Advertisement

Neurobiochemie, Wirkmechanismus

  • H. Wachtel
Chapter

Zusammenfassung

Es ist lange bekannt, daß Pharmaka zur Behandlung des Morbus Parkinson bzw. der Schizophrenie mit spezifischen DA-Rezeptoren des Gehirns interagieren (Seeman 1980). Die eingangs erwähnte Einteilung der zentralen DA-Rezeptoren in einen D-1 und einen D-2-Subtyp (Kebabian und Calne 1979) hat sich als Klassifikationsschema allgemein durchgesetzt und als brauchbares Ordnungsprinzip einer FÜlle experimenteller Daten erwiesen. Auch die folgenden AusfÜhrungen zur Neurobiochemie und zum Wirkmechanismus der DA-Agonisten basieren auf dem Konzept der D-1/D-2-Dichotomie. Im Rahmen dieses Beitrages kÖnnen die Befunde zur Neurobiochemie und zum Wirkmechanismus von DA-Agonisten nur kursorisch dargestellt werden; für den Zugang zu detaillierteren Informationen wird auf einige übersichtsartikel verwiesen (Seeman 1980, Clark und White 1987, Waddington und O’Boyle 1987).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aellig WH, Nüesch E (1977) Comparative pharmacokinetic investigations with tritium-labeled ergot alkaloids after oral and intravenous administration in man. Int J Clin Pharmacol 15: 106–112Google Scholar
  2. Aghajanian GK, Bunney BS (1977) Pharmacological characterizsation of dopamine „auto-receptors“ by microiontophoretic single-cell recording studies. Adv Biochem Psychopharmacol 16: 433–438PubMedGoogle Scholar
  3. Altar CA, Marien MR (1987) Picomolar affinity of 125J-SCH 23 982 for D1 receptors in brain demonstrated with digital subtraction autoradiography. J Neurosci 7: 213–222PubMedGoogle Scholar
  4. Andén NE, Rubenson A, Fuxe K, Hökfelt T (1967) Evidence for dopamine receptor stimulation by apomorphine. J Pharm Pharmacol 19: 627–629PubMedCrossRefGoogle Scholar
  5. Azuma H, Oshino N (1979) Stimulatory action of lisuride on dopamine-sensitive adenylate cyclase in the rat striatal homogenate. Jpn J Pharmacol 30: 629–639CrossRefGoogle Scholar
  6. Barone P, Bankiewicz KS, Corsini GU, Kopin IJ, Chase TN (1987a) Dopaminergic mechanisms in hemiparkinsonian monkeys. Neurology 37: 1592–1595PubMedCrossRefGoogle Scholar
  7. Barone P, Tucci I, Parashos SA, Chase TN (1987b) D-1 dopamine receptor changes after striatal quinolinic acid lesion. Eur J Pharmacol 138: 141–145PubMedCrossRefGoogle Scholar
  8. Beart PM, Mcdonald D, Cingotta M, de Vries DJ, Gundlach AL (1986) Selectivity of some ergot derivatives for 5-HT1 and 5-HT2 receptors of rat cerebral cortex. Gen Pharmacol 17: 57–62PubMedCrossRefGoogle Scholar
  9. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20: 415–455PubMedCrossRefGoogle Scholar
  10. Boissier JR, Euvrad C, Oberlander C, Laurent J, Dumont C, Labrie F (1983) Comparative study of central dopaminergic properties of RU 29717 (N-propyl-9-oxaergoline) and pergolide. Eur J Pharmacol 87: 183–189PubMedCrossRefGoogle Scholar
  11. Borison HL, Wang SC (1953) Physiology and pharmacology of vomiting. Pharmacol Rev 5: 193–230PubMedGoogle Scholar
  12. Braun A, Fabbrini G, Mouradian MM, Serrati C, Barone P, Chase TN (1987) Selective D-1 dopamine receptor agonist treatment of Parkinson’s disease. J Neural Transm 68: 41–50PubMedCrossRefGoogle Scholar
  13. Bräutigam M, Kittner E, Laschinski G (1985) Effects of apomorphine enantiomers and of lisuride on 3,4-dihydroxyphenylalanine production in striatal synaptosomes. Mol Pharmacol 28: 515–520PubMedGoogle Scholar
  14. Burns RS, Chieuh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. Proc Natl Acad Sci 80: 4546–4550PubMedCrossRefGoogle Scholar
  15. Calne DB, Teychenne PF, Leigh PN, Bamji AN, Greenacre (1974) Treatment of parkinsonism with bromocriphine. Lancet ii: 1355–1358CrossRefGoogle Scholar
  16. Camps M, Kelly PH, Palacios JM (1990) Autoradiographic localization of dopamine D1 and D2 receptors in the brain of several mammalian species. J Neural Transm [Gen Sect] 80: 105–127CrossRefGoogle Scholar
  17. Clark D, White FJ (1987) Review: D1 dopamine receptor — the search for a function: a critical evaluation of the D1/D2 dopamine receptor classification and its functional implications. Synapse 1: 347–388PubMedCrossRefGoogle Scholar
  18. Closse A, Frick W, Dravid A, Bolliger G, Hauser D, Sauter A, Tobler HJ (1984) Classification of drugs according to receptor binding profiles. Naunyn-Schmiedebergs Arch Pharmacol 327: 95–101PubMedCrossRefGoogle Scholar
  19. Consolo S, Ladinsky H, Pugnetti P, Fusi R, Crunelli V (1981) Increase in rat striatal acetylcholine content by bromocriptine: evidence for an indirect dopaminergic action. Life Sci 29: 457–465PubMedCrossRefGoogle Scholar
  20. Corrodi H, Fuxe K, Hökfelt T, Lidbrink P, Ungerstedt U (1973) Effect of ergot drugs on central catecholamine neurons: evidence for a stimulation of central dopamine neurons. J Pharm Pharmacol 25: 409–412PubMedCrossRefGoogle Scholar
  21. Cotzias GC, Papavasiliou PS, Fehling C, Kaufman B, Mena I (1970) Similarities between neurologic effects of L-DOPA and of apomorphine. N Engl J Med 282: 31–33PubMedCrossRefGoogle Scholar
  22. Cox B (1979) Dopamine. In: Lomax P, Schönbaum E (eds) Body temperature regulation, drug effects and therapeutic implications. Marceli Dekker, New York, pp 231–255Google Scholar
  23. Drewe J, Mazer N, Abisch E, Krummen K, Keck M (1988) Differential effect of food on kinetics of bromocriptine in a modified release capsule and a conventional formulation. Eur J Clin Pharmacol 35: 535–541PubMedCrossRefGoogle Scholar
  24. Flückiger E, Briner U, Enz A, Markstein R, Vigouret JM (1983) Dopaminergic ergot compounds: an overview. In: Calne DB, Horowski R, Mcdonald RJ, Wuttke W (eds) Lisuride and other dopamine agonists. Raven Press, New York, pp 1–9Google Scholar
  25. Freund TP, Pawell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13: 1189–1215PubMedCrossRefGoogle Scholar
  26. Fuller RW, Perry KW (1983) Effect of pergolide on MOPEG sulphate levels in rat brain regions. J Pharm Pharmacol 35: 57–58PubMedCrossRefGoogle Scholar
  27. Fuller RW, Clemens JA, Kornfeld EC, Snoddy HD, Smalstieg EB, Bach NJ (1979) Effects of (8ß)-8-[(methylthio)methyl]-6-propyl ergoline on dopaminergic function and brain dopamine turnover in rats. Life Sci 24: 375–382PubMedCrossRefGoogle Scholar
  28. Fuller RW, Hemrick-Luecke SK, Perry KW, Toomy RE (1985) Pergolide elevation of MHPG sulphate concentration in rat hypothalamus blocked by spiperone and mimicked by other dopamine agonists. J Pharm Pharmacol 37: 268–270PubMedCrossRefGoogle Scholar
  29. Fuster JM (1989) The prefrontal cortex. Raven Press, New YorkGoogle Scholar
  30. Gagnon C, Bédard PJ, di Paolo T (1990) Effect of chronic treatment of MPTP monkeys with dopamine D-1 and/or D-2 receptor agonists. Eur J Pharmacol 178: 115–120PubMedCrossRefGoogle Scholar
  31. Gancher ST, Woodward WR, Boucher B, Nutt JG (1989) Peripheral pharmacokinetics of apomorphine in humans. Ann Neurol 26: 232–238PubMedCrossRefGoogle Scholar
  32. Geffen LB, Jessell TM, Cuello AC, Iversen LL (1976) Release of dopamine from dendrites in rat substantia nigra. Nature 260: 258–260PubMedCrossRefGoogle Scholar
  33. Hall MD, Jenner P, Kelly E, Marsden CD (1983) Differential anatomical location of [3H]-N-n-propylnorapomorphine and [3H]-spiperone binding sites in the stiatum and substantia nigra of the rat. Br J Pharmacol 79: 599–610PubMedCrossRefGoogle Scholar
  34. Haubrich DR, Pflueger AB (1982) The autoreceptor control of dopamine synthesis. An in vitro and in vivo comparison of dopamine agonists. Mol Pharmacol 21: 114–120PubMedGoogle Scholar
  35. Horowski R (1989) Lisuride and related 8-α-amino-ergolines as a new class of CNS-active drugs: from „dirty drugs“ to „intelligent molecules“? Funct Neurol 4 [Suppl]: 3–37Google Scholar
  36. Horowski R, Engfer A (1998) Lisurid in der Therapie des Morbus Parkinson. Akt Neurol 25: 290–292CrossRefGoogle Scholar
  37. Horowski R, Wachtel H (1976) Direct dopaminergic action of lisuride hydrogen maleate, an ergot derivative, in mice. Eur J Pharmacol 36: 373–383PubMedCrossRefGoogle Scholar
  38. Horowski R, Wendt H, Graf KJ (1978) Prolactin-lowering effect of low doses of lisuride in man. Acta Endocrinol 87: 234–240PubMedGoogle Scholar
  39. Hümpel M, Nieuweboer B, Hasan SH, Wendt H (1981) Radioimmunoassay of plasma lisuride in man following intravenous and oral administration of lisuride hydrogen maleate: effect on plasma prolactin level. Eur J Clin Pharmacol 20: 47–51PubMedCrossRefGoogle Scholar
  40. Humpel M, Krause W, Hoyer GA, Wendt H, Pommerenke G (1984) The pharmacokinetics and biotransformation of 14C-lisuride hydrogen maleate in rhesus monkeys and man. Eur J Drug Metab Pharmacokinet 4: 347–357CrossRefGoogle Scholar
  41. Isaacs B, Macarthur JG (1954) Influence of chlorpromazine and promethazine on vomiting induced with apomorphine in man. Lancet ii: 570–572CrossRefGoogle Scholar
  42. Izzo PN, Bolam JP (1988) Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat. J Comp Neurol 269: 219–234PubMedCrossRefGoogle Scholar
  43. Jackson DM, Hashizume M (1987) Bromocriptine-induced locomotor stimulation in mice is modulated by dopamine D-1 receptors. J Neural Transm 69: 131–145PubMedCrossRefGoogle Scholar
  44. Jiang DH, Reches A, Wagner HR, Fahn S (1984) Biochemical and behavioral evaluation of pergolide as a dopamine agonist in the rat brain. Neuropharmacology 23: 295–301PubMedCrossRefGoogle Scholar
  45. Johns DW, Ayers CR, Carey RM (1984) The dopamine agonist bromocriptine induces hypotension by venous and arteriolar dilation. J Cardiovase Pharmacol 6: 582–587CrossRefGoogle Scholar
  46. Johnson AM, Loew DM, Vigouret JM (1976) Stimulant properties of bromocriptine on central dopamine receptors in comparison to apomorphine, (+)-amphetamine and L-DOPA. Br J Pharmacol 56: 59–68PubMedCrossRefGoogle Scholar
  47. Joyce JN, Marshall JF (1987) Quantitative autoradiography of dopamine D2 sites in rat caudate-putamen: localization to intrinsic neurons and not to necortical afferents. Neuroscience 20: 773–795PubMedCrossRefGoogle Scholar
  48. Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277: 93–96PubMedCrossRefGoogle Scholar
  49. Kebabian JW, Petzold GL, Greengard P (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain and its similarity to the „dopamine receptor“. Proc Natl Acad Sci 69: 2145–2149PubMedCrossRefGoogle Scholar
  50. Kehr W (1977) Effect of lisuride and other ergot derivatives on monoaminergic mechanisms in rat brain. Eur J Pharmacol 41: 261–273PubMedCrossRefGoogle Scholar
  51. Kehr W, Carlsson A, Magnusson T, Atack C (1972) Evidence for a receptor mediated feedback control of striatal tyrosine hydroxylase activity. J Pharm Pharmacol 24: 744–747PubMedCrossRefGoogle Scholar
  52. Kehr W, Carlsson A, Lindquist M (1975) Biochemical aspects of dopamine agonists. Adv Neurol 9: 185–195PubMedGoogle Scholar
  53. Konzett H, Strieder N (1969) über die Wirkung von Apomorphin auf die Haut-und Muskeldurchblutung des Menschen. Z Kreislaufforschung 58: 210–214Google Scholar
  54. Korf J, Zieleman M, Westerink BHC (1976) Dopamine release in substantia nigra? Nature 260: 257–258PubMedCrossRefGoogle Scholar
  55. Koshikawa N, Tomiyama K, Omiya K, Kikuchi DE Beltran K, Kobayashi M (1990) Dopamine D-1 but not D-2 receptor Stimulation of the dorsal striatum potentiates apomorphine-induced jaw movements in rats. Eur J Pharmacol 178: 189–194PubMedCrossRefGoogle Scholar
  56. Kubota Y, Inagaki S, Shimeda S, Kito S, Wu JY (1987) Glutamate decarboxylase-like immunoreactive neurons in the rat caudate putamen. Brain Res Bull 18: 687–697PubMedCrossRefGoogle Scholar
  57. Ladinsky H, Consolo S, Bianchi S, Samanin R, Ghezzi D (1975) Cholinergic-dopaminergic interaction in the striatum: the effect of 6-hydroxydopamine or pimozide treatment on the increased striatal acetylcholine levels induced by apomorphine, pirbedil and D-am-phetamine. Brain Res 84: 221–226PubMedCrossRefGoogle Scholar
  58. Langston JW, Ballard PA (1983) Parkinson’s disease in a chemist working with l-methyl-4-phenyl-1,2,5,6-tetrahydropy ridine (MPTP). N Engl J Med 309: 310PubMedGoogle Scholar
  59. Lehmann J, Langer SZ (1983) The striatal cholinergic interneuron: synaptic target of dopaminergic terminals? Neuroscience 10: 1105–1120PubMedCrossRefGoogle Scholar
  60. Lemberger L, Crabtree RE (1979) Pharmacological effects in man of a potent, long-acting dopamine receptor agonist. Science 205: 1151–1153PubMedCrossRefGoogle Scholar
  61. Macleod RM (1977) Influence of dopamine, serotonin and their antagonists on prolactin secretion. Progr Reprod Biol 2: 54–68Google Scholar
  62. Mannelli M, Delitala G, de Feo EM, Maggi M, Cuomo S, Piazzini M, Guazelli R, Serio M (1984) Effects of different dopaminergic antagonists on bromocriptine-induced inhibition of norepinephrine release. J Clin Endocrinol Metab 59: 74–78PubMedCrossRefGoogle Scholar
  63. Markstein R (1986) Pharmacological characterisation of central dopamine receptors using functional criteria. In: Winlow W, Markstein R (eds) The neurobiology of dopamine systems. Manchester University Press, Manchester, pp 40–52Google Scholar
  64. Markstein R, Herrling PL, Bürki HR, Asper H, Ruch W (1978) The effect of bromocriptine on rat striatal adenylate cyclase and rat brain monoamine metabolism. J Neurochem 31: 1163–1172PubMedCrossRefGoogle Scholar
  65. Maurer G, Schreier E, Delaborde S, Loosi HR, Nufer R, Shukla AP (1982) Fate and disposition of bromocriptine in animals and man. I. Structure elucidation of the metabolites. Eur J Drug Metab Pharmacokinet 7: 281–292PubMedCrossRefGoogle Scholar
  66. Maurer G, Schreier E, Delaborde S, Nufer R, Shukla AP (1983a) Fate and disposition of bromocriptine in the rat. Biopharm Drug Dispos 6: 301–311Google Scholar
  67. Maurer G, Schreier, E, Delaborde S, Nufer R, Shukla AP (1983b) Fate and disposition of bromocriptine in animals and man. II. Absorption, elimination and metabolism. Eur J Drug Metab Pharmacokinet 8: 51–62PubMedCrossRefGoogle Scholar
  68. Mcpherson GA, Beart PM (1983) The selectivity of some ergot derivatives for al and a2-adren-oceptors of rat cerebral cortex. Eur J Pharmacol 91: 363–369PubMedCrossRefGoogle Scholar
  69. Morgenroth VH, Hegstrand LR, Roth RH, Greengard P (1975) Evidence for involvement of proteinkinase in the activation by adenosine 3’, 5’-monophosphate of brain tyrosine 3-mono-oxygenase. J Biol Chem 250: 1946–1948PubMedGoogle Scholar
  70. Munkvad I, Pakkenberg H, Randrup A (1968) Aminergic systems in basal ganglia associated with stereotyped hyperactive behaviour and catalepsy. Brain Behav Evol 1: 89–100CrossRefGoogle Scholar
  71. Murrin LC, Gale K, Kuhar MJ (1979) Autoradiographic localization of neuroleptic and dopamine receptors in the caudate putamen and substantia nigra: effects of lesions. Eur J Pharmacol 60: 229–235PubMedCrossRefGoogle Scholar
  72. Obeso JA, Luquin MR, Martinez-Lage JM (1986) Lisuride infusion pump: a device for the treatment of motor fluctuations in Parkinson’s disease. Lancet i: 467–470CrossRefGoogle Scholar
  73. Onali P, Olianas MC, Gessa GL (1985) Characterization of dopamine receptors mediating inhibition of adenylate cyclase activity in rat striatum. Mol Pharmacol 28: 138–145PubMedGoogle Scholar
  74. Parisi JE, Burns RS (1986) The neuropathology of MPTP-induced parkinsonism in man and experimental animals. In: Markey SP, Castagnoli N Jr, Trevor AJ, Kopin IJ (eds) MPTP: a neurotoxin producing a parkinsonian syndrome. Academic, New York, pp 141–148Google Scholar
  75. Pijnenburg AJJ, van Rossum JM (1973) Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J Pharm Pharmacol 25: 1003–1005PubMedCrossRefGoogle Scholar
  76. Rabey JM, Passeltiner P, Markey K, Asano T, Goldstein M (1981) Stimulation of pre-and postsynaptic dopamine receptors by an ergoline and by a partial ergoline. Brain Res 225: 347–356PubMedCrossRefGoogle Scholar
  77. Rinne UK (1986) The importance of an early combination of a dopamine agonist and levodopa in the treatment of Parkinson’s disease. In: van Maanen J, Rinne UK (eds) Lisuride: a new dopamine agonist and Parkinson’s disease. Excerpta Medica, Amsterdam, pp 64–71Google Scholar
  78. Rogawski MA (1987) New directions in neurotransmitter action: dopamine provides some important clues. TINS 10: 200–205Google Scholar
  79. Rotrosen J, Angrist B, Clark C, Gershon S, Halpern FS, Sachar EJ (1978) Suppression of prolactin by dopamine agonists in schizophrenics and controls. Am J Psychiatry 135: 949–951PubMedGoogle Scholar
  80. Rubin A, Lemberger L, Dhahir P (1981) Physiologic disposition of pergolide. Clin Pharmacol Ther 30: 258–265PubMedCrossRefGoogle Scholar
  81. Saiani L, Trabucchi M, Tonon GC, Spano PF (1979) Bromocriptine and lisuride stimulate the accumulation of cyclic AMP in intact slices but not in homogenates of rat neostriatum. Neurosci Lett 14: 31–36PubMedCrossRefGoogle Scholar
  82. Savasta M, Dubois A, Benavides J, Scatton B (1986) Different neuronal location of [3H] SCH 23 390 binding sites in pars reticulata and pars compacta of the substantia nigra in the rat. Neurosci Lett 72: 265–271PubMedCrossRefGoogle Scholar
  83. Schran HF, Bhuta SI, Schwarz HJ, Thorner MO (1980) The pharmacokinetics of bromocriptine in man. Adv Biochem Psychopharmacol 23: 125–139PubMedGoogle Scholar
  84. Schwab RS, Amador LV, Lettvin JY (1951) Apomorphine in Parkinson’s disease. Trans Am Neurol Assoc 76: 251–253Google Scholar
  85. Schwartz JC, Agid Y, Bouthenet ML, Javoy-Agid F, Llorens-Cortes C, Martres MP, Pollard H, Sales N, Taquet H (1986) Neurochemical investigations in the human area postrema. In: Davis JC, Lake-Bakaar GV, Grahame-Smith DG (eds) Nausea and vomiting: mechanisms and treatments. Springer, Berlin Heidelberg New York, Tokyo, pp 18–30CrossRefGoogle Scholar
  86. Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32: 229–313PubMedGoogle Scholar
  87. Setler PE, Sarau HM, Zirkle CL, Saunders HL (1978) The central effects of a novel dopamine agonist. Eur J Pharmacol 50: 419–430PubMedCrossRefGoogle Scholar
  88. Smith RV, Velagapudi RB, Mclean AM, Vilcox RE (1985) Interactions of apomorphine with serum and tissue proteins. J Med Chem 28: 613–620PubMedCrossRefGoogle Scholar
  89. Snider SR, Hutt C, Stein B, Fahn S (1975) Increase in brain serotonin produced by bromocriptine. Neurosci Lett 1: 237–241CrossRefGoogle Scholar
  90. Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347: 146–151PubMedCrossRefGoogle Scholar
  91. Starr M (1987) Opposing roles of dopamine D1 and D2 receptors in nigral gamma-[3H]-ami-nobutyric acid release? J Neurochem 49: 1042–1049PubMedCrossRefGoogle Scholar
  92. Stefanini E, Clement-Cormier Y (1981) Detection of dopamine receptors in the area postrema. Eur J Pharmacol 74: 257–260CrossRefGoogle Scholar
  93. Stoof JC, Kebabian JW (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat striatum. Nature 294: 366–368PubMedCrossRefGoogle Scholar
  94. Stoof JC, DeBoer TH, Sminia P, Mulder AH (1982) Stimulation of D2-dopamine receptor in rat neostriatum inhibits the release of acetylcholine and dopamine but does not affect the release of gamma-aminobutyric acid, glutamate or serotonin. Eur J Pharmacol 84: 211–214PubMedCrossRefGoogle Scholar
  95. Tissari AH, Rossetti ZL, Meloni M, Frau JI, Gessa GL (1983) Autoreceptors mediate the inhibition of dopamine synthesis by bromocriptine and lisuride in rats. Eur J Pharmacol 91: 463–468PubMedCrossRefGoogle Scholar
  96. Toda T, Oshino N (1981) Biotransformation of lisuride in the hemoglobin-free perfused rat liver and in the whole animal. Drug Metab Dispos 9: 108–113PubMedGoogle Scholar
  97. Trugman JM, Geary WA, Wooten GF (1986) Localization of D2 dopamine receptors to intrinsic striatal neurons by quantitative autoradiography. Nature 323: 267–269PubMedCrossRefGoogle Scholar
  98. Wachtel H, Kehr W, Schlangen M (1986) Involvement of dopamine auto-and postsynaptic receptors in locomotor effects of lisuride after systemic or intracerebral administration. In: van Maanen J, Rinne UK (eds) Lisuride: a new dopamine agonist and Parkinson’s disease. Excerpta Medica, Amsterdam, pp 11–23Google Scholar
  99. Waddington JL, O’Boyle KM (1989) Drugs acting on brain dopamine receptors: a conceptual re-evaluation five years after the first selective D-1 antagonist. Pharmacol Ther 43: 1–52PubMedCrossRefGoogle Scholar
  100. Watanabe H, Suda H, Sekihara S, Nomura Y (1987) D-1 type of dopamine autoreceptors are not involved in the regulation of dopamine synthesis in the striatum. Jpn J Pharmacol 43: 327–330PubMedCrossRefGoogle Scholar
  101. Willems JL, Buylaert WA, Lefebvre RA, Bogaert MG (1985) Neuronal dopamine receptors on autonomic ganglia and sympathetic nerves and dopamine receptors in the gastrointestinal system. Pharmacol Rev 37: 165–216PubMedGoogle Scholar
  102. Wong DT, Bymaster FP (1983) LY 141865, a D2-dopamine agonist, increases acetylcholine concentration in rat corpus striatum. J Pharm Pharmacol 35: 328–329PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • H. Wachtel

There are no affiliations available

Personalised recommendations