Skip to main content

Exkurs: Kognitive Störungen bei Morbus Parkinson

  • Chapter
Neuro-Psychopharmaka Ein Therapie-Handbuch
  • 93 Accesses

Zusammenfassung

Motorische Störungen wie progrediente Be-wegungsverlangsamung, erhÖhter Muskeltonus, Ruhetremor und Auffälligkeiten von Haltung und Gang bestimmen das klinische Bild der Parkinsonkrankheit. Hinsichtlich mÖglicher kognitiver Veränderungen stellte James Parkinson (1817) bei der Erstbeschreibung der Erkrankung fest, daß die intellektuellen Fähigkeiten der Patienten nicht beeinträchtigt seien. Allerdings weist das sorgfältige Studium von Parkinsons Monographie auf einen abnormen mentalen Status bei zumindest einem der von ihm beschriebenen sechs Patienten hin. Gegen Ende des 19. Jahrhunderts vertraten franzÖsische und englische Neurologen die Auffassung, daß Parkinsonkranke vor allem in den späten Krankheitsstadien durchaus kognitive Einbußen wie z. B. GedächtnisstÖrungen aufweisen (Trousseau 1886, Charcot 1872, Gowers 1899).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Agid Y, Ruberg M, Raisman R, Hirsch E, Javoy-Agid F (1990) The biochemistry of Parkinson’s disease. In: Stern G (ed) Parkinson’s disease. Chapman and Hall, London, pp 99–125

    Google Scholar 

  • Alexander GÈ, De Long MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381

    Article  PubMed  CAS  Google Scholar 

  • Alpern HP, Marriott JG (1973) Short-term memory: facilitation and disruption with anticholinergic agents. Physiol Behav 11: 571–575

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association (1980) Diagnostic and statistical manual of mental disorders, 3rd ed. American Psychiatric Association, Washington DC

    Google Scholar 

  • Asso D (1969) WAIS scores in a group of Parkinson patients. Br J Psychiatry 115: 555–556

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Johnston HR (1976) Short-term memory in the rhesus monkey: disruption from the anti-cholinergic scopolamine. Pharmacol Biochem Behav 5: 39–46

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL III, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417

    Article  PubMed  CAS  Google Scholar 

  • Eardsley JV, Puletti F (1971) Personality (MMPI) and cognitive (WAIS) changes after levodopa treatment. Occurrence in patients with Parkinson’s disease. Arch Neurol 25: 145–150

    Google Scholar 

  • Bentin S, Silverberg R, Gordon HW (1981) Asymmetrical cognitive deterioration in demented and parkinson patients. Cortex 17: 533–544

    PubMed  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20: 415–455

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1961) Der L-Dioxyphenylalanin-Effekt beim Parkinson-Syndrom des Menschen. Arch Psychiat Nervenkr 203: 560

    Article  Google Scholar 

  • Björklund A, Lindvall O (1984) Dopamine containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 2. Classical transmitters in the CNS, part 1. Elsevier, London, pp 55–122

    Google Scholar 

  • Björklund A, Divac I, Lindvall D (1978) Regional distribution of catecholamines in monkey cerebral cortex, evidence for a dopaminergic innervation of the primate prefrontal cortex. Neurosci Lett 7: 115–119

    Article  PubMed  Google Scholar 

  • Boller F (1980) Mental status of patients with Parkinson’s disease. J Clin Neuropsychol 2: 157–172

    Article  Google Scholar 

  • Boller F, Passafiume D, Keefe NC, Rogers K, Kim Y (1984) Visuospatial impairment in Parkinson’s disease. Arch Neurol 41: 485–490

    Article  PubMed  CAS  Google Scholar 

  • Bowen FP, Kamienny RS, Burns MM, Yahr MD (1975) Parkinsonism: effects of levodopa on concept formation. Neurology 25: 701–704

    Article  PubMed  CAS  Google Scholar 

  • Broks P, Preston GC, Traub M et al. (1988) Modelling dementia: effects of scopolamine on memory and attention. Neuropsychologia 26/5: 685–700

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ (1990) Differing patterns of striatal 18F-Dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 28: 547–555

    Article  PubMed  CAS  Google Scholar 

  • Brown RG, Marsden CD (1984) How common is dementia in Parkinson’s disease? Lancet ii: 1262–1265

    Article  Google Scholar 

  • Brown RG, Marsden CD (1986) Visuospatial function in Parkinson’s disease. Brain 109: 987–1002

    Article  PubMed  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold ME, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205: 929–931

    Article  PubMed  CAS  Google Scholar 

  • Brücke T, Kornhuber J, Angelberger P, Asenbaum S, Frassine H, Podreka I (1993) Spect imaging of dopamine and serotonin transporters with [123I]ß-CIT. Binding kinetics in the human brain. J Neural Transm [Gen Sec] 94: 137–146

    Article  Google Scholar 

  • Buresova O, Bures J, Bohdanecky Z, Weiss T (1964) Effect of atropine on learning, extinction, retention and retrieval in rats. Psychopharmacologia 5: 255–263

    Article  PubMed  CAS  Google Scholar 

  • Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF, Tomlinson BE (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 54: 277–289

    Article  Google Scholar 

  • Cash R, Dennis T, L’heureux R, Raisman R, Javoy-Agid F, Scatton B (1987) Parkinson’s disease and dementia. Norepinephrine and dopamine in locus coeruleus. Neurology 37: 42–46

    Article  PubMed  CAS  Google Scholar 

  • Celesia GG, Wanamaker WM (1972) Psychiatric disturbances in Parkinson’s disease. Dis Nerv Syst 33: 577–583

    PubMed  CAS  Google Scholar 

  • Charcot JM (1872) Leçons sur les maledies du Système Nerveux. Cinquième Leçon: de la paralysie agitante. Bourneville Ed, Paris, Del-haye

    Google Scholar 

  • Christensen AL, Juul-Jensen P, Malmros R, Harmsen A (1970) Psychological evaluation of intelligence and personality in parkinsonism before and after stereotaxic surgery. Acta Neurol Scand 46: 527–537

    Article  PubMed  CAS  Google Scholar 

  • Cools AR, Van Den Bercken JHL, Horstink MWI, Van Spaendonckkpm, L Berger HJC (1984) Cognitive and motor shifting aptitude disorder in Parkinson’s disease. J Neurol Neurosurg Psychiatry 47: 443–453

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA, Sagar HJ, Jordan N, Harvey NS, Sullivan E (1991) Cognitive impairment in early, untreated Parkinson’s disease and ist relationship to motor disability. Brain 114: 2095–2122

    Article  PubMed  Google Scholar 

  • Cooper JA, Sagar HJ, Doherty SM, Jordan N, Tidswell P, Sullivan EV (1992) Different effects of dopaminergic and anticholinergic therapies on cognitive and motor function in Parkinson’s disease. A follow-up study of untreated patients. Brain 115: 1701–1725

    Google Scholar 

  • Cummings JL (1988) Intellectual impairment in Parkinson’s disease: clinical pathological and biochemical correlates. J Geriatr Psychiatry Neurol 1: 24–36

    Article  PubMed  CAS  Google Scholar 

  • Cummings JL, Darkins A, Mendez M, Hill MA, Benson DF (1988) Alzheimer’s disease and Parkinson’s disease: comparison of speech and language alterations. Neurology 38: 680–684

    Article  PubMed  CAS  Google Scholar 

  • Danta A, Hilton RC (1975) Judgement of the visual vertical and horizontal in patients with parkinsonism. Neurology 25:43–47

    Article  PubMed  CAS  Google Scholar 

  • Davies P, Verth AH (1978) Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer’s type dementia brains. Brain Res 138: 385–392

    Article  Google Scholar 

  • Della Sala S, Di Lorenzo G, Giordano G, Spinnler H (1986) Is there a specific visuo-spatial impairment in Parkinsonians? J Neurol Neurosurg Psychiatry 49: 1258–1265

    Article  PubMed  CAS  Google Scholar 

  • De Smet Y, Ruberg M, Serdaru M, Dubois B, Lhermitte F, Agid Y (1982) Confusion, dementia and anticholinergics in Parkinson’s disease. J Neurol Neurosurg Psychiatry 45: 1161–1164

    Article  PubMed  Google Scholar 

  • Divac I (1972) Delayed alternation in cats with lesions of the prefrontal cortex and the caudate nucleus. Physiol Behav 8: 519–522

    Article  PubMed  CAS  Google Scholar 

  • Dom R, Malfroid M, Maro F (1976) Neuropathology of Huntington’s chorea: studies of the ventrobasal complex of the thalamus. Neurology 26: 64–68

    Article  PubMed  CAS  Google Scholar 

  • Downes JJ, Roberts AC, Sahakian BJ, Evenden JL, Morris RG, Robbins TW (1989) Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson’s disease: evidence for a specific attentional dysfunction. Neuropsychologia 27: 1329–1343

    Article  PubMed  CAS  Google Scholar 

  • Drachman DA, Leavitt J (1974) Human memory and the cholinergic system. Arch Neurol 30: 112–121

    Article  Google Scholar 

  • Dubois B, Ruberg M, Javoy Agid F, Ploska A, Agid Y (1983) A subcortico-cortical cholinergic system is affected in Parkinson’s disease. Brain Res 288: 213–218

    Article  PubMed  CAS  Google Scholar 

  • Dubois B, Danze F, Pillon B, Cusimano G, Agid Y, Lhermitte F (1987) Cholinergic-dependent cognitive deficits in Parkinson’s disease. Ann Neurol 22: 26–30

    Article  PubMed  CAS  Google Scholar 

  • Dubois B, Pillon B, Lhermitte F, Agid Y (1990) Cholinergic deficiency and frontal dysfunction in Parkinson’s disease. Ann Neurol 28: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Eckerman DA, Winford AG, Edwards JD et al. (1980) Effects of scopolamine, pentobarbital and amphetamine on radial arm maze performance in the rat. Pharmacol Biochem Behav 12: 595–602

    Article  PubMed  CAS  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Wien Klin Wochenschr 72: 1236

    Google Scholar 

  • Elizan TS, Sroka H, Maker H, Smith H, Yahr MD (1986) Dementia in idiopathic Parkinson’s disease: variables associated with its occurrence in 203 patients. J Neural Transm 65: 285–302

    Article  PubMed  CAS  Google Scholar 

  • Epelbaum J, Ruberg M, Moyse E, Javoy-Agid F, Dubois B, Agid Y (1983) Somatostatin and dementia in Parkinson’s disease. Brain Res 278: 376–379

    Article  PubMed  CAS  Google Scholar 

  • Everett BJ, Robbins TW, Evenden JL, Marston HM, Jones GH, Sirkiä TE (1987) The effects of excitotoxic lesions of the substantia innominata, ventral and dorsal globus pallidus on the acquisition and retention of a conditional visual discrimination: implications for cholinergic hypotheses of learning and memory. Neuroscience 22: 441–469

    Article  Google Scholar 

  • Flicker C, Dean RC, Watkins DL et al. (1983) Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic imput to the neocortex in the rat. Pharmacol Biochem Behav 18: 973–981

    Article  PubMed  CAS  Google Scholar 

  • Flowers KA, Robertson C (1985) The effects of Parkinson’s disease on the ability to maintain a mental set. J Neurol Neurosurg Psychiatry 48: 517–529

    Article  PubMed  CAS  Google Scholar 

  • Garron DC, Klawans HL, Narin F (1972) Intellectual functioning of persons with idiopathic parkinsonism. Nerv Ment Dis 154: 445–452

    Article  CAS  Google Scholar 

  • Gaspar P, Gray F (1984) Dementia in idiopathic Parkinson’s disease: a neuropathological study on 32 cases. Acta Neuropathol 64:43–53

    Article  PubMed  CAS  Google Scholar 

  • Gibb WRG (1989) Dementia and Parkinson’s disease. Br J Psychiatry 54: 596–614

    Article  Google Scholar 

  • Girotti F, Soliveri F, Carella F, Piccolo I, Caffarra P, Musicco M, Caraceni T (1988) Dementia and cognitive impairment in Parkinson’s disease. J Neurol Neurosurg Psychiatry 51: 1498–1502

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg G, Wimmer A, Auff E, Schnaberth G (1986) Impairment of motor planring in patients with Parkinson’s disease: evidence for ideomotor apraxia. J Neurol Neurosurg Psychiatry 49: 1266–1272

    Article  PubMed  CAS  Google Scholar 

  • Gowers WR (1899) Paralysis agitans. In: Allbutt, Rolleston (eds) A system of medicine, vol VIII. Macmillan, London

    Google Scholar 

  • Green AR, Heal DJ (1985) The effects of drugs on serotonin-mediated behavioural model. In: Green AR (ed) Neuropharmacology of serotonin. Oxford University Press, Oxford, pp 326–365

    Google Scholar 

  • Grossman M, Carvell S, Gollomp S, Stern MB, Vernon G, Hurtig HI (1991) Sentence comprehension and praxis deficits in Parkinson’s disease. Neurology 41: 1620–1626

    Article  PubMed  CAS  Google Scholar 

  • Growdon JH, Corkin S, Rosen JT (1990) Distinctive aspects of cognitive dysfuntion in Parkinson’s disease. Adv Neurol 53: 365–376

    PubMed  CAS  Google Scholar 

  • Hardy J, Adolfsson R, Alafuzoff I et al. (1985) Transmitter deficits in Alzheimer’s disease. Neurochem Int 7: 545–563

    Article  PubMed  CAS  Google Scholar 

  • Hayden MR, Martin WRW, Stoessl AJ et al. (1986) Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology 36: 888–894

    Article  PubMed  CAS  Google Scholar 

  • Helkala EL, Laulumaa U, Soininen H, Riekkinen PJ (1988) Recall and recognition memory in patients with Alzheimer’s and Parkinson’s diseases. Ann Neurol 24: 214–217

    Article  PubMed  CAS  Google Scholar 

  • Hepler DJ, Wenk GJ, Cribbs BJ et al. (1985) Memory impairments following basal forebrain lesions. Brain Res 346: 8–14

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1966) Dopamine (3-hydroxy-tyramine) and brain function. Pharmacol Rev 8: 925–964

    Google Scholar 

  • Huber SJ, Shuttleworth EL, Paulson GW (1986) Dementia in Parkinson’s disease. Arch Neurol 43: 987–990

    Article  PubMed  CAS  Google Scholar 

  • Huber SJ, Freidenberg DL, Shuttleworth EC et al. (1989a) Neuropsychological impairments associated with severity of Parkinson’s disease. J Neuropsychiatr Clin Neurosci 1: 154–158

    CAS  Google Scholar 

  • Huber SJ, Shuttleworth EC, Freidenberg DL (1989b) Neuropsychological differences between the dementias of Alzheimer’s and Parkinson’s disease. Arch Neurol 46: 1287–1291

    Article  PubMed  CAS  Google Scholar 

  • Innis RB, Seibyl JP, Scanley BE et al. (1993) Single photon emission computed tomography imaging demonstrates loss of striatal dopamine transporters in Parkinson’s disease. Proc Natl Acad Sci USA 90: 11965–11969

    Article  PubMed  CAS  Google Scholar 

  • Iversen SD (1984) Cortical monoamines and behavior. In: Descarriers L, Reader TA, Jasper HH (eds) Monoamine innervation of cerebral cortex. Alan R Liss, New York, pp 321–349

    Google Scholar 

  • Jacobs D, Marder K, Cote L, Sano M, Stern Y, Mayeux R (1995) Neuropsychological characteristics of preclinical dementia in Parkinson’s dialease. Neurology 45: 1691–1696

    Article  PubMed  CAS  Google Scholar 

  • Javoy-Agid F, Agid Y (1980) Is the mesocortical dopaminergic system involved in Parkinson’s disease? Neurology 30: 1326–1330

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K (1986) Overview of morphological changes in Parkinson’s disease. Adv Neurol 45: 1–18

    Google Scholar 

  • Kopelman MD, Corn TH (1988) Cholinergic „blockade“ as a model for cholinergic depletion. Brain 111: 1079–1110

    Article  PubMed  Google Scholar 

  • Kuhl DE, Phelps ME, Markham CH, Metter KJ, Riege WH, Winter J (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomography. Ann Neurol 12: 425–434

    Article  PubMed  CAS  Google Scholar 

  • Kuikka JT, Bergström KA, Vanninen E, Laulumaa V, Hartikainen P, Lansimies E (1993) Initial experience with single photon emission tomography using iodine-123-labelled 2ß-carbomethoxy-3ß-(4-iodophenyl)-tropane. Eur J Nucl Med 21: 53–56

    Google Scholar 

  • Lange KW, Wells FR, Rossor MN, Jenner P, Marsden CD (1989) Brain muscarinic receptors in Alzheimer’s diseases. Lancet 334: 1279

    Article  Google Scholar 

  • Lange, KW, Jenner P, Marsden CD (1990) Dementia in Parkinson’s disease and central cholinergic function. In: Nagatsu T, Fisher A, Yoshida M (eds) Basic clinical and therapeutic aspects of Alzheimer’s and Parkinson’s diseases, vol 1. Plenum Press, NewYork, pp 537–542

    Chapter  Google Scholar 

  • Lange KW, Wells FR, Rossor MN, Jenner P, Marsden CD (1991) Cortical nicotinic receptors in Alzheimer’s disease and Parkinson’s disease. J Neurol Neurosurg Psychiatry 54: 373–374

    Article  PubMed  CAS  Google Scholar 

  • Lange KW, Robbins TW, Marsden CD, James M, Owen AM, Paul GM (1992a) L-Dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology 107: 394–404

    Article  PubMed  CAS  Google Scholar 

  • Unge KW, Paul GM, Quinn NP, Robbins TW, Marsden CD (1992b) Planning and visuospatial memory at varying stages of Huntington’s disease. Mov Disord 7: 300–301

    Google Scholar 

  • Lange KW, Paul GM, Robbins TW, Marsden CD (1992c) L-DOPA and frontal cognitive funetion in Parkinson’s disease. Adv Neurol 60: 475–478

    Google Scholar 

  • Lange KW, Wells FR, Jenner P, Marsden CD (1993) Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson’s disease. J Neurochem 60: 197–203

    Article  PubMed  CAS  Google Scholar 

  • Lange KW, Marsden CD, Paul GM, Robbins TW (1994) Vergleichende Untersuchungen zu Gedächtnisfunktionen bei Morbus Parkinson und Morbus Alzheimer. In: Kuhn W, Büttner T, Heinemann W, Frey C, Schneider K, Zierden E, Przuntek H (Hrsg) Altern, Gehirn und PersÖnlichkeit. Huber, Bern, S 224–227

    Google Scholar 

  • Lange KW, Paul GM, Naumann M, Gsell W (1995a) Dopaminergic effects on cognitive performance in patients with Parkinson’s disease. J Neural Transm [Suppl] 46: 423–432

    CAS  Google Scholar 

  • Lange KW, Tucha O, Steup A, Gsell W, Naumann M (1995b) Subjective time estimation in Parkinson’s disease. J Neural Transm [Suppl] 46: 433–438

    CAS  Google Scholar 

  • Lange KW, WÖber C, Naumann M, BRÜcke T (1999) Problem solving of patients with Parkinson’s disease and [123I]-ß-CIT binding in the striatum (in Vorbereitung)

    Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine synthesis. Science 219: 979–980

    Article  PubMed  CAS  Google Scholar 

  • Lawrence AD, Sahakian BJ, Hodges JR, Roser AE, Lange KW, Robbins TW (1996) Executive and mnemonic functions in early Huntington’s disease. Brain 119: 1633–1645

    Article  PubMed  Google Scholar 

  • Leenders KL, Salmon KP, Tyrrell P, Perani D, Brooks DJ, Sagar H, Jones T, Marsden CD, Frackowiak RS (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteers and patients with Parkinson’s disease. Arch Neurol 47: 1290–1298

    Article  PubMed  CAS  Google Scholar 

  • Lees AR, Smith E (1983) Cognitive deficits in the early stages of Parkinson’s disease. Brain 106: 257–270

    Article  PubMed  Google Scholar 

  • Levin B, Llabre MM, Weiner WJ (1989) Cognitive impairments associated with early Parkinson’s disease. Neurology 39: 557–561

    Article  PubMed  CAS  Google Scholar 

  • Levin BE, Llabre MM, Raisman S (1991) Visuospatial impairment in Parkinson’s disease. Neurology 41: 365–369

    Article  PubMed  CAS  Google Scholar 

  • Litvan I, Mohr E, Williams J, Gomez C, Chase TN (1991) Differential memory and executive functions in demented patients with Parkinson’s and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 54: 25–29

    Article  PubMed  CAS  Google Scholar 

  • Loranger AW, Goodell H, Mcdowell FH, Lee JE, Sweet RD (1972) Intellectual impairment in Parkinson’s syndrome. Brain 95: 405–412

    Article  PubMed  CAS  Google Scholar 

  • Loranger AW, Goodell H, Mcdowell FH, Lee JE, Sweet RD (1973) Parkinsonism, L-dopa and intelligence. Am J Psychiatry 130: 1386–1389

    PubMed  CAS  Google Scholar 

  • Malapani C, Pillon B, Dubois B, Agid Y (1994) Impaired simultaneous cognitive task performance in Parkinson’s disease: a dopamine-related dysfunction. Neurology 44: 319–326

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA (1983) The locus coeruleus and its possible role in ageing and degenerative disease of the human CNS. Mech Ageing Dev 23: 73–94

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA, Yates PO, Hawkes J (1983) The pathology of the human locus coeruleus. Clin Neuropathol 2: 1–7

    PubMed  CAS  Google Scholar 

  • Mason ST, Iversen SD (1978) Reward, attention, and the dorsal noradrenergic bundle. Brain Res 150: 135–148

    Article  PubMed  CAS  Google Scholar 

  • Maritila RJ, Rinne UK (1976) Dementia in Parkinson’s disease. Acta Neurol Scand 54: 431–441

    Article  Google Scholar 

  • Mash DC, Flynn DD, Poter LT (1985) Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science 228: 1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Matison R, Mayeux R, Rosen J, Fahn S (1982) „Tip-of-the-tongue“ phenomenon in Parkinson’s disease. Neurology 32: 567–570

    Article  PubMed  CAS  Google Scholar 

  • Matthews CG, York-Haaland KY (1979) The effect of symptom duration on cognitive and motor performance in parkinsonism. Neurology 29: 951–956

    Article  PubMed  CAS  Google Scholar 

  • Mayeux R, Stern Y, Rosenste IN, Marder K, Hauser A, Cote L, Fahn S (1988) An estimate of the prevalence of dementia in idiopathic Parkinson’s disease. Arch Neurol 45: 260–262

    Article  PubMed  CAS  Google Scholar 

  • Meier MJ, Martin WE (1970) Intellectual changes associated with levodopa therapy. J Am Med Assoc 213: 465–466

    Article  CAS  Google Scholar 

  • Meyers B (1965) Some effects of scopolamine on a passive avoidance response in rats. Psychopharmacologia 8: 111–119

    Article  PubMed  CAS  Google Scholar 

  • Mortimer JA, Pirozzolo FJ, Hansch EC, Webster DD (1982) Relationship of motor symptoms to intellectual deficits in Parkinson’s disease. Neurology 32: 133–137

    Article  PubMed  CAS  Google Scholar 

  • Nakano I, Hirano A (1984) Parkinson’s disease: neuron loss in the nucleus basalis without concomitant Alzheimer’s disease. Ann Neurol 15: 415–418

    Article  PubMed  CAS  Google Scholar 

  • Nyberg P, Nordberg A, Webster P, Winblad B (1983) Dopaminergic deficiency is more pronounced in putamen than in nucleus caudatus in Parkinson’s disease. Neurochem Pathol 1: 193–202

    Article  CAS  Google Scholar 

  • Öberg RGE, Divac I (1975) Dissociative effects of selective lesions in the caudate nucleus of cats and rats. Acta Neurobiol Exp 35: 675–689

    Google Scholar 

  • Ogren SO, Archer T, Ross SB (1980) Evidence for a role of the locus coeruleus noradrenaline system in learning. Neurosci Lett 20: 351–356

    Article  PubMed  CAS  Google Scholar 

  • Ogren SO, Archer T, Ross CB (1984) Norepinephrine in learning and memory — the status of cognitive deficit. In: Usdin E, Carlsson A, Dahlstrom A, Engel J (eds) Catecholamines: neuropharmacology and central nervous system — theoretical aspects. Alan R Liss, New York, pp 285–292

    Google Scholar 

  • Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW (1991) Extradimensional versus intradimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalohippocampectomy in man. Neuropsychologia 29: 993–1006

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Lange KW, Robbins TW (1992) Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 115: 1727–1751

    Article  PubMed  Google Scholar 

  • Parkinson J (1817) An essay on the shaking palsy. Sherwood, Neely, and Jones, London

    Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J ii: 1457–1459

    Article  Google Scholar 

  • Perry EK, Curtis M, Dick DJ, Candy JM, Atack JR, Bloxham CA, Blessed G, Fairbairn A, Tomlinson B, Perry RH (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48: 413–421

    Article  PubMed  CAS  Google Scholar 

  • Pillon B, Dubois B, Lhermitte F, Agid Y (1986) Heterogeneity of cognitive impairment in progressive supranuclear palsy, Parkinson’s disease and Alzheimer’s disease. Neurology 36: 1179–1185

    Article  PubMed  CAS  Google Scholar 

  • Pillon B, Dubois B, Bonnet AM, Esteguy M, Guimaraes J, Vigouret JM, Lhermitte F, Agid Y (1989a) Cognitive „slowing“ in Parkinson’s disease fails to respond to levodopa treatment: „Tine 15 objects test“. Neurology 39: 762–768

    Article  PubMed  CAS  Google Scholar 

  • Pillon B, Dubois B, Cusimano G, Bonnet AM, Lhermitte F, Agid Y (1989b) Does cognitive impairment in Parkinson’s disease result from non-dopaminergic lesions? J Neurol Neurosurg Psychiatry 52: 201–206

    Article  PubMed  CAS  Google Scholar 

  • Pillon B, Dubois B, Ploska A, Agid Y (1991) Severity and specificity of cognitive impairment in Alzheimer’s, Huntington’s and Parkinson’s diseases, and progressive supranuclear palsy. Neurology 41: 634–643

    Article  PubMed  CAS  Google Scholar 

  • Pillon B, Deweer B, Agid Y, Dubois B (1993) Explicit memory in Alzheimer’s, Huntington’s and Parkinson’s diseases. Arch Neurol 50: 374–379

    Article  PubMed  CAS  Google Scholar 

  • Pirozzolo FJ, Hansch EC, Mortimer JA, Webster DD, Kuskowski MA (1982) Dementia in Parkinson’s disease: a neuropsychological analysis. Brain Cogn 1: 71–83

    Article  PubMed  CAS  Google Scholar 

  • Portin R, Rinne UK (1980) Neuropsychological responses of parkinsonian patients to long-term levodopa therapy. In: Klinger M, Stamm G (eds) Parkinson’s disease: current progress, problems and management. Elsevier/North Holland, Amsterdam, pp 271–304

    Google Scholar 

  • Proctor F, Riklan M, Cooper ST, Teuber HL (1964) Judgement of visual and postural vertical by Parkinsonism patients. Neurology 14: 287–293

    Article  PubMed  CAS  Google Scholar 

  • Pullman SL, Watts RL, Juncos JL, Chase TN, Sanes JN (1988) Dopaminergic effects on simple and choice reaction time performance in Parkinson’s disease. Neurology 38: 249–254

    Article  PubMed  CAS  Google Scholar 

  • Quinn N, Critchley P, Marsden CD (1987) Young onset Parkinson’s disease. Mov Disord 2: 73–91

    Article  PubMed  CAS  Google Scholar 

  • Reitan RM, Boll TJ (1971) Intellectual and cognitive functions in Parkinson’s disease. J Consult Clin Psychol 37: 364–369

    Article  PubMed  CAS  Google Scholar 

  • Ridley RM, Baker HF, Drewett BS, Johnson JA (1985) Effects of ibotenic acid lesions of the basal forebrain on serial reversal learning in the marmoset. Psychopharmacology 86: 438–449

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. Brain 107: 1083–1094

    Google Scholar 

  • Riklan M, Diller L, Weiner H, Cooper IS (1960) Psychological studies on effects of chemosur-gery of the basal ganglia in parkinsonism. I. Intellectual functioning. Arch Gen Psychiatry 2: 22–32

    Google Scholar 

  • Riklan M, Levita E, Cooper IS (1966) Psychological effects of bilateral subcortical surgery for Parkinson’s disease. J Nerv Ment Dis 141: 403–409

    Article  Google Scholar 

  • Riklan M, Whelihan W, Cullinan T (1976) Levodopa and psychometric test performance in parkinsonism — 5 years later. Neurology 26: 173–179

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Laakso K, Lönnberg P, Mölsä P, Paljärvi L, Rinne JK et al. (1985) Brain muscarinic receptors in senile dementia. Brain Res 336: 19–25

    Article  PubMed  CAS  Google Scholar 

  • Rinne JO, Rummukainen J, Paljärvi L, Rinne UK (1989) Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra. Ann Neurol 26: 47–50

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, James M, Owen AM, Lange KW, Lees AJ, Leigh PN, Marsden CD, Quinn NP, Summers BA (1994) Cognitive deficits in progressive supranuclear palsy, Parkinson’s disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. J Neurol Neurosurg Psychiatry 57: 79–88

    Article  PubMed  CAS  Google Scholar 

  • Ruberg M, Agid Y (1988) Dementia in Parkinson’s disease. In: Iversen L, Iversen SD, Snyder SH (eds) Psychopharmacology of aging nervous system. Plenum Press, New York, pp 157–205 (Handb Psychopharmacol, vol 20)

    Google Scholar 

  • Ruberg M, Ploska A, Javoy-Agid F, Agid Y (1982) Muscarinic binding and choline acetyltrans-ferase in parkinsonian subjects with reference to dementia. Brain Res 232: 129–139

    Article  PubMed  CAS  Google Scholar 

  • Ruberg M, Rieger F, Villageois A et al. (1986) Acetylcholinesterase and butylcholinesterase in frontal cortex and cerebrospinal fluid of demented and non-demented patients with Parkinson’s disease. Brain Res 362: 83–91

    Article  PubMed  CAS  Google Scholar 

  • Sahakian BJ, Morris RG, Evenden JL, Heald A, Levy R, Philpot M, Robbins TW (1988) A comparative study of visuospatial memory and learning in Alzheimer’s type dementia and Parkinson’s disease. Brain 111: 695–718

    Article  PubMed  Google Scholar 

  • Saint-Cyr JA, Taylor AE, Lang AE (1988) Procedural learning and neostriatal dysfunction in man. Brain 111: 941–959

    Article  PubMed  Google Scholar 

  • Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275: 321–328

    Article  PubMed  CAS  Google Scholar 

  • Sirviö J, Rinne JO, Valjakka A, Rinne UK, Riekkinen PJ, Paljärvi L (1989) Different forms of brain acetylcholinesterase and muscarinic binding in Parkinson’s disease. J Neurol Sci 90: 23–32

    Article  PubMed  Google Scholar 

  • Squire LR (1969) Effects of pretrial and postrial administration of cholinergic and anticholinergic drugs on spontaneous alternation. J Comp Physiol Psychol 69: 69–75

    Article  PubMed  CAS  Google Scholar 

  • Stephens DA (1967) Psychotoxic effects of benzhexol hydrochloride (Aitane). Br J Psychiatry 113: 213–218

    Article  PubMed  CAS  Google Scholar 

  • Stern Y, Langston JW (1985) Intellectual changes in patients with MPTP-induced Parkinsonism. Neurology 35: 1506–1509

    Article  PubMed  CAS  Google Scholar 

  • Stern Y, Mayeux R, Cote L (1984) Reaction time and vigilance in Parkinson’s disease: possible role of norepinephrine metabolism. Arch Neurol 41: 1086–1089

    Article  PubMed  CAS  Google Scholar 

  • Stern Y, Tetrud JW, Martin WR, Kutner SJ, Langston JW (1990) Cognitive changes following MPTP exposure. Neurology 40: 261–264

    Article  PubMed  CAS  Google Scholar 

  • Stern Y, Richards M, Sano M, Mayeux R (1993) Comparison of cognitive changes in patients with Alzheimer’s and Parkinson’s disease. Arch Neurol 50: 1040–1045

    Article  PubMed  CAS  Google Scholar 

  • Stuss DT, Benson DF (1986) The frontal lobes. Raven Press, New York

    Google Scholar 

  • Sunderland R, Tariot P, Newhouse P (1988) Differential responsivity of mood, behavior, and cognition to cholinergic agents in elderly neuropsychiatrie population. Brain Res Rev 13: 371–389

    Article  Google Scholar 

  • Tagliavini F, Pilleri G, Bouras C, Constantinidis J (1984) The basal nucleus of Meynert in idiopathic Parkinson’s disease. Acta Neurol Scand 69: 20–28

    Article  Google Scholar 

  • Taylor AE, Saint-Cyr JA, Lang AE (1985) Dementia prevalence in Parkinson’s disease. Lancet i: 1037

    Article  Google Scholar 

  • Taylor AE, Saint-Cyr JA, Lang AE (1986) Frontal lobe dysfunction in Parkinson’s disease. Brain 109: 845–883

    Article  PubMed  Google Scholar 

  • Taylor AE, Saint-Cyr JA, Lang AE (1987) Parkinson’s disease: cognitive changes in relation to treatment response. Brain 110: 35–51

    Article  PubMed  Google Scholar 

  • Taylor JR, Elsworth JD, Roth RH, Sladek JR, Redmond DE (1990) Cognitive and motor deficits in the acquisition of an object retrieval detour task in MPTP-treated monkeys. Brain 113: 617–637

    Article  PubMed  Google Scholar 

  • Trousseau A (1861) Tremblement senile et paralysie agitante. Clinique mÉdical de l’Hôtel Dieu de Paris. Baillière, Paris

    Google Scholar 

  • Villardita C, Smirni P, Le Pira F, Zappala G, Nicoletti F (1982) Mental deterioration, visuo-perceptive disabilities and constructional apraxia in Parkinson’s disease. Acta Neurol Scand 66: 112–120

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44: 559–577

    Article  PubMed  CAS  Google Scholar 

  • Wechsler D (1955) The Wechsler Adult Intelligence Scale (Manual). Psychological Corporation, New York

    Google Scholar 

  • Weingartner H, Burns S, Diebel R, Le Witt PA (1984) Cognitive impairment in Parkinson’s disease: distinguishing between effort-demanding and automatic cognitive processes. Psychiatry Res 11: 223–235

    Article  PubMed  CAS  Google Scholar 

  • Westlind A, Grynfarb M, Hedlund B, Bartfai T, Fuxe K (1981) Muscarinic supersensitivity induced by septal lesion or chronic atropine treatment. Brain Res 225: 131–141

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse J (1964) Effects of atropine on discrimination learning in the rat. J Comp Physiol Psychol 57: 13–15

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13: 243–248

    Article  PubMed  CAS  Google Scholar 

  • Wishaw IS, O’Connor WT, Dunnett SB (1985) Disruption of central cholinergic mechanisms in the rat by basal forebrain lesions or atropine: effects on feeding, sensorimotor behaviour, locomotor activity and spatial navigation. Behav Brain Res 17: 103–115

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this chapter

Cite this chapter

Lange, K.W. (1999). Exkurs: Kognitive Störungen bei Morbus Parkinson. In: Riederer, P., Laux, G., Pöldinger, W. (eds) Neuro-Psychopharmaka Ein Therapie-Handbuch. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6400-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6400-6_36

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7315-2

  • Online ISBN: 978-3-7091-6400-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics