Advertisement

Pharmakologische Modelle

  • S. Hoyer
  • L. Frölich

Zusammenfassung

Zur überprüfung der Wirkungsmechanismen und der Wirksamkeit von Antidementiva bei an SDAT oder DVT Erkrankten sollten nach Erfüllen differentialdiagnostischer Kriterien folgende Punkte berücksichtigt werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adler MJ, Coronel C, Shelton E, Seegmiller JE, Dewij NN (1991) Increased gene expression of Alzheimer’s disease beta-amyloid precursor protein in senecent cultured fibroblasts. Proc Natl Acad Sci USA 88: 16–20PubMedCrossRefGoogle Scholar
  2. Alzheimer A (1907) über eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiat Gericht Med 64: 146–148Google Scholar
  3. Araki W, Kitaguchi N, Tokushuma Y et al. (1991) Trophic effects of ß-amyloid precursor protein on cerebral cortical neurons in culture. Biochem Biophys Res Commun 181: 265–271PubMedCrossRefGoogle Scholar
  4. Arendt T, Holzer M, Fruth R, Brückner MK, Gärtner U (1995) Paired helical filament-like phosphorylation of tau, deposition of beta/ A4-amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2A. Neuroscience 69: 691–698PubMedCrossRefGoogle Scholar
  5. Auestad N, Korsak RA, Morrow JW, Edmond J (1991) Fatty acid oxidation and ketogenesis by astrocytes in primary culture. J Neurochem 56: 1376–1386PubMedCrossRefGoogle Scholar
  6. Auld DS, Kar S, Quirion R (1998) ß-amyloid peptides as direct cholinergic neuromodulators: a missing link? Trends Neurosci 21: 43–49PubMedCrossRefGoogle Scholar
  7. Baskin DG, Wilcox BJ, Figlewicz DP, Dorsa DM (1988) Insulin and insulin-like growth factors in the CNS. Trends Neurosci 11: 107–111PubMedCrossRefGoogle Scholar
  8. Baskin DG, Schwartz MW, Sipols AJ, D’Alessio DA, Goldstein BJ, White MF (1994) Insulin receptor substrate-1 (IRS-1) expression in rat brain. Endocrinology 134: 1952–1955PubMedCrossRefGoogle Scholar
  9. Bauer J (1994) Die Alzheimer Krankheit. Neurobiologie, Psychosomatik, Diagnostik und Therapie. Schattauer, StuttgartGoogle Scholar
  10. Beal MF, Uhl G, Mazurek MF, Kowall N, Martin GB (1986) Somatostatin: alterations in the central nervous system in neurological disorders. In: Martin GB, Barchas JD (eds) Neuropeptides in neurological and psychiatric disease. Raven, New York, pp 215–257Google Scholar
  11. Behl C, Davis JB, Lesley R et al. (1994) Hydrogen peroxide mediates amyloid ß-protein toxicity. Cell 77: 817–827PubMedCrossRefGoogle Scholar
  12. Bigl V, Arendt T, Fischer S, Werner M, Arendt A (1987) The cholinergic system in aging. Gerontology 33: 172–180PubMedCrossRefGoogle Scholar
  13. Blass JP (1993) Pathophysiology of the Alzheimer’s syndrome. Neurology 43: 25–38Google Scholar
  14. Boado RJ (1995) Brain — derived peptides regulate the steady state levels and increase stability of the blood-brain barrier GLUT 1 glucose transporter mRNA. Neurosci Lett 197:179–182PubMedCrossRefGoogle Scholar
  15. Bowen DM (1984) Cellular aging: selective vulnerability of cholinergic neurons in human brain. Monogr Dev Biol 17: 42–59PubMedGoogle Scholar
  16. Breitner JCS, Gau BA, Welsh KA, Plassmann BL, Mcdonald WM, Helms MJ, Anthony JC (1994) Inverse association of anti-inflammatory treatments and Alzheimer’s disease. Neurology 44: 227–237PubMedCrossRefGoogle Scholar
  17. Brown GG, Levine SR, Gorell JM, Pettegrew JW, Gdowski JW, Bueri JA, Helpern JA, Welch KMA (1989) In vivo 31P-NMR profiles of Alzheimer disease and multiple subcortical infarct dementia. Neurology 39: 1423–1427PubMedCrossRefGoogle Scholar
  18. Bullido MJ, Artiga MJ, Recuero M et al. (1998) A polymorphism in the regulatory region of APOE associated with risk for Alzheimer’s dementia. Nature Genet 18: 69–71PubMedCrossRefGoogle Scholar
  19. Burnstock G (1990) Purinergic mechanisms. Ann NY Acad Sci 603: 1–17PubMedCrossRefGoogle Scholar
  20. Bush AI, Martins RN, Rumble B, Moir R, Fuller S, Milward E, Currie J, Ames D, Weidemann A, Fischer P, Beyreuther K, Masters CL (1990) The amyloid precursor protein is released by human platelets. J Biol Chem 265: 15977–15983PubMedGoogle Scholar
  21. Bush ML, Niyashiro JS, Ingram VM (1995) Activation of a neurofilament kinase, a tau kinase and a tau phosphatase by decreased ATP levels in nerve growth factor-differentiated PC-12 cells. Proc Natl Acad Sci USA 92: 1962–1865CrossRefGoogle Scholar
  22. Buttgereit F, Brand MD (1995) A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312: 163–167PubMedGoogle Scholar
  23. Chalmers DT, Dewar D, Graham DI, Brooks DN, Mcculloch J (1990) Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type. Proc Natl Acad Sci USA 87: 1352–1356PubMedCrossRefGoogle Scholar
  24. Cole G, Dobkins KR, Hansen LA, Terry RD, Saitoh T (1988) Decreased levels of protein kinase C in Alzheimer brain. Brain Res 452: 165–174PubMedCrossRefGoogle Scholar
  25. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PCJ, Rimmler JB, Locke PA, Conneally PM, Schmader KE, Small GW, Roses AD, Haines JL, Pericak Vance MA (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature Genet 7: 180–184PubMedCrossRefGoogle Scholar
  26. Cruts M, VAN Dujin CM, Backhovens H et al. (1998) Estimation of the genetic contribution of presenilin-1 and-2 mutations in a population-based study of presenile Alzheimer’s disease. Hum Mol Genet 7: 43–51PubMedCrossRefGoogle Scholar
  27. Czech C, Förstl H, Hentschel F, Monning U, Besthom C, Geiger Kabisch C, Sattel H, Masters C, Beyreuther K (1994) Apolipoprotein E-4 gene dose in clinically diagnosed Alzheimer’s disease: prevalence, plasma cholesterol levels and cerebrovascular change. Eur Arch Psychiatry Clin Neurosci 243: 291–292PubMedCrossRefGoogle Scholar
  28. Davies KJA, Goldberg AL (1987) Oxygen radicals stimulate intracellular proteolysis and lipid peroxydation by independent mechanisms in erythrocytes. J Biol Chem 262: 8220–8226PubMedGoogle Scholar
  29. Devaskar SU, Giddings SJ, Rajakumar PA, Carnaghi LR, Menon RK, Zahn DS (1994) Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem 269: 8445–8454PubMedGoogle Scholar
  30. De Feudis FY (1998) Ginkgo biloba extract (Egb 761). From chemistry to clinic. Ullstein Medical, WiesbadenGoogle Scholar
  31. Drachman DA, Noffsinger D, Sahakian BJ, Kurdziel S, Fleming P (1980) Aging, memory and the cholinergic system: a study of dichotic listening. Neurobiol Aging 1: 39–43PubMedCrossRefGoogle Scholar
  32. Dragunow M, Faull RLM, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. NeuroReport 6: 1053–1057PubMedCrossRefGoogle Scholar
  33. Duelli R, Schröck H, Kuschinsky W, Hoyer S (1994) Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci 12: 737–743PubMedCrossRefGoogle Scholar
  34. Edvinsson L, Mackenzie ET, Mc Culloch J, Uddmann R (1987) Perivascular innervation and receptor mechanisms in cerebrovascular bed. In: Wood JH (ed) Cerebral blood flow. Physiologic and clinical aspects. Mc Graw-Hill, New York, pp 145–172Google Scholar
  35. Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359: 144–147PubMedCrossRefGoogle Scholar
  36. Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9: 2–19PubMedCrossRefGoogle Scholar
  37. Evans DA, Funkenstein H, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO (1989) Prevalence of Alzheimer’s disease in a community population of older persons: higher than previously reported. J Am Med Assoc 262: 2551–2556CrossRefGoogle Scholar
  38. Farber SA, Nitsch RM, Schulz JG, Wurtman RJ (1995) Regulated secretion of ß-amyloid precursor protein in rat brain. J Neurosci 15: 7442–7451PubMedGoogle Scholar
  39. Frölich L (1995) Untersuchungen zur Pathogenese der Demenz vom Alzheimer Typ unter besonderer Berücksichtigung von Veränderungen des zerebralen Insulinrezeptorsystems. Habilitationsschrift, Frankfurt am MainGoogle Scholar
  40. Frölich L, Riederer P (1992) Demenz vom Alzheimer Typ. Biochemische Befunde und ätiologische Hypothesen. Endlich Therapieansätze in Aussicht? Therapiewoche 42: 500–505Google Scholar
  41. Frölich L, Riederer P (1995) Free radical mechanisms in dementia of Alzheimer type and the potential of antioxidative treatment. Arzneimittelforschung /Drug Res 45: 443–444Google Scholar
  42. Frölich L, Ihl R, Maurer K, Hoyer S (1992) Glucose-und Sauerstoffwechsel bei Demenz vom Alzheimer Typ. In: Lungershausen E (Hrsg) Demenz: Herausforderung für Forschung, Medizin und Gesellschaft. Springer, Berlin Heidelberg New York Tokyo, S 76–86Google Scholar
  43. Frölich L, Weinmüller M, Barth N, Murach W, Götz M, Dirr A, Gsell W, Beckmann H, Riederer P (1993) Effects of alpha-lipoic acid on mitochondrial dehydrogenases in cortical regions of post-mortem brain in dementia of Alzheimer type. Eur Neuropsychopharmacol 3: 417–418CrossRefGoogle Scholar
  44. Frölich L, Blum-Degen D, Hoyer S et al. (1997) Insulin, insulin receptors and IGF-I receptors in post-mortem human brain in ageing and in dementia of Alzheimer type. In: Iqbal K, Winbald B, Nishimura T, Takeda M, Wisniewski HM (eds) Alzheimer’s disease: biology, diagnosis and therapeutics. Wiley, Chichester, pp 457–465Google Scholar
  45. Frölich L, Blum-Degen D, Bernstein HG et al. (1998) Insulin and insulin receptors in the brain in aging and in sporadic Alzheimer’s disease. J Neural Transm 105: 423–438PubMedCrossRefGoogle Scholar
  46. Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y, Konishi J (1994) Altered cerebral energy metabolism in Alzheimer’s disease: a PET study. J Nucl Med 35: 1–6PubMedGoogle Scholar
  47. Gabuzda D, Busciglio J, Chen LB, Matsudaira P, Yankner BA (1994) Inhibition of energy metabolism alters the precessing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem 269: 13623–13628PubMedGoogle Scholar
  48. Gibson GE, Jope R, Blass JP (1975) Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem J 148: 17–23PubMedGoogle Scholar
  49. Gibson GE, Peterson C, Jenden DJ (1981) Brain acetylcholine synthesis declines with senescence. Science 213: 674–676PubMedCrossRefGoogle Scholar
  50. Gibson GE, Toral-Barza L (1992) Cytosolic free calcium in lymphoblasts from young, aged and Alzheimer subjects. Mech Ageing Dev 63: 1–9PubMedCrossRefGoogle Scholar
  51. Giorgino F, Almahfou A, Goodyear LJ, Smith RJ (1993) Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosinc phosphorylation in rat skeletal musch in vivo. J Clin Invest 91: 2020–2030PubMedCrossRefGoogle Scholar
  52. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovaskular amyloid protein. Biochem Biophys Res Commun 120: 885–890PubMedCrossRefGoogle Scholar
  53. Goldgaber D, Harris HW, Hla T, Maciag T, Donnelly RJ, Jacobsen JS, Vitek MP, Gajdusek DC (1989) Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc Natl Acad Sci USA 86: 7606–7610PubMedCrossRefGoogle Scholar
  54. Gsell W, Moll G, Sofic E, Riederer P (1993) Cholinergic and monoaminergic neurotransmitter systems in patients with Alzheimer’s disease and senile dementia of Alzheimer type: a critical evaluation. In: Maurer K (ed) Dementias: neurochemistry, neuropathology, neuroimaging, neuropsychology and genetics. Vieweg, Braunschweig, pp 25–51Google Scholar
  55. Gsell W, Conrad R, Hickethier M, Sofic E, Frölich L, Wichart I, Jellinger K, Moll G, Ransmayr G, Beckmann H, Riederer P (1995) Decrease in catalase activity but unchanged superoxide dismutase activity in brains of patients with senile dementia of Alzheimer type. J Neurochem 64: 1216–1223PubMedCrossRefGoogle Scholar
  56. Gussekloo J, Heeren TJ, Izaks GJ, Ligthart GJ, Rovijmans HGM (1995) A community based study of the incidence of dementia in subjects aged 85 years and over. J Neurol Neurosurg Psychiatry 59: 507–510PubMedCrossRefGoogle Scholar
  57. Haass C, Schlossmacher M, Hung A et al. (1992) Amyloid ß-peptide is produced by cultured cells during normal metabolism. Nature 359: 322–324PubMedCrossRefGoogle Scholar
  58. Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 20:154–159PubMedCrossRefGoogle Scholar
  59. Harik SI, Mccracken KA (1986) Age-related increase in presynaptic noradrenergic markers of the rat cerebral cortex. Brain Res 381: 125–130PubMedCrossRefGoogle Scholar
  60. Häring HU (1991) The insulin receptor: signalling mechanism and contribution to the pathogenesis of insulin resistance. Diabetologia 34: 848–861PubMedCrossRefGoogle Scholar
  61. Häring HU, Kirsch D, Obermaier B, Ermel B, Machicao F (1986) Decreased tyrosine kinease activity of insulin receptor isolated from rat adipoytes rendered insulin-resistent by catecholamine treatment in vitro. Biochem J 234: 59–66PubMedGoogle Scholar
  62. Harman D (1981) The aging process. Proc Natl Acad Sci USA 78: 7124–7128PubMedCrossRefGoogle Scholar
  63. Harr SD, Simonian NA, Hyman BT (1995) Functional alterations in Alzheimer’s disease: decreased glucose transporter 3 immunoreactivity in the perforant pathway terminal zone. J Neuropathol Exp Neurol 54: 38–41PubMedCrossRefGoogle Scholar
  64. Harrison PJ, Barton AJL, Mcdonald B, Paerson RCA (1991) Alzheimer’s disease: specific increases in a G protein subunit (Gsa) mRNA in hippocampal and cortical neurons. Mol Brain Res 10: 71–81PubMedCrossRefGoogle Scholar
  65. Hefti F, Schneider LS (1989) Rationale for the planned clinical trials with nerve growth factor in Alzheimer’s disease. Psychiatr Dev 7: 297–315PubMedGoogle Scholar
  66. Hellweg R (1992) „Nerve growth factor“ (NGF): pathophysiologische Bedeutung und mögliche therapeutische Konsequenzen. Nervenarzt 63: 52–56PubMedGoogle Scholar
  67. Hellweg R, Nitsch R, Hock C, Jaksch M, Hoyer S (1992) Nerve provoth factor and choline acetyltransferase activity levels in the rat brain following experimental impairment of cerebral glucose and emergy metabolism. J Neurosci Res 31: 479–486PubMedCrossRefGoogle Scholar
  68. Henneberg N, Hoyer S (1995) Desensitization of the neuronal insulin receptor: a new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)? Arch Gerontol Geriatr 21: 63–74PubMedCrossRefGoogle Scholar
  69. Higgins GA, Mufson EJ (1989) NGF receptor gene expression is decreased in the nucleus basalis in Alzheimer’s disease. Exp Neurol 106: 222–236PubMedCrossRefGoogle Scholar
  70. Hollander CF, VAN Zwieten MJ, Zurcher C (1983) The aged animal. In: Gispen WH, Traber J (eds) Aging of the brain. Elsevier, Amsterdam, pp 187–196Google Scholar
  71. Hoyer S (I969) Cerebral blood flow and metabolism in senile dementia. In: Brock M, Fieschi C, Ingvar D, Lassen NA, Schürmann K (eds) Cerebral blood flow. Clinical and experimental results. Springer, Berlin Heidelberg New York, pp 235–236Google Scholar
  72. Hoyer S (1985) The effect of age on glucose and energy metabolism in brain cortex of rats. Arch Gerontol Geriatr 4: 193–203PubMedCrossRefGoogle Scholar
  73. Hoyer S (1986) Senile dementia and Alzheimer’s disease. Brain blood flow and metabolism. Prog Neuropsychopharmacol Biol Psychiatry 10: 447–478PubMedCrossRefGoogle Scholar
  74. Hoyer S (1988) Glucose and related brain metabolism in dementia of Alzheimer type and its morpholopical significance. Age 11: 158–166CrossRefGoogle Scholar
  75. Hoyer S (1992a) Oxidative energy metabolism in Alzheimer brain. Studies in early-onset and late-onset cases. Mol Chem Neuropathol 16: 207–224PubMedCrossRefGoogle Scholar
  76. Hoyer S (1992b) The biology of the aging brain. Oxidative and related metabolism. Eur J Gerontol 1: 157–165Google Scholar
  77. Hoyer S (1993) Editor’s note for debate. Sporadic dementia of Alzheimer type, role of a, 1; id in etiology is challenged. J Neural Transm [PD Sect]: 6: 159–165CrossRefGoogle Scholar
  78. Hoyer S (1994) Age as risk factor for sporadic dementia of the Alzheimer type? Ann NY Acad Sci 719: 248–256PubMedCrossRefGoogle Scholar
  79. Hoyer S (1995) Age-related changes in cerebral oxidative metabolism. Implications for drug therapy. Drugs Aging 6: 210–218PubMedCrossRefGoogle Scholar
  80. Hoyer S (1996) Oxidative metabolism deficiencies in brains of patients with Alzheimer’s disease. Acta Neurol Scand [Suppl] 165: 18–24CrossRefGoogle Scholar
  81. Hoyer S (1998) Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105: 415–422PubMedCrossRefGoogle Scholar
  82. Hoyer S, Krier C (1986) Ischemia and the aging brain. Studies on glucose and energy metabolism in rat cerebral cortex. Neurobiol Aging 7: 23–29PubMedCrossRefGoogle Scholar
  83. Hoyer S, Betz K (1988) Abnormalities in glucose and energy metabolism are more severe in the hippocampus than in cerebral cortex in postischemic recovery in aged rats. Neurosci Lett 94: 167–172PubMedCrossRefGoogle Scholar
  84. Hoyer S, Nitsch R (1989) Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neural Transm 75: 227–232PubMedCrossRefGoogle Scholar
  85. Hoyer S, Nitsch R, Oesterreich K (1990) Ammonia is endogenously generated in the brain in the presence of resumed and verified dementia of Alzheimer type. Neurosci Lett 117: 358–362PubMedCrossRefGoogle Scholar
  86. Hoyer S, Nitsch R, Oesterreich K (1991) Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: a cross sectional comparison against advanced late-onset and incipient early-onset cases. J Neural Transm [P-D Sect] 3: 1–4CrossRefGoogle Scholar
  87. Hoyer S, Prem L, Sorbi S, Amaducci L (1993) Stimulation of glycolytic key enzymes in cerebral cortex by insulin. NeuroReport 4: 991–993PubMedCrossRefGoogle Scholar
  88. Hoyer S, Müller D, Plaschke K (1994) Desensitization of brain insulin receptor. Effect or glucose/energy and related metabolism. J Neural Transm [Supp] 44: 259–268Google Scholar
  89. Hoyer S, Frölich L, Sandbrink R (1999) Molekulare Medizin der Alzheimer-Krankheit. Handbuch der molekularen Medizin, Bd 5. In: Ganten D, Ruckpaul K (Hrsg) Erkrankungen des Zentralnervensystems. Springer, Berlin Heidelberg New York Tokyo, S 195–236Google Scholar
  90. Hsia AY, Masliah E, Mcconlogue L et al. (1999) Plaque — independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96: 3228–3233PubMedCrossRefGoogle Scholar
  91. Hsiao KK, Borchelt DR, Olson K, Johanisdottir R, Kitt C, Yumis W, Xu S, Eckman C, Younkin S, Price D, Jadecola C, Clark HB, Earlson G (1995) Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15: 1203–1218PubMedCrossRefGoogle Scholar
  92. Hyman BT, Gomez-Isla T, Briggs M et al. (1996) Apolipoprotein E and cognitive change in an elderly population. Ann Neurol 40: 55–66PubMedCrossRefGoogle Scholar
  93. Ida Y, Tanaka M, Kohno Y, Nakagawa R, Iimori K, Tsuda A, Hoaki Y, Nagasaki N (1982) Effects of age and stress on regional noradrenaline metabolism in the rat brain. Neurobiol Aging 3: 233–236PubMedCrossRefGoogle Scholar
  94. Ida N, Hartmann T, Pantel J et al. (1996) Analysis of heterogenous ßA4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J Biol Chem 271: 22908–22914PubMedCrossRefGoogle Scholar
  95. Ishida A, Furukawa K, Keller JN et al. (1997) Secreted form of ß-amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices. NeuroReport 8: 2133–2137PubMedCrossRefGoogle Scholar
  96. Jin L, Ninomiya H, Roch J et al. (1994) Peptides containing the RERMS sequence of amyloid beta-A4 protein precursor bind cell surface and promote neurite extension. J Neurosci 14: 5461–5470PubMedGoogle Scholar
  97. Kamboh MI, Sanghera DK, Ferrell RE, Dekosky ST (1995) APOE4-associated Alzheimer’s disease risk is modified by al-antichymotrypsin polymorphism. Nature Genet 10: 486–488PubMedCrossRefGoogle Scholar
  98. Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, Multhaupt G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell surface receptor. Nature 325: 733–736PubMedCrossRefGoogle Scholar
  99. Kawarabayashi T, Shoji M, Harigaya Y, Yamaguchi H, Hirai S (1991a) Expression of APP in the early stage of brain damage. Brain Res 563: 334–338PubMedCrossRefGoogle Scholar
  100. Kawarabayashi T, Shoji M, Harigaya Y, Yamaguchi H, Hirai S (1991b) Amyloid Beta-A4 protein precursor is widely distributed in both the central and peripheral nervous systems of the mouse. Brain Res 552: 1–7PubMedCrossRefGoogle Scholar
  101. Kawarabayashi T, Shoji M, Yamaguchi H, Tanaka M, Harigaya Y, Ishiguro K, Hirai S (1993) Amyloid Beta-protein precursor accumulates in swollen neuntes throughout rat brain with aging. Neurosci Lett 153: 73–76PubMedCrossRefGoogle Scholar
  102. König G, Masters CL, Beyreuther K (1990) Retinole acid induced differentiated neuroblastoma cells show increased expression of the beta A4 amyloid gene of Alzheimer’s disease and an altered splicing pattern. FEBS Lett 269: 305–310PubMedCrossRefGoogle Scholar
  103. Kornhuber J, Weller M (1996) Neue therapeutische Möglichkeiten mit niederaffinen NMDA-Rezeptorantagonisten. Nervenarzt 67: 77–82PubMedGoogle Scholar
  104. Kurochkin IV, Goto S (1994) Alzheimer ß-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 345: 33–37PubMedCrossRefGoogle Scholar
  105. Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112: 1199–1208PubMedCrossRefGoogle Scholar
  106. L’Hernault SW, Arduengo PM (1992) Mutation of a putative sperm membrane protein in Caenorhabditis elegans prevents sperm differentiation but not its associated meiotic divisions. J Cell Biol 119: 55–68PubMedCrossRefGoogle Scholar
  107. Lesch KP, Ihl R, Frölich L, Rupprecht R, Müller U, Schulte HU, Maurer K (1990) Endocrine responses to growth hormone releasing hormone and corticotropin releasing hormone in early-onset Alzheimer disease. Psychiatry Res 33: 107–112PubMedCrossRefGoogle Scholar
  108. Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signaling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377: 351–354PubMedCrossRefGoogle Scholar
  109. Levy-Lahad E, Wasco W, Poorkaj P et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer disease locus. Science 269: 973–977PubMedCrossRefGoogle Scholar
  110. Luo Y, Sunderland T, Roth GS et al. (1996 a) Physiological levels of ß-amyloid peptide promote PC 12 cell proliferation. Neurosci Lett 217: 125–128PubMedCrossRefGoogle Scholar
  111. Luo Y, Sunderland T, Wolozin B (1996 b) Physiological levels of ß-amyloid activate phosphatidylinositol 3-kinase with the involvement of tyrosine phosphorylation. J Neurochem 67: 978–987PubMedCrossRefGoogle Scholar
  112. Luo Y, Hawver DB, Iwasaki K et al. (1997) Physiological levels of ß-amyloid peptide stimulate protein kinase C in PC 12 cells. Brain Res 769: 287–295PubMedCrossRefGoogle Scholar
  113. Lupien S, Lecours AR, Lussier I, Schwartz G, Nair NPV, Meaney MJ (1994) Basal cortical levels and cognitive deficits in human aging. J Neurosci 14: 2893–2903PubMedGoogle Scholar
  114. Mann DMA, Yates PO, Marcynicuk B (1985) Changes in Alzheimer’s disease in the magnocellular neurones of the supraoptic and paraventricular nuclei of the hypothalamus and their relationship to the noradrenergic deficit. Clin Neuropathol 4: 127–134PubMedGoogle Scholar
  115. Manning CA, Raggozino M, Gold PE (1993) Glucose enhancement of memory in patients with Alzheimer’s disease. Neurobiol Aging 14: 523–528PubMedCrossRefGoogle Scholar
  116. Maragos WF, Greenamyre JT, Penney JB, Young AB (1987) Glutamate dysfunction in Alzheimer’s disease: an hypothesis. Trends Neurosci 10: 65–68CrossRefGoogle Scholar
  117. Mason RP, Shoenmaker WJ, Shajenko L et al. (1992) Evidence for changes in the Alzheimer’s disease brain cortical membrane structure mediated by cholesterol. Neurobiol Aging 13: 413–419PubMedCrossRefGoogle Scholar
  118. Masters CL, Simms G, Weinman NA, Multhaup G, Mcdonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer’s disease and Down’s syndrome. Proc Natl Acad Sci USA 82: 4245–4249PubMedCrossRefGoogle Scholar
  119. Mattson MP (1994) Secreted forms of ß-amyloid precursor protein modulate dendrite outgrowth and calcium responses to glutamate in cultured embryonic hippocampal neurons. J Neurobiol 25: 439–450PubMedCrossRefGoogle Scholar
  120. Mattson MP, Cheng B, Culwell AR, Esch FS, Lieberburg I, Rydel RE (1993) Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 10: 243–954PubMedCrossRefGoogle Scholar
  121. Mayer G, Nitsch R, Hoyer S (1990) Effects of changes in peripheral and cerebral glucose metabolism or locomotor activity, learning and memory in adult male rats. Brain Res 532: 95–100PubMedCrossRefGoogle Scholar
  122. Mcdermott JR, Gibson AM (1997) Degradation of Alzheimer’s ß-amyloid protein by human and rat brain peptidases: involvement of insulin-degrading enzyme. Neurochem Res 22: 49–56PubMedCrossRefGoogle Scholar
  123. Mcgeer PL, Akiyima H, Mcgeer EG (1989) Immune system response in Alzheimer’s disease. Can J Neurol Sci 16: 516–527PubMedGoogle Scholar
  124. Mielke R, Herholz K, Grond M, Kessler J, Heiss WD (1992a) Differences of regional cerebral glucose metabolism between presenile and senile dementia of Alzheimer type. Neurobiol Aging 13: 93–98PubMedCrossRefGoogle Scholar
  125. Mielke R, Herholz K, Grond M, Kessler J, Heiss WD (1992b) Severity of vascular dementia is related to volume of metabolically impaired tissue. Arch Neurol 49: 909–913PubMedCrossRefGoogle Scholar
  126. Milward EA, Papadopoulos R, Fuller SJ, Moir RD, Small D, Beyreuther K, Masters CL (1992) The amyloid protein precursor of Alzheimer’s disease is a mediator of the effects of nerve growth factor an neurite outgrowth. Neuron 9: 129–137PubMedCrossRefGoogle Scholar
  127. Miyazaki K, Hasegawa M, Funahashi K, Umeda M (1993) A metalloproteas inhibitor domain in Alzheimer amyloid protein precursor. Nature 362: 839–841PubMedCrossRefGoogle Scholar
  128. Mobley WC, Neve RL, Prusiner SB, Mckinley MP (1988) Nerve growth factor increases mRNA levels for the prion protein and the beta-amyloid protein precursor in developing hamster brain. Proc Natl Acad Sci USA 85: 9811–9815PubMedCrossRefGoogle Scholar
  129. Moran PM, Higgins LS, Cordell B, Moser PC (1995) Age-related learning deficits in transgenic mice expressing the 351-aminoacid iso-form of human ß-amyloid precursor protein. Proc Natl Acad Sci USA 92: 5341–5345PubMedCrossRefGoogle Scholar
  130. Müller WE, Eckert A, Hartmann H, Velbinger K, Förstl H (1996) Zur Kalziumhypothese der Hirnalterung. Nervenarzt 67: 15–24PubMedGoogle Scholar
  131. Müller D, Nitsch RM, Wurtman RJ et al. (1998) Streptozotocin increases free fatty acids and decreases phospholipids in rat brain. J Neural Transm 105: 1271–1281PubMedCrossRefGoogle Scholar
  132. Multhaup G, Bush AI, Pollwein P, Masters CL, Beyreuther K (1992) Specific binding of the Alzheimer beta-A-4 amyloid precursor to collagen, laminin and heparin. J Prot Chem 11: 398–399CrossRefGoogle Scholar
  133. Neary JT, Whittemore SR, Zhu Q, Norenberg MD (1994) Synergistic activation of DNA synthesis in astrocytes by fibroblast growth factors and extracellular ATP. J Neurochem 63: 490–494PubMedCrossRefGoogle Scholar
  134. Neve RL, Kammesheidt A, Hohmann CF (1992) Brain transplants of cell expressing the car-boxyl-terminal fragment of the Alzheimer amyloid protein precurtor cause specific neuropathology in vivo. Proc Natl Acad Sci USA 89: 3448–3452PubMedCrossRefGoogle Scholar
  135. Ninomiya H, Roch J-M, Sundsmo MP, Otero DAC, Saitoh T (1993) Amino acid sequence RERMS represents the active domain of amyloid beta-A4 protein precursor that promotes fibroblast growth. J Cell Biol 121: 879–886PubMedCrossRefGoogle Scholar
  136. Nishimoto I, Okamoto T, Matsuura Y, Takahashi S, Murayama Y, Ogata E (1993) Alzheimer amyloid protein precursor complexes with brain GTP-binding protein Go. Nature 362: 75–79PubMedCrossRefGoogle Scholar
  137. Nitsch RM, Blusztajn JK, Pittas AG et al. (1992) Evidence for a membrane defect in Alzheimer disease brain. Proc Natl Acad Sci USA 89: 1671–1675PubMedCrossRefGoogle Scholar
  138. Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451: 205–212PubMedCrossRefGoogle Scholar
  139. Ohm TG, Bohl J, Lemmer B (1991) Reduced basal and stimulated (isoprenaline, Gpp(NH)p, for-skolin) adenylate cyclase activity in Alzheimer’s disease correlated with histopathological changes. Brain Res 540: 229–736PubMedCrossRefGoogle Scholar
  140. Oltersdorf T, Fritz LC, Schenk DB, Lieberburg I, Johnson-Wood KL, Beattie EC, Ward PJ, Blacher RW, Dovey HF, Sinha S (1989) The secreted form of the Alzheimer’s amyloid precursor protein with the Kunitz domain is protease nexin-II. Nature 341: 144–147PubMedCrossRefGoogle Scholar
  141. Ott A, Breteler MMB, VAN Harskamp F, Claus JJ, VAN DER Cammen TJM, Grobbee DE, Hofman A (1995) Prevalence of Alzheimer’s disease and vascular dementia: association with education. The Rotterdam study. Br J Med 310: 970–973CrossRefGoogle Scholar
  142. Ozawa H, Saito T, Frölich L, Hashimoto E, Hatta S, Ohshika H, Rasenick MM, Takahata N, Rie-Derer P (1995) Quantity and quality changes of G proteins in dementia of Alzheimer type. In: Hanin I, Yoshida M, Fisher A (eds) Alzheimer’s and Parkinson’s disease. Recent developments. Raven, New York, pp 291–296Google Scholar
  143. Pandiella A, Massague J (1991) Cleavage of the membrane precursor for transforming growth factor alpha is a regulated process. Proc Natl Acad Sci USA 88: 1726–1730PubMedCrossRefGoogle Scholar
  144. Pardridge WM, Boado RJ, Farrell CR (1990) Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. J Biol Chem 265: 18035–18040PubMedGoogle Scholar
  145. Parker WD, Parks J, Filley CM et al. (1994) Electron transport chain defects in Alzheimer’s disease brain. Neurology 44: 1090–1096PubMedCrossRefGoogle Scholar
  146. Paykel ES, Brayne C, Huppert FA, Gill C, Barkley C, Gehlhaar E, Beardsall L, Girling DM, Pollitt P, O’Connor D (1994) Incidence of dementia in a population older than 75 years in the United Kingdom. Arch Gen Psychiatry 51: 325–332PubMedCrossRefGoogle Scholar
  147. Payne J, Maker F, Simpson et al. (1997) Glucose transporter Glut 5 expression in microglial cells. Glia 21: 327–331PubMedCrossRefGoogle Scholar
  148. Perego C, Vetrugno CC, Desimoni MG, Algeri S (1993) Aging prolongs the stress-induced release of noradrenaline in rat hypothalamus. Neurosci Lett 157: 127–130PubMedCrossRefGoogle Scholar
  149. Pettegrew JW, Klunk WE, Kanal E, Panchalingam K, Mcclure RJ (1995) Changes in brain membrane phospholipid and high-energy phosphate metabolism precede dementia. Neurobiol Aging 16: 973–975PubMedCrossRefGoogle Scholar
  150. Plaschke K, Müller D, Hoyer S (1996) Effects of adrenalectomy and corticosterone substitution on glucose and energy metabolism in rat brain. J Neural Transm [Gen Sec] 103: 89–100CrossRefGoogle Scholar
  151. Plaschke K, Yun SW, Martin E, Hoyer S, Bardenheuer HJ (1999) Interrelation between cerebral energy metabolism and behaviour in a rat model of permanent vessel occlusion. Brain Res 830: 320–329PubMedCrossRefGoogle Scholar
  152. Plee-Gautier E, Grimal H, Aggerbeck M et al. (1998) Cytosolic aspartate aminotransferase gene is a member of the glucose-regulated protein gene family in adipocytes. Biochem J 329: 37–40PubMedGoogle Scholar
  153. Poirier J (1994) Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 17: 525–530PubMedCrossRefGoogle Scholar
  154. Quon D, Wang Y, Catalamo R, Scardina JM, Murakami K, Cordell B (1991) Formation of beta-amyloid protein deposits in brains of transgenic mice. Nature 352: 239–241PubMedCrossRefGoogle Scholar
  155. Rebeck GW, Reiter JS, Strickland DK, Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 11: 575–580PubMedCrossRefGoogle Scholar
  156. Refolo LM, Salton SRJ, Anderson JP, Mehta P, Robakis NK (1989) Nerve and epidermal factors induce release of Alzheimer amyloid precurse from PC-12 cells. Biochem Biophys Res Commun 164: 664–670PubMedCrossRefGoogle Scholar
  157. Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, Thibodeau SN, Osborne D (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the e4 allele for apolipoprotein E. N Engl J Med 334: 752–758PubMedCrossRefGoogle Scholar
  158. Reischies FM, Gessner R, Kage A (1994) Apolipoprotein E-Typologie und Demenz. Nervenarzt 65: 492–495PubMedGoogle Scholar
  159. Roberts EL jr, Sick TJ (1996) Aging impairs regulation of intracellular pH in rat hippocampal slices. Brain Res 735: 339–342PubMedCrossRefGoogle Scholar
  160. Roch JM, Shapiro IP, Sundsmo MP, Otero DAC, Refolo LM, Robakis NK, Saitoh T (1992) Bacterial expression, purification, and functional mapping of the amyloid beta-A4 protein precursor. J Biol Chem 267: 2214–2221PubMedGoogle Scholar
  161. Roch JM, Masliah E, Roch-Levecq AC et al. (1994) Increase of synaptic density and memory retention by a peptide representing the trophic domain of the amyloid ß-A4 protein precursor. Proc Natl Acad Sci USA 91: 7450–7454PubMedCrossRefGoogle Scholar
  162. Rogaev EI, Sherrington R, Rogaeva EA et al. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376: 775–778PubMedCrossRefGoogle Scholar
  163. Rogers RL, Meyer JS, Mortel KF, Mahurin RK, Judd BW (1986) Decreased cerebral blood flow precedes multi-infarct dementia, but follows senile dementia of Alzheimer type. Neurology 36: 1–6PubMedCrossRefGoogle Scholar
  164. Rogers J, Kirby LC, Hempelmann SR, Berry DL, Mcgeer PL, Kazniak AW, Zalinski J, Cofield M, Mansukhani L, Willson P, Kogan F (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43: 1609–1611PubMedCrossRefGoogle Scholar
  165. Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47: 387–400PubMedCrossRefGoogle Scholar
  166. Rossor MN, Garrett NJ, Johnson AL, Mountjoy CQ, Roth M, Iversen LL (1982) A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain 105: 313–330PubMedCrossRefGoogle Scholar
  167. Roth GS, Joseph JA, Mason RP (1995) Membrane alterations as causes of impaired signal transduction in Alzheimer’s disease and aging. Trends Neurosci 18: 203–306PubMedCrossRefGoogle Scholar
  168. Sandbrink R, Hartmann T, Masters CL et al. (1996) Genes contributing to Alzheimer’s disease. Mol Psychiatry 1: 27–40PubMedGoogle Scholar
  169. Sapolsky RM (1994) Glucocorticoids, stress and exacerbation of excitotoxic neuron death. Sem Neurosci 6: 323–331CrossRefGoogle Scholar
  170. Sapolsky RM, Krey LC, Mc Ewen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Res 7: 284–301CrossRefGoogle Scholar
  171. Sato A, Sato Y (1995) Cholinergic neural regulation of regional cerebral blood flow. Alzheimer Dis Ass Disord 9: 28–38CrossRefGoogle Scholar
  172. Schägger H, Ohm TG (1995) Human diseases with defects in oxidative phosphorylation. 2. F1 Fo ATP-synthase defects in Alzheimer disease revealed by blue native Polyacrylamide gel electrophoresis. Eur J Biochem 227: 916–927PubMedCrossRefGoogle Scholar
  173. Schubert D, Jin L-W, Saitoh T, Cole G (1989) The regulation of amyloid beta precursor secretion and its modulatory role in cell adhesion. Neuron 3: 689–694PubMedCrossRefGoogle Scholar
  174. Scott JN, Parhard IM, Clark AW (1991) Beta-Amyloid precursor protein gene is differentially expressed in axotomized sensory and motor systems. Mol Brain Res 10: 315–325PubMedCrossRefGoogle Scholar
  175. Seiger A, Nordberg A, VON Holst H, Backman L, Ebendal T, Alafuzoff I, Amberla K, Hartvig P, Herlitz A, Lilja A, Lundqvist H, Langstrom B, Meyerson B, Persson A, Viitanen M, Winblad B, Olson L (1993) Intracranial infusion of purified nerve growth factor to an Alzheimer patient: the first attempt of a possible future treatment strategy. Behav Brain Res 57: 255–261PubMedCrossRefGoogle Scholar
  176. Selkoe DJ (1997) Alzheimer’s disease: genotypes, phenotype, and treatments. Science 275: 630–631PubMedCrossRefGoogle Scholar
  177. Seubert P, Vigo-Pelfrey C, Esch F et al. (1992) Isolation and quantification of soluble Alzheimer’s ß-peptide from biological fluide. Nature 359: 325–327PubMedCrossRefGoogle Scholar
  178. Shapiro IP, Masliah E, Saitoh T (1991) Altered protein tyrosine phosphorylation in Alzheimer’s disease. J Neurochem 56: 1154–1162PubMedCrossRefGoogle Scholar
  179. Shearman M, Ragan C, Iversen L (1994) Inhibition of PC 12 cell redox activity is a specific, early indicator of ß-amyloid-mediated cell death. Proc Natl Acad Sci USA 91: 1470–1747PubMedCrossRefGoogle Scholar
  180. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375: 754–760PubMedCrossRefGoogle Scholar
  181. Shioi J, Anderson JP, Ripellino JA, Robakis NK (1992) Chondroitin sulfate proteoglycan form of the Alzheimer’s beta-amyloid precursor. J Biol Chem 267: 13819–13822PubMedGoogle Scholar
  182. Siesjö BK (1978) Brain energy, metabolism. Wiley, ChichesterGoogle Scholar
  183. Siesjö BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1: 155–185PubMedCrossRefGoogle Scholar
  184. Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P (1994) Decreased concentrations of GLUT 1 and GLUT 3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann Neurol 35: 546–551PubMedCrossRefGoogle Scholar
  185. Sims NR, Bowen DM, Davison AN (1981) (14C) acetylcholine synthesis and (14C) carbon dioxide production from (U14C) glucose by tissue primus from human neocortex. Biochem J 196: 867–876PubMedGoogle Scholar
  186. Sims NR, Bowen DM, Neary D, Davison AN (1983) Metabolic processes in Alzheimer’s disease: adenine nucleotide content and production of 14CO2 from (U14C) glucose in vitro in human neocortex. J Neurochem 41: 1329–1334PubMedCrossRefGoogle Scholar
  187. Smale G, Nichols NR, Brady DR, Finch CE, Horton Jr WE (1995) Evidence for apoptotic cell death in Alzheimer’s disease. Exp Neurol 133: 225–230PubMedCrossRefGoogle Scholar
  188. Smith CD, Carney JM, Starke-Reed PE et al. (1991) Excess brain protein oxidation end enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88: 10540–10543PubMedCrossRefGoogle Scholar
  189. St George Hyslop PH, Haines JL, Farrer LA, Polinsky R, VAN Broeckhoven C, Goate A, Crapper McLachlan DR, Orr H, Bruni AC, Sorbi S, Rainero I, Foncin J, Pollen D, Cantu J, Tupler R, Voskresenskaya N, Mayeux R, Growdon J, Fried VA et al. (1990) Genetic linkage studies suggest that Alzheimer’s disease is not a single homogeneous disorder. Nature 347: 194–197PubMedCrossRefGoogle Scholar
  190. Stadtman ER (1992) Protein oxidation and aging. Science 257: 1220–1224PubMedCrossRefGoogle Scholar
  191. Strittmatter WJ, Saunders AM, Schmelchel D et al. (1993) Apolipoprotein E: high-avidity binding to ß-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981PubMedCrossRefGoogle Scholar
  192. Svennerholm L, Boström K, Jungbjer B, Olsson L (1994) Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J Neurochem 63: 1802–1811PubMedCrossRefGoogle Scholar
  193. Swaab DF, Raadsheer FC, Endert EW, Hofmann MA, Kamphorst W, Ravid R (1994a) Increases cortical levels in aging and Alzheimer’s disease in postmortem cerebrospinal fluid. J Neuroendocrinol 6: 681–687PubMedCrossRefGoogle Scholar
  194. Swaab DF, Hofman MA, Lucassen PJ, Salehi A, Uylings BM (1994b) Neuronal atrophy, not cell death, is the main hallmark of Alzheimer’s disease. Neurobiol Aging 15: 369–371PubMedCrossRefGoogle Scholar
  195. Thoenen H (1991) The changing scene of neurotrophic factors. Trends Neurosci 14: 165–170PubMedCrossRefGoogle Scholar
  196. Ueda K, Shinohara S, Yagami T et al. (1997) Amyloid ß-protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels. A possible involvement of free radicals. J Neurochem 68: 265–271PubMedCrossRefGoogle Scholar
  197. Unger JW, Livinston JN, Moss AM (1991) Insulin receptors in the central nenvous system: localization, signalling mechanismus and functional aspects. Progr Neurobiol 36: 343–362CrossRefGoogle Scholar
  198. van Nostrand WE, Cunningham DC (1990) A platelet alpha-granule protein. Science 248: 745–748PubMedCrossRefGoogle Scholar
  199. van Nostrand WE, Wagner SL, Suzuki M, Choi BH, Farrow JS, Geddes JW, Cotman CW, Cunningham DD (1989) Protease nexin-II, a potent antichymotrypsin, shows identity to amyloid beta-protein precursor. Nature 341: 546–549PubMedCrossRefGoogle Scholar
  200. Vaucher E, Hamel E (1995) Cholinergic basal forebrain neurons project to orticai microvessels in the rat: electron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase immnunocytochemistry. J Neurosci 15: 7427–7441PubMedGoogle Scholar
  201. Verde C, Pascale MC, Martive G, Lotti LV, Torrisi MR, Helenius A, Bonatti S (1995) Effect of ATP depletion and DTT on the transport of membrane proteins from the endoplasmic reticulum and the intermediate compartment to the Golgi complex. Eur J Cell Biol 67: 267–274PubMedGoogle Scholar
  202. Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256: 628–632PubMedCrossRefGoogle Scholar
  203. Wallace WC, Bragin V, Robakis NK, Sambamurti K, VAN DER Putten D, Merril CR, Davis KL, Santucci AC, Haroutunian V (1991) Increased biosynthesis of Alzheimer amyloid precursor protein in the cerebral cortex of rats with lesions of the nuclues basalis of Meynert. Mol Brain Res 10: 173–178PubMedCrossRefGoogle Scholar
  204. Wallace WC, Lieberburg I, Schenk D, Vigo-Pelfrey C, Davis KL, Haroutunian V (1995) Chronic elevation of secreted amyloid precursor protein in subcortically lesioned rats, and its exacerbation in aged rats. J Neurosci 15: 4896–4905PubMedGoogle Scholar
  205. Webster MT, Pearce BR, Bowen DM et al. (1998) The effects of perturbed energy metabolism on the processing of amyloid precursor protein in PC 12 cells. J Neural Transm 105: 839–853PubMedCrossRefGoogle Scholar
  206. Wong KL, Tyce GM (1983) Glucose and amino acid metabolism in rat brain during sustained hypoglycemia. Neurochem Res 8: 401–415PubMedCrossRefGoogle Scholar
  207. Wurtman RJ (1992) Choline metabolism as a basis for the selective vulnerability of cholinergic neurons. Trends Neurosci 15: 117–122PubMedCrossRefGoogle Scholar
  208. Yamada M, Itoh Y, Suematsu N (1996) Apolipoprotein E genotype in elderly nondemented subjects without senile changes in the brain. Ann Neurol 40: 243–245PubMedCrossRefGoogle Scholar
  209. Yamaguchi F, Richards SJ, Beyreuther K, Salbaum M, Carlson GA, Dunnett SB (1991) Transgenic mice for the amyloid precursor protein 695 isoform have impaired spatial memory. Neuro Report 2: 781–784Google Scholar
  210. Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid ß protein: reversal by tachykinin neuropeptides. Science 250: 279–282PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • S. Hoyer
  • L. Frölich

There are no affiliations available

Personalised recommendations