Google Scholar
  67. Mabanza J, Rodriguez-Andriyamasi AF, Mahouka J, Boumba B (1995) Evaluation of cleaned cassava varieties in Congo. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 194–201 (Working Document no 150)Google Scholar
  68. Magoon ML, Krishnan R, Bai KB (1969) Morphology of the pachytene chromosomes and meiosis in Manihot esculenta Crantz. Cytology 34: 612–626Google Scholar
  69. Marmey P, Beeching JR, Hamon S, Charrier A (1994) Evaluation of cassava (Manihot esculenta Crantz) germplasm collections using RAPD markers. Euphytica 74: 203–209Google Scholar
  70. Mathews H, Schöpke C, Carcamo R, Beachy RN, Fauquet C (1993) Improving the regeneration of plantlest from somatic embryos of cassava. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 315–323 (Working Document no 150)Google Scholar
  71. Melchinger AE, Lee M, Lamkey KR, Woodman WL (1990) Genetic diversity for restriction fragment length polymorphisms: relation to estimated genetic effects in maize inbreds. Crop Sci 30: 1033–1040Google Scholar
  72. Mignouna JH, Dixon A (1997) RAPD analysis of CMD resistance cassava germplasm In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 28–33Google Scholar
  73. Munyikwa TRI, Chipangura B, Salehuzzaman SNIM, Jacobsen E, Visser RFG (1995) Cloning and characterization of cassava genes involved in starch biosynthesis. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 639–645 (Working Document no 150)Google Scholar
  74. Munyikwa TRI, Langeveld S, Salehuzzaman SNIM, Jacobsen E, Visser RGF (1997a) Cassava starch biosynthesis: new avenues for modifying starch quantity and quality. Euphytica 96: 65–75Google Scholar
  75. Munyikwa TRI, Veermisch A, Jacobsen E, Visser RGF (1997b) Developmental regulation of cassava granule bound starch synthase. In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 116Google Scholar
  76. Ocampo C, Hershey C, Iglesias C, Iwanaga M (1993) Esterase isozyme fingerprinting of the cassava germplasm collection held at CIAT. In: Roca WM, Thro AM (eds) Proceedings of the First Scientific Meeting of the Cassava Biotechnology Network, 25–28 August 1992, Cartagena, Colombia. Centro Internacional de Agricultura Tropical, Cali, pp 81–89 (Working Document no 123)Google Scholar
  77. Ocampo C, Angel F, Jimenez A, Jaramillo G, Hershey C, Granados E, Iglesias C (1995) DNA fingerprinting to confirm possible genetic duplicates in cassava germplasm. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 145–147 (Working Document no 150)Google Scholar
  78. Otim Nape GW, Bua A, Baguma Y, Thresh JM (1997) Epidemic of severe cassava mosaic disease in Uganda and efforts to control it (Abstract). In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 42Google Scholar
  79. Palmer JD (1985) Chloroplast DNA variation and evolution in Pisum: patterns of change and phylogenetic analysis. Genetics 78: 1–10Google Scholar
  80. Perry BA (1943) Chromosome number and phylogenetic relationships in the Euphorbiaceae. Am J Bot 30: 527–543Google Scholar
  81. Persley GJ (1976) Distribution and importance of cassava bacterial blight in Africa. In: Persley G, Terry ER, Maclntyre R (eds) Cassava bacterial blight: report on an interdisciplinary workshop. International Society for Tropical Root Crops and International Institute of Tropical Agriculture, Ibadan, pp 9–14Google Scholar
  82. Pinniam N, Weber KE, Tomita K (1993) Reforestation through the establishment of smallscale rubber plantations in Northeast Thailand. Jpn J Trop Agric 37: 171–178Google Scholar
  83. Puonti-Kaerlas J (1997a) Cassava biotechnology. In: Tombs MP (ed) Biotechnology and genetic engineering reviews. Intercept Ltd, Andover, pp 329–364Google Scholar
  84. Puonti-Kaerlas J (1997b) Recent advances in cassava biotechnology. Agbiotech News Inf 9(11): 259N–266NGoogle Scholar
  85. Puonti-Kaerlas J, Li H-Q, Sautter C, Potrykus I (1997) Production of transgenic cassava (Manihot esculenta Crantz) via organogenesis and Agrobacterium-mediaied transformation. In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 181–187Google Scholar
  86. Ramirez H, Hussain A, Roca WM, Bushiuk W (1987) Isozyme electro-phenograms of sixteen enzymes in five tissues of cassava (Manihot esculenta Crantz) varieties. Euphytica 36: 39–48Google Scholar
  87. Raemakers CJJM (1993) Primary and cyclic somatic embryogenesis in cassava (Manhiot esculenta Crantz). PhD thesis, Agricultural University Wageningen, Wageningen, The NetherlandsGoogle Scholar
  88. Raemakers CJJM, Bessembinder JJE, Jacobsen E, Visser RGF (1993a) Induction, germination, and shoot development of primary somatic embryos in cassava. Plant Cell Tissue Organ Cult 33: 151–156Google Scholar
  89. Raemakers CJJM, Amati M, Staritsky G, Jacobsen E, Visser RGF (1993b) Cyclic somatic embryogenesis and plant regeneration in cassava. Ann Bot 71: 289–294Google Scholar
  90. Raemakers CJJM, Schavemakers CM, Jacobsen E, Visser RGF (1993c) Improvement of cyclic embryogenesis of cassava (Manihot esculenta Crantz). Plant Cell Rep 12: 226–229Google Scholar
  91. Raemakers CJJM, Sofiari E, Jacobsen E, Visser RGF (1995) Histology of somatic embryogenesis and evaluation of somaclonal variation. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 336–354 (Working Document no 150)Google Scholar
  92. Raemakers CJJM, Sofiari E, Taylor N, Henshaw G, Jacobsen E, Visser RGF (1996) Production of transgenic cassava (Manihot esculenta Crantz) plants by particle bombardment using luciferase activity as selection marker. Mol Breed 2: 339–349Google Scholar
  93. Raemakers CJJM, Jacobsen E, Visser RGF (1997a) Micropropagation of Manihot esculenta Crantz (cassava). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 39, high-tech and micropropagation. Springer Berlin Heidelberg New York Tokyo, pp 77–103Google Scholar
  94. Raemakers CJJM, Sofiari E, Jacobsen E, Visser RGF (1997b) Regeneration and transformation of cassava. Euphytica 96: 153–161Google Scholar
  95. Raemakers CJJM, Rozeboom MGM, Jacobsen E, Visser RGF (1997c) Regeneration of plants from somatic embryos and friable embryogenic callus of cassava. In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 238–243Google Scholar
  96. Raemakers CJJM, Sofiari E, Rozeboom MG, Jacobsen E, Visser RGF (1998) Genetic modification of cassava. Acta Bot Neerl 46: 425Google Scholar
  97. Raemakers CJJM, Jacobsen E, Visser RGF (1999) Direct, cyclic somatic embryogenesis in cassava for mass production purposes. In: Hall RD (ed) Methods in molecular biology: plant cell and tissue culture. Humana Press, Totowa, NJ, pp 61–71Google Scholar
  98. Reinisch AJ, Dong J, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton Gossypium hirsutum × Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138: 829–847Google Scholar
  99. Ritter E, Debener T, Barone A, Salamini F, Gebhardt C (1991) RFLP mapping on potato chromosomes of two genes Controlling extreme resistance to potato virus X (PVX). Mol Gen Genet 227: 81–85Google Scholar
  100. Roa AC, Maya MM, Duque M, Allem C, Tohme J, Bonierbale MW (1997) AFLP analysis of relationships among cassava and other Manihot species. Theor Appl Genet 95: 741–750Google Scholar
  101. Roca WM (1984) Cassava. In: Sharp WR, Evans DA, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture, vol 2, crop species. Macmillan, New York, pp 269–301Google Scholar
  102. Roca WM, Nolt B, Mafia G, Roa J, Reyes R (1991) Elimination de virus y propacación de clones en la yuca (Manihot esculenta Crantz). In: Roca WM, Mroginski LA (eds) Cultivo de tejidos en la agricultura: fundamentos y aplicaciones. Centro Internacional Agricultura Tropical, Cali, pp 403–420Google Scholar
  103. Roca WM, Henry G, Angel F, Sarria R (1992) Biotechnology research applied to cassava improvement at the International Center for Tropical Agriculture (CIAT). AgBiotech News Inf 4: 303N–308NGoogle Scholar
  104. Rogers DJ, Fleming HS (1973) A monograph of Manihot esculenta with an explanation of the taximetric methods used. Econ Bot 27: 1–113Google Scholar
  105. Rogstad SH, Patton JC, Schaal BA (1988) M13 repeat probe detects DNA minisatellite-like sequences in gymnosperms and angiosperms. Proc Natl Acad Sci USA 85: 9176–9178Google Scholar
  106. Ronald P (1997) The molecular basis of disease resistance in rice. Plant Mol Biol 35: 179–186Google Scholar
  107. Salehuzzaman SNIM, E Jacobsen, Visser RGF (1992) Cloning, partial sequencing, and expression of a cDNA coding for branching enzyme in cassava. Plant Mol Biol 20: 809–819Google Scholar
  108. Salehuzzaman SNIM, Jacobsen E, Visser RGF (1993) Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato. Plant Mol Biol 23: 947–962Google Scholar
  109. Salehuzzaman SNIM, Jacobsen E, Visser RGF (1994) Expression patterns of two starch biosynthetic genes in in-vitro cultured cassava plants and their induction by sugars. Plant Sci 98: 53–62Google Scholar
  110. Sarria R, Torres E, Balcazar N, Destefano-Beltran L, Roca WM (1995) Progress in Agmbacterium-mediated transformation of cassava (Manihot esculenta Crantz). In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 25–28 August 1994, Bogor, Indonesia. Centro International de Agricultura Tropical, Cali, pp 241–244 (Working Document no 150)Google Scholar
  111. Sax K (1923) The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8: 552–560Google Scholar
  112. Schaal B, Olsen P, Prinzie T, Carvalho LJCB, Tonukari NJ, Hayworth D (1995) Phylogenetic analysis of the genus Manihot based on molecular markers. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 62–70 (Working Document no 150)Google Scholar
  113. Schöpke C, Franche C, Bogusz D, Chavarriaga P, Fauquet C, Beachy RN (1993) Transformation in cassava (Manihot esculenta Crantz). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 23, plant protoplasts and genetic engineering. Springer, Berlin Heidelberg New York Tokyo, pp 273–298Google Scholar
  114. Schöpke C, Taylor N, Carcamo R, Beachy RN, Fauquet C (1995) Transformation of cassava embryoids by microbombardment of embryogenic suspensions. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 257–263 (Working Document no 150)Google Scholar
  115. Schöpke C, Taylor N, Cárcamo R, Konan NK, Marmey P, Henshaw GG, Beachy R, Fauquet C (1996) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nat Biotechnol 14: 731–735Google Scholar
  116. Schöpke C, Taylor NJ, Cárcamo R, Beachy RN, Fauquet C (1997a) Optimization of parameters for particle bombardment of embryogenic suspension cultures of cassava (Manihot esculenta Crantz) using computer image analysis. Plant Cell Rep 16: 526–530Google Scholar
  117. Schöpke C, Taylor N, Cárcamo R, González AE, Konan NK, Marmey P, Henshaw GG, Beachy RN, Fauquet CM (1997b) Stable transformation of cassava (Manihot esculenta Crantz) by particle bombardment and by Agrobacterium. In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 187–194Google Scholar
  118. Schöpke C, Taylor NJ, Cárcamo R, González AE, Masona MV, Fauquet CM (1999) Genetic transformation of cassava (Manihot esculenta Crantz). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 46, transgenic plants. Springer, Berlin Heidelberg New York Tokyo (in press)Google Scholar
  119. Second G (1997) AFLP analysis of genetic relationships between South American cassava varieties. In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 140–147Google Scholar
  120. Shields R (1993) Pastoral synteny. News Views Sci 365: 297–298Google Scholar
  121. Snepvangers SCHJ, Raemakers CJJM, Jacobsen E, Visser RGF (1997) Optimization of chemical selection of transgenic friable embryogenic callus of cassava using the luciferase reporter gene system. In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 196–200Google Scholar
  122. Sofiari E, Raemakers CJJM, Kanju E, Danso K, van Lammeren A, Jacobsen E, Visser RGF (1997a) Comparison of NAA and 2,4D induced somatic embryogenesis in cassava. Plant Cell Tissue Organ Cult 50: 45–56Google Scholar
  123. Sofiari E, Raemakers CJJM, Bergervoet JEM, Jacobsen E, Visser RGF (1997b) Plant regeneration from protoplasts isolated from friable embryogenic callus of cassava. Plant Cell Rep 18: 159–165Google Scholar
  124. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517Google Scholar
  125. Sriroth K (1995) Recent developments in cassava utilization in Thailand. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 648–650 (Working Document no 150)Google Scholar
  126. Stamp FA, Henshaw GG (1982) Somatic embryogenesis in cassava. Z Planzenphysiol 105: 183–187Google Scholar
  127. Stamp FA, Henshaw GG (1987) Somatic embryogenesis from clonal leaf tissue of cassava. Ann Bot 53: 445–450Google Scholar
  128. Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander E (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132: 823–839Google Scholar
  129. Szabados L, Hoyos R, Roca WM (1987) In vitro somatic embryogenesis and plant regeneration of cassava. Plant Cell Rep 6: 248–251Google Scholar
  130. Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7: 257–263Google Scholar
  131. Tautz D (1989) Hypervariability of simple sequences as a generai source for polymorphic DNA markers. Nucleic Acids Res 17: 6463–6471Google Scholar
  132. Taylor NJ, Edwards M, Henshaw GG (1995) Production of friable embryogenic calli and suspension culture Systems in two genotypes of cassava. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 229–240 (Working Document no 150)Google Scholar
  133. Taylor NJ, Edwards M, Kiernan R, Davey CDM, Blakesley D, Henshaw GG (1996) Development of friable embryogenic callus and embryogenic suspension culture Systems in cassava (Manihot esculenta Crantz). Nat Biotechnol 14: 126–730Google Scholar
  134. Taylor NJ, Kiernan RJ, Blakesley D, Henshaw GG (1997) Strategies for the production of friable embryogenic tissues across a range of cassava cultivars. In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 200–204Google Scholar
  135. Thoday JM (1961) Location of polygenes. Nature 191: 368–370Google Scholar
  136. Thresh JM, Otim-Nape GW, Fargette D (1977) African cassava mosaic disease: an overall perspective. In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 13–19Google Scholar
  137. Thro AM, Msabaha M, Kulembeka H, Shengero W, Kapande A, Mlingi N, Hemed L, Digges P, Cropley J (1994) Village perspectives on cassava production, processing, and use: a CBN case study in the Lake Zone of Northern Tanzania, October 1993. Centro International de Agricultura Tropical, Cali (Working Document no 154)Google Scholar
  138. Thro AM, Lynam JK, Msabaha M, Kulembeka H, Shengero W, Kapande A, Mlingi N, Hemed L, Digges P, Cropley J (1995) From village conserns to national biotechnology priopities: using the results of a case study with cassava farmers in the Tanzanian Lake Zone. In: Komen J, Cohen J, Ofir Z (eds) Turning priorities into feasible programs: Proceeding of the Intermediary Biotechnology Service Africa Policy Seminar, Bakubung, South Africa, 24–28 April, 1995. Intermediary Biotechnology Service, International Service for National Agricultural Research, and Foundation for Research Development, South Africa, The Hague and Pretoria, pp 114–123Google Scholar
  139. Thro AM, Herazo LE, Lenis JI (1997) Flor de Yuca — que florece un región: que puede hacer la biotecnología para ayudar el pequeño productor de yuca en la Costa Norte de Colombia? (What can biotechnology do to help the small farmer in the North Coast region of Colombia?). Centro Internacional de Agricultura Tropical, Cali (Working Document no 164)Google Scholar
  140. Tilquin JP (1979) Plant regeneration from stem callus of cassava. Can J Bot 57: 1761–1763Google Scholar
  141. Umanah EE, Hartman RW (1973) Chromosome numbers and karyotypes of some Manihot species. J Am Soc Hort Sci 98: 272–274Google Scholar
  142. Verdaguer B, de Kochko A, Beachy RN, Fauquet C (1996) Isolation and expression in transgenic tobacco and rice plants of the cassava vein mosaic virus promoter. Plant Mol Biol 31: 1129–1139Google Scholar
  143. Visser RGF, Jacobsen E (1993) Towards modifying plants for altered starch content and composition. Trends Biotechnol 11: 63–68Google Scholar
  144. Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Fritjers A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fmgerprinting. Nucleic Acid Res 23: 4407–4414Google Scholar
  145. Wanyera NMW, Hahn SK, Aken’Ova ME (1994) Introgression of ceara rubber (Manihot glaziovii Muell-Arg) into cassava (M. esculenta Crantz): a morphological and electrophoretic evidence In: Proceedings of the Fifth Triennial Symposium of the International Society for Tropical Root Crops — Africa Branch held at Kampala, Uganda, 22–28 November 1992, pp 125–130Google Scholar
  146. Weber J, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44: 388–396Google Scholar
  147. Westby A, Kleih U, Hall A, Bockett G, Crentsil D, Ndunguru G, Raffham A, Gogoe S, Hector D, Nahdy L, Gallat S (1997) Improving the impact of post-harvest research and development on root and tuber crops: the needs assessment approach. Oral presentation at the 10th Triannual Meeting of the International Society for Tropical Root Crops, 20–24 October 1997, TrinidadGoogle Scholar
  148. White WLB, Sayre RT (1997) Isolation of a cDNA clone of the hydroxynitrile lyase gene from cassava and its expression in different organs (Abstract). In: Thro A, Akoroda M (eds) Proceedings of the Third International Scientific Meeting of the Cassava Biotechnology Network, 26–30 August 1996, Kampala, Uganda. Afr J Root Tuber Crops 2: 95Google Scholar
  149. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531–6535Google Scholar
  150. Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83: 294–300Google Scholar
  151. Zakhia N, Chuzel G, Brabet C, Dufour D (1995a) Cassava fermentation: cassava sour starch in Latin America. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 651–671 (Working Document no 150)Google Scholar
  152. Zakhia N, Wheatley C, O’Brien G, Dufour D (1995b) Screening of CIAT cassava germplasm diversity: the relationship between cyanogenic potential and cassava starch functional properties. In: The Cassava Biotechnology Network: proceedings of the Second International Scientific Meeting, 22–26 August 1994, Bogor, Indonesia. Centro Internacional de Agricultura Tropical, Cali, pp 832–830 (Working Document no 150)Google Scholar
  153. Zok S (1993) Rapid seed stock multiplication of improved clones of cassava through shoot tip culture in Cameroon. In: Roca WM, Thro AM (eds) Proceedings of the First Scientific Meeting of the Cassava Biotechnology Network, 25–28 August 1992, Cartagena, Colombia. Centro Internacional de Agricultura Tropical, Cali, pp 96–104 (Working Document no 123)Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Ann Marie Thro
  • Martin Fregene
  • Nigel Taylor
  • Krit C. J. J. M. Raemakers
  • Johanna Puonti-Kaerlas
  • Christian Schöpke
  • Richard Visser
  • Ingo Potrykus
  • Claude Fauquet
  • William Roca
  • Clair Hershey

There are no affiliations available

Personalised recommendations