Advertisement

Meclofenoxat

Centrophenoxin
  • H. Herrschaft

Zusammenfassung

Wirksame Bestandteile: p-Chlorphenoxyessigsäure -ß-dimethylaminoethylester. 2-Di methylaminoethyl-(4-chlorphenoxy)-acetat (IUPAC)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ankerhold W (1975) Therapeutische Cerutil-Effekte bei intellektuell minderbefähigten, vorwiegend hirngeschädigten Kindern und bei Erwachsenen mit senilen Rückbildungsvorgängen und hirninvolutiven zerebralen Leistungsschwächen. Medicamentum (Berlin) 16: 136–137Google Scholar
  2. Bartus RT, Dean RL, Beer B (1983) An evaluation of drugs for improving memory in aged monkeys: implications for clinical trials in humans. Psychopharmacol Bull 19: 168–184PubMedGoogle Scholar
  3. Becker A, Grecksch G (1994) Nootropic dugs and their effect on amygdala-kindling related learning deficits in rats. Neuropsychopharmacology 10, 3 [Suppl Pt 2]: 183SGoogle Scholar
  4. Benuzzi P, Müller C (1967) Trois methodes de traitement du delirium tremens — etude comparative. Schweiz Med Wochenschr 97: 1283–1289PubMedGoogle Scholar
  5. Bertoni-Freddari C, Giuli C, Pieri C (1982) The effect of acute and chronic centrophenoxine treatment on the synaptic plasticity of old rats. Arch Gerontol Geriatr 1: 365–373PubMedCrossRefGoogle Scholar
  6. Bielenberg GW, Hayn C, Kriglstein J (1986) Effects of cerebro-protective agents on enzyme activities of rat primary glial cultures and rat cerebral cortex. Biochem Pharmacol 35: 2693–2702PubMedCrossRefGoogle Scholar
  7. Blaschke M, Fischer HD, Schmidt J (1988) Zur peroxidativen Schädigung der synaptosomalen hochaffinen Ca++-ATPase und ihrer pharmakologischen Beeinflußbarkeit. Biomed Biochim Acta 47: 887–893PubMedGoogle Scholar
  8. Bonnes B, Kuchenbuch S (1978) Untersuchungen mit Cerutil im Doppelblindversuch bei Patienten mit überforderungssyndrom und eventuellen leichten Involutionserscheinungen. Medicamentum (Berlin) 19: 262–264Google Scholar
  9. Bower HM, Mcdonald C (1966) Controlled trial of A.N.P.235 („Lucidril“) in senile dementia. Med J Austr 2: 270–273Google Scholar
  10. Brenner H (1962) über den Wert des Dimethylaminoäthanol parachlorphenoxyazetats (Lucidril) — bei der Behandlung von Verletzungen und Erkrankungen des Gehirns. Wien Med Wochenschr 112: 347–350PubMedGoogle Scholar
  11. Coirault R (1965) Traitment du delirium tremens. Vie Méd 46: 1749–1757Google Scholar
  12. Colpin F (1970) Results of treatment with centrophenoxine in a population of mentally maladjusted children (Frz.). Rev Neuropsychiatr Infant 18: 713–725PubMedGoogle Scholar
  13. Capoun V, Kafka J (1972) Centrophenoxine and chlomethiazol in the treatment of delirium tremens. Activ Nerv Sup (Praha) 14: 118–119Google Scholar
  14. Cooperation Study Group on Anti-Stroke Agents; Ohtomo E, Okada T, Kameyama M, Kutsuzawa H, Itoh E, Ichimaru S, Itoh H (1975) Clinical efficacy of so-called brain metabolism activating agents in treatment of cerebrovascular disorders — a double-blind controlled study on the clinical efficacy of meclofenoxate and pyrithioxine in cerebrovascular disorders. Clin Evaluation 3: 19–45Google Scholar
  15. Dechaume JP (1974) Intérêt de lucidril a doses élevées dans le traitement des comas post-traumatiques. Ann Anaesth Franc 15: 549–552Google Scholar
  16. Dereymaker A, Theeuwissen-Lesuisse F, Buu-Hio NP, Lapiere C (I962) L’anoxie cérébrale expérimentale; effet protecteur des dérivés de l’acide p-chlorophénoxyacétique. Medicina Experimentalis 7: 239–244Google Scholar
  17. Dowson JH (1989) Neuronal lipopigment: a marker for cognitive impairment and long-term effects of psychotropic drugs. Br J Psychiatry 155: 1–11PubMedCrossRefGoogle Scholar
  18. Fischer K, Albrecht F, Echterhoff M (1977) Behandlung bewußtseinsgestörter Patienten auf einer chirurgischen Wachstation. In: Kugler J (Hrsg) Hirnstoffwechsel und Hirndurchblutung. Schnetztor, KonstanzGoogle Scholar
  19. Fülöp T Jr, Worum I, Csongor J, Leövey A, Szabo T, Pek G, Zs-Nagy (1990) Effects of centrophenoxine on body composition and some biochemical parameters of demented elderly people as revealed in a double-blind clinical trial. Arch Gerontol Geriatr 10: 239–251PubMedCrossRefGoogle Scholar
  20. Gedye JL, Exton-Smith AN, Wedgwood J (1972) A method for measuring mental performance in the elderly and its use in a pilot clinical trial of meclofenoxate in organic dementia. Age Ageing 1: 74–80PubMedCrossRefGoogle Scholar
  21. Genkova-Papasova M, Lazarova-Bakurova M (1988) Influence of nootropic drugs on the memory-impairing effect of diethyldithiocar-bamate and Clonidine in „step down“ passive avoidance in albino rats. Acta Physiol Pharmacol Bulg 14: 36–41PubMedGoogle Scholar
  22. Gheorghita N (1977) Immediate effects of neurodynamic substances on verbal performance in the treatment of aphasia. Rev Roum Méd-Neurol Psychiatr (Bucur) 15: 95–101Google Scholar
  23. Glees P (1982) Electron microscopic studies on neural lipofuscin: accumulation and removal. The effects of centrophenoxine in the central nervous system ceroid-lipofuscinosis (Batten’s disease). In: Armstrong D, Koppang N, Rider JA (eds) Elsevier Biomedical Press, chapter 31, pp 385–398Google Scholar
  24. Grau M, Balasch J (1984) Protective effects of cerebroactive drugs in a model of acute hypoxia. Gen Pharmacol 16: 37–41Google Scholar
  25. Greindl MG, Preat S (1976) A new model of active avoidance conditioning adequat for pharmacological studies. Arch Int Pharmacol 223: 168–170Google Scholar
  26. Guensberger E, Schmidt P (1966) Bedingt-reflektorische Studie in der Untersuchung von Psychoenergizern. Wien Z Nervenheilk 24: 146–150PubMedGoogle Scholar
  27. Harris SJ, Dowson JH (1986) The effects of meclofenoxate on cognitive performance in elderly individuals with memory impairment: a placebo-controlled study. Int J Geriatr Psychiatry 1: 93–98CrossRefGoogle Scholar
  28. Herrmann H-D, Dittmann J (1971) Steigerung des Glukose-Stoffwechsels von Kaninchen-Hirnschnitten durch Centrophenoxin. Arzneimittelforschung /Drug Res 21: 984–985Google Scholar
  29. Herrschaft H, Gleim F, Duus P (1974) Die Wirkung von Centrophenoxin auf die regionale Gehirndurchblutung bei Patienten mit zerebrovaskulärer Insuffizienz. Dtsch Med Wochenschr 99: 1707–1714PubMedCrossRefGoogle Scholar
  30. Hoffmann W, Rostock A (1984) Der Einfluß von Nootropica auf das postkonvulsive Verhalten. Pharmazie 39: 579–580PubMedGoogle Scholar
  31. Hoyer S (1979) Effects of centrophenoxine on cerebral circulation in geriatric patients. In: Nandy K (ed) Geriatrie psychopharmacology. Elsevier North-Holland, pp 261–274Google Scholar
  32. Ichimaru S, Kudo Y, Itoh M, Vejima T et al. (1973) Double-blind controlled trial of meclofenoxate (lucidril tablet) on cerebral arteriosclerosis. Igaku no Ayumi 114: 456–464Google Scholar
  33. Itoh H, Kudo Y, Kabeshima Y, Nobushima S, Komine K, Sato Y (1986) Double-blind controlled trial of lucidril (meclofenoxate) in the posttraumatic syndrome, especially dizziness. Folia Psychiatr Neurol 22: 23–42Google Scholar
  34. Jähkel M, Oehler J, Schumacher H-E (1992) The influence of psychotropic drugs on activity of mice in the running-wheel and open-field. Pharmacopsychiatry 25: 106Google Scholar
  35. Jähkel M, Oehler J, Schumacher H-E (1994) Influence of nootropic and antidepressive drugs on open field and running wheel behavior in spontaneously high and low active mice. Pharmacol Biochem Behav 49: 263–269PubMedCrossRefGoogle Scholar
  36. Jakob I, Burdick B (1963) Etude clinique du comportement des enfants retardes au cours du traitement par ANP 235 (parachlorophénoxy-acétate de diméthylaminoéthyle). Annales Médico-Psychologiques 1: 193–204Google Scholar
  37. Jänicke B, Wrobel D (1984) Changes in motor activity with age and the effects of pharmacologic treatment. Exp Gerontol 19: 321–328PubMedCrossRefGoogle Scholar
  38. Kanig K, Tencheva ZS, Nitschki J, Dingler WD (1977) Der Einfluß von Centrophenoxin auf den 32P-Einbau in Nucleinsäuren und Adenosinphosphate des Rattengehirns. In: Kugler J (Hrsg) Hirnstoffwechsel und Hirndurchblutung. Schnetztor, Konstanz, S 108–112Google Scholar
  39. Kayaba M et al. (1975) Clinical effect of lucidril on sequela of cerebrovascular attack (Japanisch). J New Remedies Clin 24: 1407–1414Google Scholar
  40. Kinoshita T, Suitsu N, Yamamoto Y et al. (1985) Meclofenoxate as a nootropic agent. A quantitative pharmaco-EEG-study. Jpn J Neuropsychopharmacol 7: 741–748Google Scholar
  41. Kirsch U, Schmidt J (1983) Der Einfluß von Nootropika auf transkallosal ausgelöste Potentiale. Zbl Pharm Pharmakother Laboratoriumsdiagn 122: 192–195Google Scholar
  42. Koga T (1976) Increase of brain serotonin and its metabolite in rats caused by meclofenoxate. Folia Pharmacol Jpn 72: 392–402CrossRefGoogle Scholar
  43. Kohlmann T, Rett A (1963) über den Einfluß sogenannter Psychoenergizer auf die klinische und psychische Situation gehirngeschädigter Kinder. Wien Med Wochenschr 113: 356–362PubMedGoogle Scholar
  44. Koynov R, Markov G, Minchev D (1977) Centrophenoxine — clinical test on patients with apoplexy and cerebro-cranial injury. Med Biol Information 5: 7–10Google Scholar
  45. Krapivin SV (1987) Neurophysiological analysis of action of nootropic drugs. Neuroscience (Oxford) 22 [Suppl]: 822Google Scholar
  46. Laine J, Christiaens E (1974) Meclofenoxate et traumatismes craniens graves. Ann Anesth Franc 15: 132–136Google Scholar
  47. Lazarova MB, Petkov VD, Mosharrof A, Markovska VL, Petkov W (1987) Effects of nootropic drugs in the electroconvulsive shock-impaired retention in „step down“ passive avoidance. Neuroscience (Oxford) 22 [Suppl]: 519Google Scholar
  48. Ludwig-Festl M, Gräter B, Bayreuther K (1983) Erhöhung von Zellstoffwechselleistungen in normalen, diploiden, menschlichen Glia-Zel-len in stationären Zellkulturen induziert durch Meclofenoxat. Arzneimittelforschung / Drug Res 33: 495–501Google Scholar
  49. Marcer D, Hopkins SM (1977) The differential effects of meclofenoxate on memory loss in the elderly. Age Ageing 6: 123–131PubMedCrossRefGoogle Scholar
  50. Marc-Vergnes JP, Bes A, Celcis P, Charlet JP (1974) Action biologique et clinique du meclofenoxate a haute dose au cours des accidents vasculaires cérébraux avec troubles de la conscience (résultats préliminaires). Ann Anesth Franç 15(6)Google Scholar
  51. Matsunaga H, Matsuda H, Shibuya T (1986) The effects of cerebral metabolic activators on the spinal reflex and coordinated motor activities of the cerebrovascular disordered rats. Jpn J Pharmacol 40 [Suppl]: 217Google Scholar
  52. Mitta Y, Kishi M, Minaki Y (1967) Synthesis of 14C-labeled centrophenoxine and its distribution in the mouse. Radio Isotopes 16: 29–36Google Scholar
  53. Miyazaki H, Kagemoto A, Ishi M, Minaki Y, Nakamura K (1971) Uptake by brain and distribution of radioactivity after intravenous administration of 14C-labelled meclofenoxate in mice. Chem Pharm Bull 19: 1681–1690PubMedCrossRefGoogle Scholar
  54. Miyazaki H, Nambu K, Minaki Y, Hashimoto M, Nakamura K (1976) Comparative studies on the metabolism of ß-dimethylaminoethanol in the mouse brain and liver following administration of ß-dimethylaminoethanol and its p-chlorophenoxyacetate, meclofenoxate. Chem Pharm Bull 24: 763–769PubMedCrossRefGoogle Scholar
  55. Morton O, Goldberg A (1984) A multi-centre trial of meclofenoxate in the treatment of chronic brain syndrome. Publikationsmanuskript. Promonta GmbH, HamburgGoogle Scholar
  56. Naab M (I967) Klinische Beobachtungen bei Anwendung von Centrophenoxin (Helfergin) bei der Alkoholpsychose und ihren metalkoholischen Erkrankungen. Med Welt 18: 1280–1282Google Scholar
  57. Nagy K, Zzs-nagy vs-Nagy V, Bertoni-Freddari C, Zzs-nagy is-Nagy I (1983) Alterations of the synaptosomal membrane ‘microviscosity’ in the brain cortex of rats during aging and centrophenoxine treatment. Arch Gerontol Geriatr 12: 23–29CrossRefGoogle Scholar
  58. Nagy-Zs I, Floyd RA (1984) Electron spin resonance spectroscopic demonstration of the hydroxil free radical scavenger properties of dimenthylaminoethanol in spin trapping experiments conforming the molecular basis for the biological effects of centrophenoxine. Arch Gerontol Geriatr 3: 297–310CrossRefGoogle Scholar
  59. Nagy-Zs I, Semsei I (1984) Centrophenoxine increase the rates of total and mRNA synthesis in the brain cortex of old rats: an explantation of its action in terms of the membrane hypothesis of aging. Exp Gerontol 19: 171–178CrossRefGoogle Scholar
  60. Nakajima H, Thuillier J (1964) L’etude electroencephalograhique et elektrocardiographique chez le lapin éveille, de l’anoxie histotoxique provoquée par le cyanure de potassium. Effects thérapeutiques de la centrophenoxin. Soc Biol (Paris) 158: 501–504Google Scholar
  61. Nakamura N, Makino H, Hirai H (1979) Clinical efficacy of meclofenoxate hydrochloride injection on disturbance of consciousness in head injury patients. Promonta GmbH, Hamburg (unveröffentlichtes Manuskript)Google Scholar
  62. Nandy K (1979) Experimental studies on centrophenoxine in aging brain. Geriatr Psychopharmacol 8: 247–260Google Scholar
  63. Nandy K, Bourne GH (1966) Effect of centrophenoxine on the lipofuscin pigments in the neurones of senile guinea pigs. Nature 210: 313–314PubMedCrossRefGoogle Scholar
  64. Neumann H-J (1985) Einfluß von Meclofenoxat auf die Gewichtsentwicklung, Fertilität und Wurfgröße bei Wistar-Ratten. Biomed Bio-chem Acta 44: 289–300Google Scholar
  65. Neumann H-J, Hollnack W, Hollnack B, Froemmel H (1985) Zirkadianrhythmische Untersuchungen zur praenatal-toxischen Wirkung von Cyclophosphamid und Centrophenoxin bei Wistar-Ratten. Amt Anz 160: 345–352Google Scholar
  66. Nickel J, Breyer U, Claver B, Quadbeck G (1963) Zur Wirkung von Aminoethanol-Derivaten auf das Zentralnervensystem. Arzneimittelforschung /Drug Res 13: 881–883Google Scholar
  67. Oeriu S, Winter D, Dobre V, Bruhis S (1973) Le passage de glucose a travers la barriere hémato-encéphalique (B.H.E.) en rapport avec le vieillissement et sous l’incfluence du meclofenoxate. J Pharmacol (Paris) 4: 497–503Google Scholar
  68. Olivier JE, Restell M (1967) Serial testing in assessing the effect of meclophenoxate on patients with memory defects. Br J Psychiatry 113: 219–222CrossRefGoogle Scholar
  69. Olpe HR, Steinmann MW, Jones RSG (1985) Locus coeruleus as a target for psychogeriatric agents. Ann NY Acad Sci 444: 394–405PubMedCrossRefGoogle Scholar
  70. Ostrovskaya RU, Gudashcheva TA (1991) Rapid inhibition of exploratory movements as a test of nootropic activity. Biull Eksp Biol Med 111: 498–500CrossRefGoogle Scholar
  71. Patro IK, Sharma SP (1984) Cytochemical interaction of nucleolus and cytoplasm in the purkinje cells of senile white rats under the influence of centrophenoxine. Exp Gerontol 19: 241–251PubMedCrossRefGoogle Scholar
  72. Pék G, Fülöp T, Zzs-nagy is-Nagy I (1989) Gerontopsychological studies using NAI (Nürnberger-Alters-Inventar) on patients with organic psychosyndrome (DSM III, category 1) treated with centrophenoxine in a double blind, comparative randomized clinical trial. Arch Gerontol Geriatr 9: 17–30PubMedCrossRefGoogle Scholar
  73. Perret E, Wehrli A, Hafen G (1977) Centrophenoxin bei Kindern mit Legasthenie und Lernschwierigkeiten: Objektivierung der Wirkung von Centrophenoxin anhand einer neuropsy-chologischen Testbatterie (vorläufige Resultate). In: Kugler J (Hrsg) Hirnstoffwechsel und Hirndurchblutung. Schnetztor, KonstanzGoogle Scholar
  74. Petkov VD, Mosharrof AH (1989) Memory effects of the new derivative of the p-chlorphenoxyacetic acid adafenoxate compared to the effects of some cognition-enhancing drugs in rats. Arzneimittelforschung/Drug Res 39: 1133–1136Google Scholar
  75. Petkov V, Zafirov D, Panova Y, Yanev S, Stancheva S (1978) On the participation of the cyclic 3′, 5′-AMP system and the brain biogenic monoamines in the mechanism of the centrophenoxine action. In: Petkov V (ed) On the pharmacology of centrophenoxine. Publishing House of the Bulgarian Academy of Sciences, SofiaGoogle Scholar
  76. Petkov W, Grahovska T, Petkov VD, Konstantinova E (1985) Effects of meclofenoxate on the level and turnover of biogenic monoamines in the rat brain. Arzneimittelforschung/Drug Res 35: 1778–1781Google Scholar
  77. Petkov VD, Belcheva S, Stoyanova V, Petkov VV (1990) Effects of nootropic agents on the performing of active two-way avoidance tasks in young and old rats. Acta Physiol Pharmacol Bulg 16: 35–42PubMedGoogle Scholar
  78. Petkov VD, Konstantinova ER, Petkov W, Vaglenova JV (1991) Learning and memory in rats exposed pre-and postnatally to alcohol. An attempt at pharmacological control. Meth Find Exp Clin Pharmacol 13: 43–50Google Scholar
  79. Pieschl D, Angersbach P, Kolbe M, Toman M (1983) Doppelblinde Verbundstudie Centrophenoxin versus Plazebo bei Patienten mit neurasthenischen Syndromen. Nervenarzt 54: 48–53PubMedGoogle Scholar
  80. Rinckenbach R, Massari R (1961) Essai de traitement du delirium tremens par la centrophenoxine. L’Quest Medical 14: 1029–1031Google Scholar
  81. Rousseva S, Petkov VV, Petkov VD, Voronina TA, Nerobkova LN, Ivanova IA, Stoyanova V (1988) Memory effects of the combination of medazepam with nootropic agents. Acta Physiol Pharmacol Bulg 14: 27–34PubMedGoogle Scholar
  82. Roy DR, Singh R (1988) Age-related change in the multiple unit activity of the rat brain parietal cortex and the effect of centrophenoxine. Exp Gerontol 23: 161–174PubMedCrossRefGoogle Scholar
  83. Roy D, Pathak DN, Singh R (1983) Effect of centrophenoxine on the antioxidative enzymes in various regions of the aging rat brain. Exp Gerontol 18: 185–197PubMedCrossRefGoogle Scholar
  84. Schilter R (1974) Zur Wirkung von Cerutil (Centrophenoxin) bei zerebralsklerotischen Patienten. Z Altersforsch 28: 231–238Google Scholar
  85. Schmidt J (1984) Nootropic drugs reduce immobility in behavioural despair test in mice. Biomed Biochem Acta 43: 1295–1299Google Scholar
  86. Schmitz KW, Kühnl S (1978) Erfahrungen mit Cerutil bei organisch hirngeschädigten Kindern und Jugendlichen. Dtsch Gesundheitswesen 33: 1507–1509Google Scholar
  87. Sharma D, Singh R (1995) Centrophenoxine activates acetylcholinesterase activity in hippocampus of aged rats. Ind J Exp Biol 33: 365–368Google Scholar
  88. Sinclair KGA, Mann DMA (1980) The effects of meclophenoxate on young healthy volunteers. J Clin Exp Gerontol 2: 173–184Google Scholar
  89. Sliwa L, Plonka I, Dubis K, Kowalsczyk K, Srebro Z (1983) Effect of centrophenoxin on spermatogenesis in mice. Folia Biol (Krakow) 31: 101–106Google Scholar
  90. Stancheva SL, Alova LG (1994) Biogenic monoamine uptake by rat brain synaptosomes during aging. Effects of nootropic drugs. Gen Pharmacol 25: 981–987PubMedCrossRefGoogle Scholar
  91. Stancheva S, Papazova M, Alova L, Lazarova-Bakarova M (1993) Impairment of learning and memory in shuttle box-trained rats neonatally injected with 6-hydroxydopamine. Effects of nootropic drugs. Acta Physiol Pharmacol Bulg 19: 77–82PubMedGoogle Scholar
  92. Teichmann H, Schwebke R (1973) Die Leistungen hirnorganisch leistungsgeminderter normalintelligenter Kinder unter Cerutil im Arbeitsversuch. Psychiat Neurol Med Psychol (Leipzig) 25: 168–177Google Scholar
  93. Tikal K, Benesova O (1975) Active avoidance and discrimination learning in rats with protein or calorie deficit and centrophenoxine or palmitoyl ethanolamide treatment in early postnatal life. Activ Nerv Sup (Praha) 16: 159–160Google Scholar
  94. Vehreschild T, Beier R, Friemert K (1975) Langzeitbehandlung der Hirnleistungsschwäche in der Involution mit Cerutil — ein Doppel-blindversuch. Dtsch Gesundheitswesen 30: 280–282Google Scholar
  95. Vial H, Guillemin G, Pacheco H (1976) Effets de dérivés de 1 amphétamine et de produits psychotropes sur les taux de tryptophane, serotonine et d’acide hydroxy-5-indolyl-3-acétique dans le cerveau du rat. J Pharmacol (Paris) 7: 177–190Google Scholar
  96. Viticchi C, Gentile S, Piantanelli L (1984) Centro-phenoxine-induced increase of beta-adrenoceptor density in brain cortex of old mice. Arch Gerontol Geriatr 3: 77–82PubMedCrossRefGoogle Scholar
  97. Voronina TA, Garibova TL, Trofimov SS, Sopyev ZHA, Petkov VD, Lazarova MB (1991) Comparative studies on the influence of ONK (N(5-hydroxynicotinoil) glutamic acid), piracetam and meclofenoxate on the learning-and memory-impairing effect of scopolamine, clonidine, and methergoline. Acta Physiol Pharmacol Bulg 17: 8–15PubMedGoogle Scholar
  98. Wenzel E (1963) Vorläufige Ergebnisse der Behandlung von chronischen Hirntraumatikern mit Helfergin. Med Klin 58: 1271–1275PubMedGoogle Scholar
  99. Wenzel J, Pögelt B (1983) Zur Wirkung ausgewählter Nootropika auf die EEG-Grundaktivität. Zbl Pharm Pharmakother Laboratoriumsdiagn 122: 188Google Scholar
  100. Wetzel W (1990) Effect of repeated application of nootropic drugs on sleep in rats. Biomed Biochim Acta 49: 405–411PubMedGoogle Scholar
  101. Wetzel W, Wagner T, Matthies H (1991) Effects of nootropics and other psychotropic drugs on sleep parameters in rats. Arch Pharmacol 343[Suppl R111]Google Scholar
  102. Wood WG, Gorka C, Armbrecht HJ, Williamson LS, Strong R (1986) Fluidizing effects of centrophenoxine in vitro on brain and liver membranes from different age groups of mice. Life Sci 39: 2089–2095PubMedCrossRefGoogle Scholar
  103. Wüthrich A, Hafen G, Vetsch M, Wehrli A, Perret E (1984) Psychologische Testleistung von Kindern mit Schulschwierigkeiten vor und nach der Behandlung mit Meclofenoxat. Med Welt 35: 558–560Google Scholar
  104. Yoshioka S, Aso Y, Uchiyama M (1987) Kinetics of hydrolysis of meclofenoxate hydrochloride in human plasma. J Pharm Pharmacol 39: 215–218PubMedCrossRefGoogle Scholar
  105. Zdichynec B (1975) Klinische Erfahrungen bei der peroralen Therapie von manifesten Formen zerebraler Atherosklerose. Ars Medici 65: 475–478Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • H. Herrschaft

There are no affiliations available

Personalised recommendations