Advertisement

Zusammenfassung

Galanthamin kann aus den Zwiebeln von Schneeglöckchen, aus Narzissen und verschiedenen anderen Spezies von Amaryllidaceae gewonnen werden (Moraes-Cerdeira et al. 1996). Die chemische Bezeichnung lautet: [aS-(4Aα,6β,8aR)]-4a,5,9,10,11,12-hexahydro-3-methoxy-11-methyl-6H-benzofuro-[3a,3,2,-ef][2]benzazepin-6-ol hydrobromid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Baraka A, Cozanitis D (1973) Galanthamine vs neostigmine for reversal of nondepolarizing neuromuscular block in man. Anesth Analg 52: 832–835PubMedGoogle Scholar
  2. Bickel U, Thomsen T, Weber W, Fischer J, Bachus R, Nitz M, Kewitz H (1991a) Pharmakokinetics of galanthamine in humane and corresponding Cholinesterase inhibition. Clin Pharmacol Ther 50: 420–428PubMedCrossRefGoogle Scholar
  3. Bickel U, Thomsen T, Fischer J, Weber W, Kewitz H (1991b) Galanthamine: pharmakokinetics, tissue distribution and Cholinesterase inhibition in brain of mice. Neuropharmacology 30: 447–454PubMedCrossRefGoogle Scholar
  4. Cozanitis D (1971) Experiences with galanthamine hydrobromide as curare antagonist. Anaesthesist 20: 226–229PubMedGoogle Scholar
  5. Cozanitis D (1974) Galanthamine hydrobromide vs neostigmine. A plasma Cortisol study in man. Anaesthesia 29: 163–168PubMedCrossRefGoogle Scholar
  6. Cozanitis D, Toivakka E (1971) A comparative study of galanthamine hydrobromide and atropine/neostigmine in conscious volunteers. Anaesthesist 20: 416–421PubMedGoogle Scholar
  7. Cozanitis D, Nuutila K, Karhunew P, Baraka A (1973) Changes in cardiac rhythm with galanthamine hydrobromide. Anaesthesist 21: 457–459Google Scholar
  8. Dal-Bianco P, Maly P, Wöber C, Lind C, Koch G, Hufgard J, Marschall I, Mraz M, Deecke L (1991) Galanthamine treatment in Alzheimer’s disease. J Neural Transm [Suppl] 33: 59–63Google Scholar
  9. Drabkina T, Kuleshov V, Matyushkin D, Sanotsky V, Sey T (1983) Presynaptic effects of armine and galanthamine on mammalian neuromuscular junction. Sechenov Physiol J USSR 69: 906–912Google Scholar
  10. Fishkin R, Ince E, Carlezon W, Dunn R (1993) D-cycloserine attenuates scopolamine-in-duced learning and memory deficits in rats. Behav Neural Biol 59: 150–157PubMedCrossRefGoogle Scholar
  11. Harvey A (1995) The pharmacology of galanthamine and ist analogues. Pharmacol Ther 68: 113–128PubMedCrossRefGoogle Scholar
  12. Harvey A, Rowan E (1988) Actions of THA,3,4-diaminopyridine, physostigmine and galanthamine on neurar K+ currents at a cholinergic nerve terminal. In: Giacobini E, Becker R (eds) Current research in Alzheimer therapy. Taylor and Francis, New YorkGoogle Scholar
  13. Holl G, Straschill M, Thomsen T, Fischer J, Kewitz H (1992) Effect of the Cholinesterase inhibiting substance galanthamine on human EEG and visual evoked potentials. Electroencephalogr Clin Neurophysiol 82: 445–452PubMedCrossRefGoogle Scholar
  14. Ireson J (1970) A comparison of the antinociceptive action of cholinomimetics and morphine-like drugs. Br J Pharmacol 40: 92–101PubMedCrossRefGoogle Scholar
  15. Kewitz H (1997) Pharmakokinetics and metabolism of galanthamine. Drugs of Today 33: 265–272CrossRefGoogle Scholar
  16. Koster A (1994) Hemmung der Cholinesterasen in verschiedenen Organen durch Eserin, Galanthamin und Tacrin: Konzentrations-Wirkungs-Beziehungen, Bedeutung für die therapeutische Anwendung. Dissertation, Humboldt Universität BerlinGoogle Scholar
  17. Maelicke A, Schreattenholz A, Storch A, Schroder B, Gutbrod O, Methfessel C, Weber K, Pereira E, Alkondon M, Albuquerque E (1995) Noncompetetive agonism at nicotinic acetylcholine receptors; functional significance for CNS signal transduction. J Recept Signal Transduct Res 15: 333–353PubMedCrossRefGoogle Scholar
  18. Mashkovskii M (1955) Effects of galanthamine on the acetylcholine sensitivity of skeletal musculature. Farmakol Toksikol 18: 21–27; Chem Abs (1956) 50: 962cPubMedGoogle Scholar
  19. Mayrhofer O (1967) Erfahrungen mit Galanthamin (Nivalin) als Antagonist der Relaxantien vom Curare Typ. Bull Schweiz Akad Wiss 23: 48–52Google Scholar
  20. Moraes-Cerdeira R, Bastos J, Burandt C, Dhammika Nanayakkara N, Mikell J, Mcchesney J (1996) Alkaloid content of different bulb parts of Narcissus cv. ice follies. Planta Med 63: 93–94Google Scholar
  21. Mucke H (1997) Preclinical studies with galanthamine. Drugs of Today 33: 259–264CrossRefGoogle Scholar
  22. Paskov D (1986) Galanthamine. In: Kharkevich D (ed) Handbook of experimental pharmakology, vol 79. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  23. Pereira E, Alkondon M, Reinhardt S, Maelicke A, Peng X, Lindstrom J, Whiting P, Albuquerque E (1994) Physostigmine and galanthamin. Probes for a novel binding site on the alpha 4 beta 2 subtype of neuronal nicotinic acetylcholine receptors stably expressed in fibroblast cells. J Pharmacol Exp Ther 270: 768–778PubMedGoogle Scholar
  24. Rainer M (1997a) Galanthamine in Alzheimer’s disease. CNS Drugs 7: 89–97CrossRefGoogle Scholar
  25. Rainer M (1997b) Clinical studies with galanthamine. Drugs of Today 33: 273–279CrossRefGoogle Scholar
  26. Rainer M, Mark T, Haushafer A (1989) Galanthamine hydrobromide in the treatment of senile dementia of Alzheimer’s type. In: Kewitz H, Bickel U (eds) Pharmacological interventions on central cholinergic mechanisms in senile dementia (Alzheimer’s disease). Zuckerschwerdt, München, pp 233–237Google Scholar
  27. Riemann D, Gann H, Dressing H, Müller W, Aldenhoff J (1994) Influence of the Cholinesterase inhibitor galanthamine hydrobromide on normal sleep. Psychiatry Res 51: 253–267PubMedCrossRefGoogle Scholar
  28. Snorrason E, Steffansson J (1991) Galanthamine hydrobromide in mania. Lancet 337: 557PubMedCrossRefGoogle Scholar
  29. Storch A, Schrattenholz A, Cooper J, Abdel Ghani E, Gutbrod O, Weber K, Reinhardt S, Lobron C, Hermsen B, Soskic V et al. (1995) Physostigmine, galanthamine and codein act as noncompetitive nicotinic receptor agonists on clonal rat pheochromocytoma cells. Eur J Pharmacol 290: 207–219PubMedCrossRefGoogle Scholar
  30. Sweeney J, Bachman E, Coyle J (1990) Effects of different doses of galanthamine, a long-acting acetylcholinesterase inhibitor, on memory in mice. Psychopharmacology (Berlin) 102:191–200CrossRefGoogle Scholar
  31. Thomsen T, Kewitz H (1990) Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci 46: 1553–1558PubMedCrossRefGoogle Scholar
  32. Thomsen T, Bickel U, Fischer J, Kewitz H (1990) Stereoselectivity of Cholinesterase inhibition by galanthamine and tolerance in humane. Eur J Clin Pharmacol 39: 603–605PubMedCrossRefGoogle Scholar
  33. Thomsen T, Kaden B, Fischer J, Bickel U, Barz H, Gusztony G, Cervos-Navarro J, Kewitz H (1991) Inhibition of acetylcholinesterase activity in human brain tissue and erythrozytes by galanthamine, physostigmine and tacrine. Eur J Clin Chem Biochem 29: 487–492Google Scholar
  34. Umarova S, Zakirov U, Kamilov I (1965) Comparative evaluation of pharmakological action of quaterny galanthamine derivatives. Farmakol Alkaloidov Akad USSR 2: 17–19Google Scholar
  35. Uzunov H, Georgiev I, Acev E (1961) Attivita biellectrica cerebrale nivalinoterapia. Cult Med 28: 413–414Google Scholar
  36. Vovin R, Fakturovich A, Golenkov A, Lukin V (1991) Correction of apathetic-abulic manifestations of schizophrenia with cholinotropic drugs. Zh Nevropatol Psikhiatr Im SS Korsakova 91: 11–115Google Scholar
  37. Westra P, Sia R, Houwertjes M, Wessling H (1982) Morphine reversal by naloxone, 4-aminopyridine, 3,4-diaminopyridine, physostigmine and galanthamine. Anaesthesia 37 [Suppl]: 297Google Scholar
  38. Wilcock G, Scott M, Pearsall T, Neubauer K, Boyle M, Razay G (1993) Galanthamine and the treatment of Alzheimer’s disease. Int J Geriatr Psychiatry 8: 781–782Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • M. Rösler

There are no affiliations available

Personalised recommendations