Advertisement

Neurochemie, Wirkmechanismus

  • Th. Müller
  • W. Kuhn
  • H. Przuntek

Zusammenfassung

Acetylcholin als zerebraler Neurotransmitter kommt vor allem im Nucleus caudatus, Putamen, Nucleus interpeduncularis, Tuber-culum olfactorium, Nucleus accumbens, Nucleus basalis Meynert, in der Amygdala und in den motorischen Hirnnervenkernen vor. Peripher erscheint Acetylcholin in der glatten Muskulatur im Bereich der motorischen Endplatte, in den Drüsen und hier insbesondere in der Speicheldrüse und im Bereich des Auges (Clarke 1995). Da es schwierig ist, Acetylcholin selbst nachzuweisen, wird meist die Aktivität der Acetylcholintransferase des Cholin acetylierenden Enzyms bestimmt. Die Aktivität der Acetylcholintransferase korreliert in der Regel mit dem Acetylcholingehalt der einzelnen Hirnabschnitte.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Andrews JS, Jansen JH, Linders S, Princen A (1994) Effects of disrupting the cholinergic system on short-term spatial memory in rats. Psycho-pharmacology (Berl) 115: 485–494CrossRefGoogle Scholar
  2. Avissar S, Schreiber G (1989) Muscarinic receptor subclassification and G-proteins; significance for lithium action in affective disorders and for the treatment of the extrapyramidal side effects of neuroleptics. Biol Psychiatry 26: 113–130PubMedCrossRefGoogle Scholar
  3. Billard W, Binch H, Crosby G, Mcquade RD (1995) Identification of the primary muscarinic autoreceptor subtype in rat striatum as m2 through a correlation of in vivo microdialysis and in vitro receptor binding data. J Pharmacol Exp Ther 273: 273–279PubMedGoogle Scholar
  4. Birdsall NJM, Hulme EC, Kromer W, Peck BS, Stockron JM, Zigmond MJ (1987) Two drug binding sites on muscarinic receptors. In: Bri-Ley M, Kato A, Weber M (eds) New concepts in Alzheimer’s disease. MacMillan, London New York, pp 103–121Google Scholar
  5. Brann MR, Buckley NJ, Bonner TI (1988) The striatum and cerebral cortex express different muscarine receptor mRNAs. FEBS Lett 230: 90–94PubMedCrossRefGoogle Scholar
  6. Burke RE, Fahn S (1982) Pharmacokinetics of trihexyphenidyl after acute and chronic administration. Ann Neurol 12: 94Google Scholar
  7. Clarke PB (1995) Nicotinic receptors and cholinergic neurotransmission in the central nervous system. Ann NY Acad Sci 757: 73–83PubMedCrossRefGoogle Scholar
  8. Dale HH (1914) The action of certain esters and ethers of choline and their relation to muscarine. J Pharmacol Exp Ther 6: 147–190Google Scholar
  9. Egler RM, Whithing RL (1986) Muscarine receptor subtypes: a critique of the current classification and a proposal for a working nomenclature. J Auton Pharmacol 5: 323–346Google Scholar
  10. Eltze M, Figala V (1988) Affinity and selectivity of biperiden enantiomers for muscarinic receptor subtypes. Eur J Pharmacol 158: 11–19PubMedCrossRefGoogle Scholar
  11. Emmerling MR, Gregor VE, Schwarz RD, Scholten JD, Callahan MJ, Lee C, Moore CJ, Raby C, Lipinski WJ, Davis RE (1994) PD 142676 (CI 1002), a novel anticholinesterase and muscarinic antagonist. Mol Neurobiol 9: 93–106PubMedCrossRefGoogle Scholar
  12. Everett GM, Blockus LE, Sheppard IM (1956) Tremor induced by tremonine and its antagonism by antiparkinsonian drugs. Science 124: 79PubMedCrossRefGoogle Scholar
  13. Fabing HD, Zeligs MA (1941) Treatment of the post encephalitic parkinsonism syndrome with dessicated white wine extract of U.S.P. belladonna root. JAMA 117: 332–334CrossRefGoogle Scholar
  14. Feldberg W (1945) Present views on the mode of action of acetylcholine in central nervous system. Physiol Rev 25: 596–642PubMedGoogle Scholar
  15. Findley LJ (1995) Tremor. In: Moore P (ed) Handbook of botulinum toxin treatment. Blackwell Science, Berlin, pp 248–263Google Scholar
  16. Freedman SB, Beer MS, Harley EA (1988) Muscarinic M1, M2 receptor binding. Relationship with functional efficacy. Eur J Pharmacol 155: 133–142CrossRefGoogle Scholar
  17. Grimaldi R, Perucca E, Ruberto G, Gelmi C, Tri-Marchi F, Mollmann M, Crema A (1986) Pharmacokinetic and pharmadynamic studies following the intravenous and oral administration of the antiparkinsonian drug biperiden to normal subjects. Eur J Clin Pharmacol 29: 735–737PubMedCrossRefGoogle Scholar
  18. Hollmann M, Müller-Peltzer H, Greger G, Brode E, Perucca E, Grimaldi R, Crema A (1987) Pharmacokinetic-dynamic study on different oral biperiden formulations in volunteers. Pharmacopsychiatry 20: 72–77PubMedCrossRefGoogle Scholar
  19. Jankovic J, Schwartz K (1991) Botulinum toxin treatment of tremors. Neurology 41:1185–1188PubMedCrossRefGoogle Scholar
  20. Kerlavage AR, Fraser CM, Venter JC (1987) Muscarine cholinergic receptor structure: molecular biological support for subtypes. Trends Pharmacol Sci 8: 426–431CrossRefGoogle Scholar
  21. Larson EW, Pfennig MA, Richelson E (1991) Selectivity of antimuscarinic compounds for muscarinic receptors of human brain and heart. Psychopharmacology 103: 162–165PubMedCrossRefGoogle Scholar
  22. Loewi O, Navratil E (1926) über hormorale übertragbarkeit der Herzenwirkung. über das Schicksal des Vagusstoffes. Pflügers Arch Ges Physiol 214: 678–688CrossRefGoogle Scholar
  23. Marsden CD (1976) Advances in the management of Parkinson’s disease. Scott Med J 21: 139–148PubMedGoogle Scholar
  24. Marshall J, Schneidin H (1966) Effects of adrenaline, noradrenaline, atropine and nicotine on some types of human tremor. J Neurol Neuro-surg Psychiatry 29: 214–218CrossRefGoogle Scholar
  25. Mori M, Tsushima H, Kamiya T, Matsuda T (1994) Effect of muscarinic receptor modulators in the hypothalamic supraoptic nucleus of the rat. Jpn J Pharmacol 66: 413–419PubMedCrossRefGoogle Scholar
  26. Moser U, Gubitz C, Galvan M, Immel Sehr A, Lam-Brecht G, Mutschler E (1995) Aliphatic and heterocyclic analogues of arecaidine propar-gyl ester. Structure-activity relationships of mono-and bivalent ligands at muscarinic Ml (M4), M2 and M3 receptor subtypes. Arzneimittelforschung 45: 449–455PubMedGoogle Scholar
  27. Nashold BS (1959) Cholinergic stimulation of globus pallidus in man. Proc Soc Esp Biol Med NY 101: 68–69Google Scholar
  28. Nathanson NM (1987) Molecular properties of the muscarinic acetylcholine receptor. Ann Rev Neurosci 10: 195–236PubMedCrossRefGoogle Scholar
  29. Nordberg A, Nyberg P, Windblad B (1985) Topographic distribution of choline acetyltrans-ferase activity and mucarinic and nicotinic receptors in Parkinson brains. Neurochem Pathol 3: 223–236PubMedGoogle Scholar
  30. Ordenstein L (1867) Sur la paralysie agitante et la sclérose en plaque generalisé. Martinet, ParisGoogle Scholar
  31. Pondal M, Del Ser T, Bermejo F (1996) Anticholinergic therapy and dementia in patients with Parkinson’s disease. J Neurol 243: 543–546PubMedCrossRefGoogle Scholar
  32. Price JC, Merritt HH (1941) The treatment of parkinsonism: results obtained with wine of Bulgarian belladonna and alkaloids of U.S.P. belladonna. JAMA 117: 335–337CrossRefGoogle Scholar
  33. Syvaelahti EK, Kunelius R, Lauren L (1988) Effects of antiparkinsonian drugs on muscarinic receptor binding in rat brain, heart and lung. Pharmacol Toxicol 62: 90–94CrossRefGoogle Scholar
  34. Whittaker VP (1988) The cholinergic synapse. Handbook Exp Pharmacol 86Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Th. Müller
  • W. Kuhn
  • H. Przuntek

There are no affiliations available

Personalised recommendations