Advertisement

Exkurs: Kognitive Störungen bei Morbus Parkinson

  • K. W. Lange

Zusammenfassung

Motorische Störungen wie progrediente Be-wegungsverlangsamung, erhÖhter Muskeltonus, Ruhetremor und Auffälligkeiten von Haltung und Gang bestimmen das klinische Bild der Parkinsonkrankheit. Hinsichtlich mÖglicher kognitiver Veränderungen stellte James Parkinson (1817) bei der Erstbeschreibung der Erkrankung fest, daß die intellektuellen Fähigkeiten der Patienten nicht beeinträchtigt seien. Allerdings weist das sorgfältige Studium von Parkinsons Monographie auf einen abnormen mentalen Status bei zumindest einem der von ihm beschriebenen sechs Patienten hin. Gegen Ende des 19. Jahrhunderts vertraten franzÖsische und englische Neurologen die Auffassung, daß Parkinsonkranke vor allem in den späten Krankheitsstadien durchaus kognitive Einbußen wie z. B. GedächtnisstÖrungen aufweisen (Trousseau 1886, Charcot 1872, Gowers 1899).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Agid Y, Ruberg M, Raisman R, Hirsch E, Javoy-Agid F (1990) The biochemistry of Parkinson’s disease. In: Stern G (ed) Parkinson’s disease. Chapman and Hall, London, pp 99–125Google Scholar
  2. Alexander GÈ, De Long MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381PubMedCrossRefGoogle Scholar
  3. Alpern HP, Marriott JG (1973) Short-term memory: facilitation and disruption with anticholinergic agents. Physiol Behav 11: 571–575PubMedCrossRefGoogle Scholar
  4. American Psychiatric Association (1980) Diagnostic and statistical manual of mental disorders, 3rd ed. American Psychiatric Association, Washington DCGoogle Scholar
  5. Asso D (1969) WAIS scores in a group of Parkinson patients. Br J Psychiatry 115: 555–556PubMedCrossRefGoogle Scholar
  6. Bartus RT, Johnston HR (1976) Short-term memory in the rhesus monkey: disruption from the anti-cholinergic scopolamine. Pharmacol Biochem Behav 5: 39–46PubMedCrossRefGoogle Scholar
  7. Bartus RT, Dean RL III, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417PubMedCrossRefGoogle Scholar
  8. Eardsley JV, Puletti F (1971) Personality (MMPI) and cognitive (WAIS) changes after levodopa treatment. Occurrence in patients with Parkinson’s disease. Arch Neurol 25: 145–150Google Scholar
  9. Bentin S, Silverberg R, Gordon HW (1981) Asymmetrical cognitive deterioration in demented and parkinson patients. Cortex 17: 533–544PubMedGoogle Scholar
  10. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20: 415–455PubMedCrossRefGoogle Scholar
  11. Birkmayer W, Hornykiewicz O (1961) Der L-Dioxyphenylalanin-Effekt beim Parkinson-Syndrom des Menschen. Arch Psychiat Nervenkr 203: 560CrossRefGoogle Scholar
  12. Björklund A, Lindvall O (1984) Dopamine containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Classical transmitters in the CNS, part 1. Elsevier, London, pp 55–122Google Scholar
  13. Björklund A, Divac I, Lindvall D (1978) Regional distribution of catecholamines in monkey cerebral cortex, evidence for a dopaminergic innervation of the primate prefrontal cortex. Neurosci Lett 7: 115–119PubMedCrossRefGoogle Scholar
  14. Boller F (1980) Mental status of patients with Parkinson’s disease. J Clin Neuropsychol 2: 157–172CrossRefGoogle Scholar
  15. Boller F, Passafiume D, Keefe NC, Rogers K, Kim Y (1984) Visuospatial impairment in Parkinson’s disease. Arch Neurol 41: 485–490PubMedCrossRefGoogle Scholar
  16. Bowen FP, Kamienny RS, Burns MM, Yahr MD (1975) Parkinsonism: effects of levodopa on concept formation. Neurology 25: 701–704PubMedCrossRefGoogle Scholar
  17. Broks P, Preston GC, Traub M et al. (1988) Modelling dementia: effects of scopolamine on memory and attention. Neuropsychologia 26/5: 685–700PubMedCrossRefGoogle Scholar
  18. Brooks DJ (1990) Differing patterns of striatal 18F-Dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 28: 547–555PubMedCrossRefGoogle Scholar
  19. Brown RG, Marsden CD (1984) How common is dementia in Parkinson’s disease? Lancet ii: 1262–1265CrossRefGoogle Scholar
  20. Brown RG, Marsden CD (1986) Visuospatial function in Parkinson’s disease. Brain 109: 987–1002PubMedCrossRefGoogle Scholar
  21. Brozoski TJ, Brown RM, Rosvold ME, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205: 929–931PubMedCrossRefGoogle Scholar
  22. Brücke T, Kornhuber J, Angelberger P, Asenbaum S, Frassine H, Podreka I (1993) Spect imaging of dopamine and serotonin transporters with [123I]ß-CIT. Binding kinetics in the human brain. J Neural Transm [Gen Sec] 94: 137–146CrossRefGoogle Scholar
  23. Buresova O, Bures J, Bohdanecky Z, Weiss T (1964) Effect of atropine on learning, extinction, retention and retrieval in rats. Psychopharmacologia 5: 255–263PubMedCrossRefGoogle Scholar
  24. Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF, Tomlinson BE (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 54: 277–289CrossRefGoogle Scholar
  25. Cash R, Dennis T, L’heureux R, Raisman R, Javoy-Agid F, Scatton B (1987) Parkinson’s disease and dementia. Norepinephrine and dopamine in locus coeruleus. Neurology 37: 42–46PubMedCrossRefGoogle Scholar
  26. Celesia GG, Wanamaker WM (1972) Psychiatric disturbances in Parkinson’s disease. Dis Nerv Syst 33: 577–583PubMedGoogle Scholar
  27. Charcot JM (1872) Leçons sur les maledies du Système Nerveux. Cinquième Leçon: de la paralysie agitante. Bourneville Ed, Paris, Del-hayeGoogle Scholar
  28. Christensen AL, Juul-Jensen P, Malmros R, Harmsen A (1970) Psychological evaluation of intelligence and personality in parkinsonism before and after stereotaxic surgery. Acta Neurol Scand 46: 527–537PubMedCrossRefGoogle Scholar
  29. Cools AR, Van Den Bercken JHL, Horstink MWI, Van Spaendonckkpm, L Berger HJC (1984) Cognitive and motor shifting aptitude disorder in Parkinson’s disease. J Neurol Neurosurg Psychiatry 47: 443–453PubMedCrossRefGoogle Scholar
  30. Cooper JA, Sagar HJ, Jordan N, Harvey NS, Sullivan E (1991) Cognitive impairment in early, untreated Parkinson’s disease and ist relationship to motor disability. Brain 114: 2095–2122PubMedCrossRefGoogle Scholar
  31. Cooper JA, Sagar HJ, Doherty SM, Jordan N, Tidswell P, Sullivan EV (1992) Different effects of dopaminergic and anticholinergic therapies on cognitive and motor function in Parkinson’s disease. A follow-up study of untreated patients. Brain 115: 1701–1725Google Scholar
  32. Cummings JL (1988) Intellectual impairment in Parkinson’s disease: clinical pathological and biochemical correlates. J Geriatr Psychiatry Neurol 1: 24–36PubMedCrossRefGoogle Scholar
  33. Cummings JL, Darkins A, Mendez M, Hill MA, Benson DF (1988) Alzheimer’s disease and Parkinson’s disease: comparison of speech and language alterations. Neurology 38: 680–684PubMedCrossRefGoogle Scholar
  34. Danta A, Hilton RC (1975) Judgement of the visual vertical and horizontal in patients with parkinsonism. Neurology 25:43–47PubMedCrossRefGoogle Scholar
  35. Davies P, Verth AH (1978) Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer’s type dementia brains. Brain Res 138: 385–392CrossRefGoogle Scholar
  36. Della Sala S, Di Lorenzo G, Giordano G, Spinnler H (1986) Is there a specific visuo-spatial impairment in Parkinsonians? J Neurol Neurosurg Psychiatry 49: 1258–1265PubMedCrossRefGoogle Scholar
  37. De Smet Y, Ruberg M, Serdaru M, Dubois B, Lhermitte F, Agid Y (1982) Confusion, dementia and anticholinergics in Parkinson’s disease. J Neurol Neurosurg Psychiatry 45: 1161–1164PubMedCrossRefGoogle Scholar
  38. Divac I (1972) Delayed alternation in cats with lesions of the prefrontal cortex and the caudate nucleus. Physiol Behav 8: 519–522PubMedCrossRefGoogle Scholar
  39. Dom R, Malfroid M, Maro F (1976) Neuropathology of Huntington’s chorea: studies of the ventrobasal complex of the thalamus. Neurology 26: 64–68PubMedCrossRefGoogle Scholar
  40. Downes JJ, Roberts AC, Sahakian BJ, Evenden JL, Morris RG, Robbins TW (1989) Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson’s disease: evidence for a specific attentional dysfunction. Neuropsychologia 27: 1329–1343PubMedCrossRefGoogle Scholar
  41. Drachman DA, Leavitt J (1974) Human memory and the cholinergic system. Arch Neurol 30: 112–121CrossRefGoogle Scholar
  42. Dubois B, Ruberg M, Javoy Agid F, Ploska A, Agid Y (1983) A subcortico-cortical cholinergic system is affected in Parkinson’s disease. Brain Res 288: 213–218PubMedCrossRefGoogle Scholar
  43. Dubois B, Danze F, Pillon B, Cusimano G, Agid Y, Lhermitte F (1987) Cholinergic-dependent cognitive deficits in Parkinson’s disease. Ann Neurol 22: 26–30PubMedCrossRefGoogle Scholar
  44. Dubois B, Pillon B, Lhermitte F, Agid Y (1990) Cholinergic deficiency and frontal dysfunction in Parkinson’s disease. Ann Neurol 28: 117–121PubMedCrossRefGoogle Scholar
  45. Eckerman DA, Winford AG, Edwards JD et al. (1980) Effects of scopolamine, pentobarbital and amphetamine on radial arm maze performance in the rat. Pharmacol Biochem Behav 12: 595–602PubMedCrossRefGoogle Scholar
  46. Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Wien Klin Wochenschr 72: 1236Google Scholar
  47. Elizan TS, Sroka H, Maker H, Smith H, Yahr MD (1986) Dementia in idiopathic Parkinson’s disease: variables associated with its occurrence in 203 patients. J Neural Transm 65: 285–302PubMedCrossRefGoogle Scholar
  48. Epelbaum J, Ruberg M, Moyse E, Javoy-Agid F, Dubois B, Agid Y (1983) Somatostatin and dementia in Parkinson’s disease. Brain Res 278: 376–379PubMedCrossRefGoogle Scholar
  49. Everett BJ, Robbins TW, Evenden JL, Marston HM, Jones GH, Sirkiä TE (1987) The effects of excitotoxic lesions of the substantia innominata, ventral and dorsal globus pallidus on the acquisition and retention of a conditional visual discrimination: implications for cholinergic hypotheses of learning and memory. Neuroscience 22: 441–469CrossRefGoogle Scholar
  50. Flicker C, Dean RC, Watkins DL et al. (1983) Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic imput to the neocortex in the rat. Pharmacol Biochem Behav 18: 973–981PubMedCrossRefGoogle Scholar
  51. Flowers KA, Robertson C (1985) The effects of Parkinson’s disease on the ability to maintain a mental set. J Neurol Neurosurg Psychiatry 48: 517–529PubMedCrossRefGoogle Scholar
  52. Garron DC, Klawans HL, Narin F (1972) Intellectual functioning of persons with idiopathic parkinsonism. Nerv Ment Dis 154: 445–452CrossRefGoogle Scholar
  53. Gaspar P, Gray F (1984) Dementia in idiopathic Parkinson’s disease: a neuropathological study on 32 cases. Acta Neuropathol 64:43–53PubMedCrossRefGoogle Scholar
  54. Gibb WRG (1989) Dementia and Parkinson’s disease. Br J Psychiatry 54: 596–614CrossRefGoogle Scholar
  55. Girotti F, Soliveri F, Carella F, Piccolo I, Caffarra P, Musicco M, Caraceni T (1988) Dementia and cognitive impairment in Parkinson’s disease. J Neurol Neurosurg Psychiatry 51: 1498–1502PubMedCrossRefGoogle Scholar
  56. Goldenberg G, Wimmer A, Auff E, Schnaberth G (1986) Impairment of motor planring in patients with Parkinson’s disease: evidence for ideomotor apraxia. J Neurol Neurosurg Psychiatry 49: 1266–1272PubMedCrossRefGoogle Scholar
  57. Gowers WR (1899) Paralysis agitans. In: Allbutt, Rolleston (eds) A system of medicine, vol VIII. Macmillan, LondonGoogle Scholar
  58. Green AR, Heal DJ (1985) The effects of drugs on serotonin-mediated behavioural model. In: Green AR (ed) Neuropharmacology of serotonin. Oxford University Press, Oxford, pp 326–365Google Scholar
  59. Grossman M, Carvell S, Gollomp S, Stern MB, Vernon G, Hurtig HI (1991) Sentence comprehension and praxis deficits in Parkinson’s disease. Neurology 41: 1620–1626PubMedCrossRefGoogle Scholar
  60. Growdon JH, Corkin S, Rosen JT (1990) Distinctive aspects of cognitive dysfuntion in Parkinson’s disease. Adv Neurol 53: 365–376PubMedGoogle Scholar
  61. Hardy J, Adolfsson R, Alafuzoff I et al. (1985) Transmitter deficits in Alzheimer’s disease. Neurochem Int 7: 545–563PubMedCrossRefGoogle Scholar
  62. Hayden MR, Martin WRW, Stoessl AJ et al. (1986) Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology 36: 888–894PubMedCrossRefGoogle Scholar
  63. Helkala EL, Laulumaa U, Soininen H, Riekkinen PJ (1988) Recall and recognition memory in patients with Alzheimer’s and Parkinson’s diseases. Ann Neurol 24: 214–217PubMedCrossRefGoogle Scholar
  64. Hepler DJ, Wenk GJ, Cribbs BJ et al. (1985) Memory impairments following basal forebrain lesions. Brain Res 346: 8–14PubMedCrossRefGoogle Scholar
  65. Hornykiewicz O (1966) Dopamine (3-hydroxy-tyramine) and brain function. Pharmacol Rev 8: 925–964Google Scholar
  66. Huber SJ, Shuttleworth EL, Paulson GW (1986) Dementia in Parkinson’s disease. Arch Neurol 43: 987–990PubMedCrossRefGoogle Scholar
  67. Huber SJ, Freidenberg DL, Shuttleworth EC et al. (1989a) Neuropsychological impairments associated with severity of Parkinson’s disease. J Neuropsychiatr Clin Neurosci 1: 154–158Google Scholar
  68. Huber SJ, Shuttleworth EC, Freidenberg DL (1989b) Neuropsychological differences between the dementias of Alzheimer’s and Parkinson’s disease. Arch Neurol 46: 1287–1291PubMedCrossRefGoogle Scholar
  69. Innis RB, Seibyl JP, Scanley BE et al. (1993) Single photon emission computed tomography imaging demonstrates loss of striatal dopamine transporters in Parkinson’s disease. Proc Natl Acad Sci USA 90: 11965–11969PubMedCrossRefGoogle Scholar
  70. Iversen SD (1984) Cortical monoamines and behavior. In: Descarriers L, Reader TA, Jasper HH (eds) Monoamine innervation of cerebral cortex. Alan R Liss, New York, pp 321–349Google Scholar
  71. Jacobs D, Marder K, Cote L, Sano M, Stern Y, Mayeux R (1995) Neuropsychological characteristics of preclinical dementia in Parkinson’s dialease. Neurology 45: 1691–1696PubMedCrossRefGoogle Scholar
  72. Javoy-Agid F, Agid Y (1980) Is the mesocortical dopaminergic system involved in Parkinson’s disease? Neurology 30: 1326–1330PubMedCrossRefGoogle Scholar
  73. Jellinger K (1986) Overview of morphological changes in Parkinson’s disease. Adv Neurol 45: 1–18Google Scholar
  74. Kopelman MD, Corn TH (1988) Cholinergic „blockade“ as a model for cholinergic depletion. Brain 111: 1079–1110PubMedCrossRefGoogle Scholar
  75. Kuhl DE, Phelps ME, Markham CH, Metter KJ, Riege WH, Winter J (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomography. Ann Neurol 12: 425–434PubMedCrossRefGoogle Scholar
  76. Kuikka JT, Bergström KA, Vanninen E, Laulumaa V, Hartikainen P, Lansimies E (1993) Initial experience with single photon emission tomography using iodine-123-labelled 2ß-carbomethoxy-3ß-(4-iodophenyl)-tropane. Eur J Nucl Med 21: 53–56Google Scholar
  77. Lange KW, Wells FR, Rossor MN, Jenner P, Marsden CD (1989) Brain muscarinic receptors in Alzheimer’s diseases. Lancet 334: 1279CrossRefGoogle Scholar
  78. Lange, KW, Jenner P, Marsden CD (1990) Dementia in Parkinson’s disease and central cholinergic function. In: Nagatsu T, Fisher A, Yoshida M (eds) Basic clinical and therapeutic aspects of Alzheimer’s and Parkinson’s diseases, vol 1. Plenum Press, NewYork, pp 537–542CrossRefGoogle Scholar
  79. Lange KW, Wells FR, Rossor MN, Jenner P, Marsden CD (1991) Cortical nicotinic receptors in Alzheimer’s disease and Parkinson’s disease. J Neurol Neurosurg Psychiatry 54: 373–374PubMedCrossRefGoogle Scholar
  80. Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM (1992a) L-Dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology 107: 394–404PubMedCrossRefGoogle Scholar
  81. Unge KW, Paul GM, Quinn NP, Robbins TW, Marsden CD (1992b) Planning and visuospatial memory at varying stages of Huntington’s disease. Mov Disord 7: 300–301Google Scholar
  82. Lange KW, Paul GM, Robbins TW, Marsden CD (1992c) L-DOPA and frontal cognitive funetion in Parkinson’s disease. Adv Neurol 60: 475–478Google Scholar
  83. Lange KW, Wells FR, Jenner P, Marsden CD (1993) Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson’s disease. J Neurochem 60: 197–203PubMedCrossRefGoogle Scholar
  84. Lange KW, Marsden CD, Paul GM, Robbins TW (1994) Vergleichende Untersuchungen zu Gedächtnisfunktionen bei Morbus Parkinson und Morbus Alzheimer. In: Kuhn W, Büttner T, Heinemann W, Frey C, Schneider K, Zierden E, Przuntek H (Hrsg) Altern, Gehirn und PersÖnlichkeit. Huber, Bern, S 224–227Google Scholar
  85. Lange KW, Paul GM, Naumann M, Gsell W (1995a) Dopaminergic effects on cognitive performance in patients with Parkinson’s disease. J Neural Transm [Suppl] 46: 423–432Google Scholar
  86. Lange KW, Tucha O, Steup A, Gsell W, Naumann M (1995b) Subjective time estimation in Parkinson’s disease. J Neural Transm [Suppl] 46: 433–438Google Scholar
  87. Lange KW, WÖber C, Naumann M, BRÜcke T (1999) Problem solving of patients with Parkinson’s disease and [123I]-ß-CIT binding in the striatum (in Vorbereitung)Google Scholar
  88. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine synthesis. Science 219: 979–980PubMedCrossRefGoogle Scholar
  89. Lawrence AD, Sahakian BJ, Hodges JR, Roser AE, Lange KW, Robbins TW (1996) Executive and mnemonic functions in early Huntington’s disease. Brain 119: 1633–1645PubMedCrossRefGoogle Scholar
  90. Leenders KL, Salmon KP, Tyrrell P, Perani D, Brooks DJ, Sagar H, Jones T, Marsden CD, Frackowiak RS (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteers and patients with Parkinson’s disease. Arch Neurol 47: 1290–1298PubMedCrossRefGoogle Scholar
  91. Lees AR, Smith E (1983) Cognitive deficits in the early stages of Parkinson’s disease. Brain 106: 257–270PubMedCrossRefGoogle Scholar
  92. Levin B, Llabre MM, Weiner WJ (1989) Cognitive impairments associated with early Parkinson’s disease. Neurology 39: 557–561PubMedCrossRefGoogle Scholar
  93. Levin BE, Llabre MM, Raisman S (1991) Visuospatial impairment in Parkinson’s disease. Neurology 41: 365–369PubMedCrossRefGoogle Scholar
  94. Litvan I, Mohr E, Williams J, Gomez C, Chase TN (1991) Differential memory and executive functions in demented patients with Parkinson’s and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 54: 25–29PubMedCrossRefGoogle Scholar
  95. Loranger AW, Goodell H, Mcdowell FH, Lee JE, Sweet RD (1972) Intellectual impairment in Parkinson’s syndrome. Brain 95: 405–412PubMedCrossRefGoogle Scholar
  96. Loranger AW, Goodell H, Mcdowell FH, Lee JE, Sweet RD (1973) Parkinsonism, L-dopa and intelligence. Am J Psychiatry 130: 1386–1389PubMedGoogle Scholar
  97. Malapani C, Pillon B, Dubois B, Agid Y (1994) Impaired simultaneous cognitive task performance in Parkinson’s disease: a dopamine-related dysfunction. Neurology 44: 319–326PubMedCrossRefGoogle Scholar
  98. Mann DMA (1983) The locus coeruleus and its possible role in ageing and degenerative disease of the human CNS. Mech Ageing Dev 23: 73–94PubMedCrossRefGoogle Scholar
  99. Mann DMA, Yates PO, Hawkes J (1983) The pathology of the human locus coeruleus. Clin Neuropathol 2: 1–7PubMedGoogle Scholar
  100. Mason ST, Iversen SD (1978) Reward, attention, and the dorsal noradrenergic bundle. Brain Res 150: 135–148PubMedCrossRefGoogle Scholar
  101. Maritila RJ, Rinne UK (1976) Dementia in Parkinson’s disease. Acta Neurol Scand 54: 431–441CrossRefGoogle Scholar
  102. Mash DC, Flynn DD, Poter LT (1985) Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science 228: 1115–1117PubMedCrossRefGoogle Scholar
  103. Matison R, Mayeux R, Rosen J, Fahn S (1982) „Tip-of-the-tongue“ phenomenon in Parkinson’s disease. Neurology 32: 567–570PubMedCrossRefGoogle Scholar
  104. Matthews CG, York-Haaland KY (1979) The effect of symptom duration on cognitive and motor performance in parkinsonism. Neurology 29: 951–956PubMedCrossRefGoogle Scholar
  105. Mayeux R, Stern Y, Rosenste IN, Marder K, Hauser A, Cote L, Fahn S (1988) An estimate of the prevalence of dementia in idiopathic Parkinson’s disease. Arch Neurol 45: 260–262PubMedCrossRefGoogle Scholar
  106. Meier MJ, Martin WE (1970) Intellectual changes associated with levodopa therapy. J Am Med Assoc 213: 465–466CrossRefGoogle Scholar
  107. Meyers B (1965) Some effects of scopolamine on a passive avoidance response in rats. Psychopharmacologia 8: 111–119PubMedCrossRefGoogle Scholar
  108. Mortimer JA, Pirozzolo FJ, Hansch EC, Webster DD (1982) Relationship of motor symptoms to intellectual deficits in Parkinson’s disease. Neurology 32: 133–137PubMedCrossRefGoogle Scholar
  109. Nakano I, Hirano A (1984) Parkinson’s disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease. Ann Neurol 15: 415–418PubMedCrossRefGoogle Scholar
  110. Nyberg P, Nordberg A, Webster P, Winblad B (1983) Dopaminergic deficiency is more pronounced in putamen than in nucleus caudatus in Parkinson’s disease. Neurochem Pathol 1: 193–202CrossRefGoogle Scholar
  111. Öberg RGE, Divac I (1975) Dissociative effects of selective lesions in the caudate nucleus of cats and rats. Acta Neurobiol Exp 35: 675–689Google Scholar
  112. Ogren SO, Archer T, Ross SB (1980) Evidence for a role of the locus coeruleus noradrenaline system in learning. Neurosci Lett 20: 351–356PubMedCrossRefGoogle Scholar
  113. Ogren SO, Archer T, Ross CB (1984) Norepinephrine in learning and memory — the status of cognitive deficit. In: Usdin E, Carlsson A, Dahlstrom A, Engel J (eds) Catecholamines: neuropharmacology and central nervous system — theoretical aspects. Alan R Liss, New York, pp 285–292Google Scholar
  114. Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW (1991) Extradimensional versus intradimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalohippocampectomy in man. Neuropsychologia 29: 993–1006PubMedCrossRefGoogle Scholar
  115. Owen AM, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Lange KW, Robbins TW (1992) Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 115: 1727–1751PubMedCrossRefGoogle Scholar
  116. Parkinson J (1817) An essay on the shaking palsy. Sherwood, Neely, and Jones, LondonGoogle Scholar
  117. Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J ii: 1457–1459CrossRefGoogle Scholar
  118. Perry EK, Curtis M, Dick DJ, Candy JM, Atack JR, Bloxham CA, Blessed G, Fairbairn A, Tomlinson B, Perry RH (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48: 413–421PubMedCrossRefGoogle Scholar
  119. Pillon B, Dubois B, Lhermitte F, Agid Y (1986) Heterogeneity of cognitive impairment in progressive supranuclear palsy, Parkinson’s disease and Alzheimer’s disease. Neurology 36: 1179–1185PubMedCrossRefGoogle Scholar
  120. Pillon B, Dubois B, Bonnet AM, Esteguy M, Guimaraes J, Vigouret JM, Lhermitte F, Agid Y (1989a) Cognitive „slowing“ in Parkinson’s disease fails to respond to levodopa treatment: „Tine 15 objects test“. Neurology 39: 762–768PubMedCrossRefGoogle Scholar
  121. Pillon B, Dubois B, Cusimano G, Bonnet AM, Lhermitte F, Agid Y (1989b) Does cognitive impairment in Parkinson’s disease result from non-dopaminergic lesions? J Neurol Neurosurg Psychiatry 52: 201–206PubMedCrossRefGoogle Scholar
  122. Pillon B, Dubois B, Ploska A, Agid Y (1991) Severity and specificity of cognitive impairment in Alzheimer’s, Huntington’s and Parkinson’s diseases, and progressive supranuclear palsy. Neurology 41: 634–643PubMedCrossRefGoogle Scholar
  123. Pillon B, Deweer B, Agid Y, Dubois B (1993) Explicit memory in Alzheimer’s, Huntington’s and Parkinson’s diseases. Arch Neurol 50: 374–379PubMedCrossRefGoogle Scholar
  124. Pirozzolo FJ, Hansch EC, Mortimer JA, Webster DD, Kuskowski MA (1982) Dementia in Parkinson’s disease: a neuropsychological analysis. Brain Cogn 1: 71–83PubMedCrossRefGoogle Scholar
  125. Portin R, Rinne UK (1980) Neuropsychological responses of parkinsonian patients to long-term levodopa therapy. In: Klinger M, Stamm G (eds) Parkinson’s disease: current progress, problems and management. Elsevier/North Holland, Amsterdam, pp 271–304Google Scholar
  126. Proctor F, Riklan M, Cooper ST, Teuber HL (1964) Judgement of visual and postural vertical by Parkinsonism patients. Neurology 14: 287–293PubMedCrossRefGoogle Scholar
  127. Pullman SL, Watts RL, Juncos JL, Chase TN, Sanes JN (1988) Dopaminergic effects on simple and choice reaction time performance in Parkinson’s disease. Neurology 38: 249–254PubMedCrossRefGoogle Scholar
  128. Quinn N, Critchley P, Marsden CD (1987) Young onset Parkinson’s disease. Mov Disord 2: 73–91PubMedCrossRefGoogle Scholar
  129. Reitan RM, Boll TJ (1971) Intellectual and cognitive functions in Parkinson’s disease. J Consult Clin Psychol 37: 364–369PubMedCrossRefGoogle Scholar
  130. Ridley RM, Baker HF, Drewett BS, Johnson JA (1985) Effects of ibotenic acid lesions of the basal forebrain on serial reversal learning in the marmoset. Psychopharmacology 86: 438–449PubMedCrossRefGoogle Scholar
  131. Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. Brain 107: 1083–1094Google Scholar
  132. Riklan M, Diller L, Weiner H, Cooper IS (1960) Psychological studies on effects of chemosur-gery of the basal ganglia in parkinsonism. I. Intellectual functioning. Arch Gen Psychiatry 2: 22–32Google Scholar
  133. Riklan M, Levita E, Cooper IS (1966) Psychological effects of bilateral subcortical surgery for Parkinson’s disease. J Nerv Ment Dis 141: 403–409CrossRefGoogle Scholar
  134. Riklan M, Whelihan W, Cullinan T (1976) Levodopa and psychometric test performance in parkinsonism — 5 years later. Neurology 26: 173–179PubMedCrossRefGoogle Scholar
  135. Rinne JO, Laakso K, Lönnberg P, Mölsä P, Paljärvi L, Rinne JK et al. (1985) Brain muscarinic receptors in senile dementia. Brain Res 336: 19–25PubMedCrossRefGoogle Scholar
  136. Rinne JO, Rummukainen J, Paljärvi L, Rinne UK (1989) Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra. Ann Neurol 26: 47–50PubMedCrossRefGoogle Scholar
  137. Robbins TW, James M, Owen AM, Lange KW, Lees AJ, Leigh PN, Marsden CD, Quinn NP, Summers BA (1994) Cognitive deficits in progressive supranuclear palsy, Parkinson’s disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. J Neurol Neurosurg Psychiatry 57: 79–88PubMedCrossRefGoogle Scholar
  138. Ruberg M, Agid Y (1988) Dementia in Parkinson’s disease. In: Iversen L, Iversen SD, Snyder SH (eds) Psychopharmacology of aging nervous system. Plenum Press, New York, pp 157–205 (Handb Psychopharmacol, vol 20)Google Scholar
  139. Ruberg M, Ploska A, Javoy-Agid F, Agid Y (1982) Muscarinic binding and choline acetyltrans-ferase in parkinsonian subjects with reference to dementia. Brain Res 232: 129–139PubMedCrossRefGoogle Scholar
  140. Ruberg M, Rieger F, Villageois A et al. (1986) Acetylcholinesterase and butylcholinesterase in frontal cortex and cerebrospinal fluid of demented and non-demented patients with Parkinson’s disease. Brain Res 362: 83–91PubMedCrossRefGoogle Scholar
  141. Sahakian BJ, Morris RG, Evenden JL, Heald A, Levy R, Philpot M, Robbins TW (1988) A comparative study of visuospatial memory and learning in Alzheimer’s type dementia and Parkinson’s disease. Brain 111: 695–718PubMedCrossRefGoogle Scholar
  142. Saint-Cyr JA, Taylor AE, Lang AE (1988) Procedural learning and neostriatal dysfunction in man. Brain 111: 941–959PubMedCrossRefGoogle Scholar
  143. Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275: 321–328PubMedCrossRefGoogle Scholar
  144. Sirviö J, Rinne JO, Valjakka A, Rinne UK, Riekkinen PJ, Paljärvi L (1989) Different forms of brain acetylcholinesterase and muscarinic binding in Parkinson’s disease. J Neurol Sci 90: 23–32PubMedCrossRefGoogle Scholar
  145. Squire LR (1969) Effects of pretrial and postrial administration of cholinergic and anticholinergic drugs on spontaneous alternation. J Comp Physiol Psychol 69: 69–75PubMedCrossRefGoogle Scholar
  146. Stephens DA (1967) Psychotoxic effects of benzhexol hydrochloride (Aitane). Br J Psychiatry 113: 213–218PubMedCrossRefGoogle Scholar
  147. Stern Y, Langston JW (1985) Intellectual changes in patients with MPTP-induced Parkinsonism. Neurology 35: 1506–1509PubMedCrossRefGoogle Scholar
  148. Stern Y, Mayeux R, Cote L (1984) Reaction time and vigilance in Parkinson’s disease: possible role of norepinephrine metabolism. Arch Neurol 41: 1086–1089PubMedCrossRefGoogle Scholar
  149. Stern Y, Tetrud JW, Martin WR, Kutner SJ, Langston JW (1990) Cognitive changes following MPTP exposure. Neurology 40: 261–264PubMedCrossRefGoogle Scholar
  150. Stern Y, Richards M, Sano M, Mayeux R (1993) Comparison of cognitive changes in patients with Alzheimer’s and Parkinson’s disease. Arch Neurol 50: 1040–1045PubMedCrossRefGoogle Scholar
  151. Stuss DT, Benson DF (1986) The frontal lobes. Raven Press, New YorkGoogle Scholar
  152. Sunderland R, Tariot P, Newhouse P (1988) Differential responsivity of mood, behavior, and cognition to cholinergic agents in elderly neuropsychiatrie population. Brain Res Rev 13: 371–389CrossRefGoogle Scholar
  153. Tagliavini F, Pilleri G, Bouras C, Constantinidis J (1984) The basal nucleus of Meynert in idiopathic Parkinson’s disease. Acta Neurol Scand 69: 20–28CrossRefGoogle Scholar
  154. Taylor AE, Saint-Cyr JA, Lang AE (1985) Dementia prevalence in Parkinson’s disease. Lancet i: 1037CrossRefGoogle Scholar
  155. Taylor AE, Saint-Cyr JA, Lang AE (1986) Frontal lobe dysfunction in Parkinson’s disease. Brain 109: 845–883PubMedCrossRefGoogle Scholar
  156. Taylor AE, Saint-Cyr JA, Lang AE (1987) Parkinson’s disease: cognitive changes in relation to treatment response. Brain 110: 35–51PubMedCrossRefGoogle Scholar
  157. Taylor JR, Elsworth JD, Roth RH, Sladek JR, Redmond DE (1990) Cognitive and motor deficits in the acquisition of an object retrieval detour task in MPTP-treated monkeys. Brain 113: 617–637PubMedCrossRefGoogle Scholar
  158. Trousseau A (1861) Tremblement senile et paralysie agitante. Clinique mÉdical de l’Hôtel Dieu de Paris. Baillière, ParisGoogle Scholar
  159. Villardita C, Smirni P, Le Pira F, Zappala G, Nicoletti F (1982) Mental deterioration, visuo-perceptive disabilities and constructional apraxia in Parkinson’s disease. Acta Neurol Scand 66: 112–120PubMedCrossRefGoogle Scholar
  160. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44: 559–577PubMedCrossRefGoogle Scholar
  161. Wechsler D (1955) The Wechsler Adult Intelligence Scale (Manual). Psychological Corporation, New YorkGoogle Scholar
  162. Weingartner H, Burns S, Diebel R, Le Witt PA (1984) Cognitive impairment in Parkinson’s disease: distinguishing between effort-demanding and automatic cognitive processes. Psychiatry Res 11: 223–235PubMedCrossRefGoogle Scholar
  163. Westlind A, Grynfarb M, Hedlund B, Bartfai T, Fuxe K (1981) Muscarinic supersensitivity induced by septal lesion or chronic atropine treatment. Brain Res 225: 131–141PubMedCrossRefGoogle Scholar
  164. Whitehouse J (1964) Effects of atropine on discrimination learning in the rat. J Comp Physiol Psychol 57: 13–15PubMedCrossRefGoogle Scholar
  165. Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13: 243–248PubMedCrossRefGoogle Scholar
  166. Wishaw IS, O’Connor WT, Dunnett SB (1985) Disruption of central cholinergic mechanisms in the rat by basal forebrain lesions or atropine: effects on feeding, sensorimotor behaviour, locomotor activity and spatial navigation. Behav Brain Res 17: 103–115CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • K. W. Lange

There are no affiliations available

Personalised recommendations