Advertisement

Zusammenfassung

Hinsichtlich der klinischen Anwendbarkeit hat Tolcapon bei alleiniger Applikation den Vorteil der dreimaligen Gabe, während Entacapon bzw. Nitecapon mit jeder Levodopa-Dosis kombiniert werden sollte. (Auf Empfehlung der Arzneimittelkommission der Europäischen Union wurde am 17. 11. 1998 wegen des Verdachtes der Lebertoxizität Tolcapon in Europa vom Markt genommen.) Dies spricht für die Entwicklung eines Kombinationspräparates aus Levodopa, einem Decarboxylasehemmer und Entacapon. Zu CGP 28014 lassen sich diesbezüglich wegen der wenigen vorliegenden humanen Studien keine Aussagen treffen. Durch die Aufrechterhaltung gleichmäßigerer L-Dopa-Spiegel können COMT-Hemmer diesbezüglich mit Levodopa-retard-Präparaten verglichen werden. Im Gegensatz zu diesen Substanzen verlängern COMT-Hemmer jedoch nicht wesentlich weder die maximale Konzentration von L-Dopa (Cmax) noch die Zeit bis zum Erreichen dieser Konzentration (Tmax) (Kaakkola et al. 1994a, Limousin et al. 1995).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Acquas E, Carboni E, De Ree RH, Da Prada M, Di Chlara G (1992) Extracellular concentrations of dopamine and metabolites in the rat caudate after oral administration of a novel catechol-O-methyltransferase inhibitor Ro 40-7592. J Neurochem 59: 326–330PubMedCrossRefGoogle Scholar
  2. Ahtila S, Kaakkola S, Gordin A, Korpela K, Hein-Avaara S, Karlsson M, Wikberg T, Tuomainen P, Männistö PT (1995) Effect of entacapone, a COMT inhibitor, on the pharmacokinetics and metabolism of levodopa after administration of controlled-release levodopa-carbidopa in volunteers. Clin Neuropharmacol 18: 46–57PubMedCrossRefGoogle Scholar
  3. Backstrom R, Honkanen E, Pippuri A, Kairisalo P, Pystynen J, Heinola K, Nissinen E, Linden IB, Männistö PT, Kaakkola S, et al. (1989) Synthesis of some novel potent and selective catechol O-methyltransferase inhibitors. J Med Chem 32: 841–846PubMedCrossRefGoogle Scholar
  4. Bieck PR, Nilsson E, Antonin KH (1990) Effect of the new selective COMT inhibitor CGP 28014 A on the formation of 3-O-methyldopa (30MD) in plasma of healthy subjects. J Neural Transm [Suppl] 32: 387–391Google Scholar
  5. Bieck PR, Antonin KH, Farger G, Nilsson EB, Schmidt EK, Dostert P, Strolin Benedetti M, Waldmeier PC (1993) Clinical pharmacology of the new COMT inhibitor CGP 28,014. Neurochem Res 18: 1163–1167PubMedCrossRefGoogle Scholar
  6. Brannan T, Martinez Tica J, Yahr MD (1992) Catechol-O-methyltransferase inhibition increases striatal L-dopa and dopamine: an in vivo study in rats. Neurology 42: 683–685PubMedCrossRefGoogle Scholar
  7. Brannan T, Prikhojan A, Yahr MD (1997) Peripheral and central inhibitors of catechol-O-me-thyl transferase: effects on liver and brain COMT activity and L-DOPA metabolism. J Neural Transm 104: 77–87PubMedCrossRefGoogle Scholar
  8. Cedarbaum JM, Leger G, Gottman M (1991) Reduction of circulating 3-O-methyldopa by inhibition of catechol-O-methyltransferase with OR-611 and OR-462 in cynomolgus monkeys: implications for the treatment of Parkinson’s disease. Clin Neuropharmacol 14: 330–342PubMedCrossRefGoogle Scholar
  9. Cumming P, Brown E, Damsma G, Fibiger H (1992) Formation and clearance of interstitial metabolites of dopamine and serotonin in the rat striatum: an in vivo microdialysis study. J Neurochem 59: 1905–1914PubMedCrossRefGoogle Scholar
  10. Da Prada M (1991) New approaches to the treatment of age-related brain disorders. Can J Neurol Sci 18: 384–386PubMedGoogle Scholar
  11. Davis TL, Roznoski M, Burns RS (1995a) Acute effects of COMT inhibition on L-DOPA pharmacokinetics in patients treated with carbi-dopa and selegiline. Clin Neuropharmacol 18: 333–337PubMedCrossRefGoogle Scholar
  12. Davis TL, Roznoski M, Burns RS (1995b) Effects of tolcapone in Parkinson’s patients taking L-di-hydroxyphenylalanine/carbidopa and selegiline. Mov Disord 10: 349–351PubMedCrossRefGoogle Scholar
  13. Dingemanse J, Jorga K, Zürcher G, Schmitt M, Sedek G, Da Prada M, Van Brummelen P (1995a) Pharmacokinetic-pharmacodynamic interaction between the COMT inhibitor tolcapone and single-dose levodopa. Br J Clin Pharmacol 40: 253–262PubMedCrossRefGoogle Scholar
  14. Dingemanse J, Jorga KM, Schmitt M, Gieschke R, Fotteler B, Zürcher G, Da Prada M, Van Brummelen P (1995b) Integrated pharmacokinetics and pharmacodynamics of the novel catechol-O-methyltransferase inhibitor tolcapone during first administration to humane. Clin Pharmacol Ther 57: 508–517PubMedCrossRefGoogle Scholar
  15. Dingemanse J, Jorga K, Zürcher G, Fotteler B, Sedek G, Nielsen T, Van Brummelen P (1996) Multiple-dose clinical pharmacology of the catechol-O-methyltransferase inhibitor tolcapone in elderly subjects. Eur J Clin Pharmacol 50: 47–55PubMedCrossRefGoogle Scholar
  16. Etemadzadeh E, Koskinen L, Kaakkola S (1989) Computerized rotometer apparatus for recording circling behavior. Methods Find Exp Clin Pharmacol 11: 399–407PubMedGoogle Scholar
  17. Flemstrom G, Safsten B (1994) Role of dopamine and other stimuli of mucosal bicarbonate secretion in duodenal protection. Dig Dis Sci 39: 1839–1842PubMedCrossRefGoogle Scholar
  18. Flemstrom G, Safsten B, Jedstedt G (1993) Stimulation of mucosal alkaline secretion in rat duodenum by dopamine and dopaminergic compounds. Gastroenterology 104: 825–833PubMedGoogle Scholar
  19. Friedgen B, Halbrugge T, Graefe KH (1993) The part played by catechol-O-methyltransferase in the plasma kinetics of 3,4-dihydroxyphe-nylglycol and 3,4-dihydroxyphenylalanine in the anaesthetized rabbit. Naunyn Schmiedebergs Arch Pharmacol 347: 155–161PubMedCrossRefGoogle Scholar
  20. Friedgen B, Wolfel R, Graefe KH (1996) The contribution by monoamine oxidase and catechol-O-methyltransferase to the total-body and pulmonary plasma clearance of catecholamines. Naunyn Schmiedebergs Arch Pharmacol 353: 193–199PubMedCrossRefGoogle Scholar
  21. Funaki T, Onodera H, Ushiyama N, Tsukamoto Y, Tagami C, Fukazawa H, Kuruma I (1994) The disposition of the tolcapone 3-O-methylated metabolite is affected by the route of administration in rats. J Pharm Pharmacol 46: 571–574PubMedCrossRefGoogle Scholar
  22. Halbrugge T, Friedgen B, Ludwig J, Graefe KH (1993) Effects of catechol-O-methyltrans-ferase inhibition on the plasma clearance of noradrenaline and the formation of 3,4-dihy-droxyphenylglycol in the rabbit. Naunyn Schmiedebergs Arch Pharmacol 347: 162–170PubMedCrossRefGoogle Scholar
  23. Hartvig P, Lindner KJ, Tedroff J, Bjurling P, Hornfelt K, Langstrom B (1992) Regional brain kinetics of 6-fluoro-(beta-llC)-L-dopa and (beta-11C)-L-dopa following COMT inhibition. A study in vivo using positron emission tomography. J Neural Transm [Gen Sect] 87: 15–22CrossRefGoogle Scholar
  24. Himori N, Mishima K (1994) The COMT inhibitor tolcapone potentiates the anticataleptic effect of Madopar in MPP(+)-lesioned mice. Experi-entia 50: 939–942Google Scholar
  25. Illi A, Sundberg S, Koulu M, Scheinin M, Hein-Avaara S, Gordin A (1994) COMT inhibition by high-dose entacapone does not affect hemodynamics but changes catecholamine metabolism in healthy volunteers at rest and during exercise. Int J Clin Pharmacol Ther 32: 582–588PubMedGoogle Scholar
  26. Illi A, Sundberg S, Ojala Karlsson P, Scheinin M, Gordin A (1996a) Simultaneous inhibition of catecholamine-O-methylation by entacapone and neuronal uptake by Imipramine: leck of interactions. Eur J Clin Pharmacol 51: 273–276PubMedCrossRefGoogle Scholar
  27. Illi A, Sundberg S, Ojala Karlsson P, Scheinin M, Gordin A (1996b) Simultaneous inhibition of catechol-O-methyltransferase and monoamine oxidase A: effects on hemodynamics and catecholamine metabolism in healthy volunteers. Clin Pharmacol Ther 59: 450–457PubMedCrossRefGoogle Scholar
  28. Jorga K (1997) Pharmakologie der COMT-Hem-mer. In: Fischer PA (Hrsg) Parkinson-Krankheit-Entwicklung in Diagnostik und Therapie. Schattauer, Stuttgart, S 239–246Google Scholar
  29. Kaakkola S, Wurtman RJ (1992) Effects of COMT inhibitors on striatal dopamine metabolism: a microdialysis study. Brain Res 587: 241–249PubMedCrossRefGoogle Scholar
  30. Kaakkola S, Wurtman RJ (1993) Effects of catechol-O-methyltransferase inhibitors and L-3, 4-dihydroxyphenylalanine with or without carbidopa on extracellular dopamine in rat striatum. J Neurochem 60: 137–144PubMedCrossRefGoogle Scholar
  31. Kaakkola S, Gordin A, Jarvinen M, Wikberg T, Schultz E, Nissinen E, Pentikainen PJ, Rita H (1990) Effect of a novel catechol-O-methyltransferase inhibitor, nitecapone, on the metabolism of L-dopa in healthy volunteers. Clin Neuropharmacol 13: 436–447PubMedCrossRefGoogle Scholar
  32. Kaakkola S, Gordin A, Männistö PT (1994a) General properties and clinical possibilities of new selective inhibitors of catechol O-methyl-transferase. Gen Pharmacol 25: 813–824PubMedCrossRefGoogle Scholar
  33. Kaakkola S, Teravainen H, Ahtila S, Rita H, Gordin A (1994b) Effect of entacapone, a COMT inhibitor, on clinical disability and levodopa metabolism in parkinsonian patients. Neurology 44: 77–80PubMedCrossRefGoogle Scholar
  34. Keranen T, Gordin A, Harjola VP, Karlsson M, Korpela K, Pentikainen PJ, Rita H, Seppala L, Wikberg T (1993) The effect of catechol-O-methyl transferase inhibition by entacapone on the pharmacokinetics and metabolism of levodopa in healthy volunteers. Clin Neuropharmacol 16: 145–156PubMedCrossRefGoogle Scholar
  35. Keranen T, Gordin A, Karlsson M, Korpela K, Pentikainen PJ, Rita H, Schultz E, Seppala L, Wikberg T (1994) Inhibition of soluble catechol-O-methyltransferase and single-dose pharmacokinetics after oral and intravenous administration of entacapone. Eur J Clin Pharmacol 46: 151–157PubMedCrossRefGoogle Scholar
  36. Knutson L, Knutson TW, Flemstrom G (1993) Endogenous dopamine and duodenal bicarbonate secretion in humane. Gastroenterology 104: 1409–1413PubMedGoogle Scholar
  37. Kopin IJ (1994) Monoamine oxidase and catecholamine metabolism. J Neural Transm [Suppl] 41: 57–67Google Scholar
  38. Kuhn W, Müller T (1996) The clinical potential of Deprenyl in neurologic and psychiatric disorders. J Neural Transm [Suppl] 48: 85–93Google Scholar
  39. Lave T, Dupin S, Schmitt M, Kapps M, Meyer J, Morgenroth B, Chou RC, Jaeck D, Coassolo P (1996) Interspecies scaling of tolcapone, a new inhibitor of catechol-O-methyltransferase (COMT). Use of in vitro data from hepa-tocytes to predict metabolic clearance in animals and humane. Xenobiotica 26: 839–851PubMedCrossRefGoogle Scholar
  40. Limousin P, Pollak P, Pfefen JP, Tournier Gervason CL, Dubuis R, Perret JE (1995) Acute administration of levodopa-benserazide and tolcapone, a COMT inhibitor, Parkinson’s disease. Clin Neuropharmacol 18: 258–265PubMedCrossRefGoogle Scholar
  41. Lundstrom K, Salminen M, Jalanko A, Savolainen R, Ulmanen I (1991) Cloning and characterization of human placental catechol-O-methyltransferase cDNA. DNA Cell Biol 10: 181–189PubMedCrossRefGoogle Scholar
  42. Lyytinen J, Kaakkola S, Ahtila S, Tuomainen P, Teräväinen H (1997) Simultaneous MAO-B and COMT inhibition in L-Dopa-treated patients with Parkinson’s disease. Mov Disord 12: 497–505PubMedCrossRefGoogle Scholar
  43. Maj J, Rogoz Z, Skuza G, Sowinska H, Superata J (1990) Behavioural and neurochemical effects of Ro 40-7592, a new COMT inhibitor with a potential therapeutic activity in Parkinson’s disease. J Neural Transm [Park Dis Dement Sect] 2: 101–112CrossRefGoogle Scholar
  44. Männistö PT, Kaakkola S (1989) New selective COMT inhibitors: useful adjuncts for Parkinson’s disease? Trends Pharmacol Sci 10: 54–56PubMedCrossRefGoogle Scholar
  45. Männistö PT, Kaakkola S (1990) Rationale for selective COMT inhibitors as adjuncts in the drug treatment of Parkinson’s disease. Pharmacol Toxicol 66: 317–323PubMedCrossRefGoogle Scholar
  46. Männistö PT, Tuomainen P (1991) Effect of high single doses of levodopa and carbidopa on brain dopamine and its metabolites: modulation by selective inhibitors of monoamine oxidase and/or catechol-O-methyltransferase in the male rat. Naunyn Schmiedebergs Arch Pharmacol 344: 412–418PubMedCrossRefGoogle Scholar
  47. Männistö PT, Kaakkola S, Nissinen E, Linden IB, Pohto P (1988) Properties of novel effective and highly selective inhibitors of catechol-O-methyltransferase. Life Sci 43: 1465–1471PubMedCrossRefGoogle Scholar
  48. Männistö PT, Tornwall M, Tuomainen P, Borisenko SA, Tuominen RK (1992a) Effect of nitecapone and clorgyline, given intracere-bro-ventricularly on L-dopa metabolism in the rat brain. Neuroreport 3: 641–644PubMedCrossRefGoogle Scholar
  49. Männistö PT, Tuomainen P, Tuominen RK (1992b) Different in vivo properties of three new inhibitors of catechol O-methyltransferase in the rat. Br J Pharmacol 105: 569–574PubMedCrossRefGoogle Scholar
  50. Männistö PT, Ulmanen I, Lundstrom K, Taskinen J, Tenhunen J, Tilgmann C, Kaakkola S (1992C) Characteristics of catechol O-methyl-trans-ferase (COMT) and properties of selective COMT inhibitors. Prog Drug Res 39: 291–350PubMedGoogle Scholar
  51. Merello M, Lees AJ, Webster R, Bovingdon M, Gordin A (1994) Effect of entacapone, a peripherally acting catechol-O-methyltransferase inhibitor, on the motor response to acute treatment with levodopa in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 57: 186–189PubMedCrossRefGoogle Scholar
  52. Müller T, Kuhn W, Przuntek H (1993) Therapy with central active catechol-O-methyltransferase (COMT)-inhibitors: is addition of monoamine oxidase (MAO)-inhibitors necessary to slow progress of neurodegenerative disorders? J Neural Transm [Gen Sect] 92:187–195CrossRefGoogle Scholar
  53. Myllyla W, Sotaniemi KA, Illi A, Suominen K, Keranen T (1993) Effect of entacapone, a COMT inhibitor, on the pharmacokinetics of levodopa and on cardiovascular responses in patients with Parkinson’s disease. Eur J Clin Pharmacol 45: 419–423PubMedCrossRefGoogle Scholar
  54. Napolitano A, Cesura AM, Da Prada M (1995) The role of monoamine oxidase and catechol O-methyltransferase in dopaminergic neurotransmission. J Neural Transm [Suppl] 45: 35–45Google Scholar
  55. Nissinen E, Linden IB, Schultz E, Kaakkola S, Männistö PT, Pohto P (1988) Inhibition of catechol-O-methyltransferase activity by two novel disubstituted catechols in the rat [published erratum appears in Eur J Pharmacol (1988) 157 (2–3): 244]. Eur J Pharmacol 153: 263–269PubMedCrossRefGoogle Scholar
  56. Nissinen E, Linden IB, Schultz E, Pohto P (1992) Biochemical and pharmacological properties of a peripherally acting catechol-O-methyltransferase inhibitor entacapone. Naunyn Schmiedebergs Arch Pharmacol 346: 262–266PubMedCrossRefGoogle Scholar
  57. Nutt JG (1996) Effects of catechol-O-methyltransferase (COMT) inhibition on the pharmacokinetics of L-DOPA. Adv Neurol 69: 493–496PubMedGoogle Scholar
  58. Nutt JG, Woodward WR, Beckner RM, Stone CK, Berggren K, Carter JH, Gancher ST, Hammer-Stad JP, Gordin A (1994) Effect of peripheral catechol-O-methyltransferase inhibition on the pharmacokinetics and pharmacodynamics of levodopa in parkinsonian patients. Neurology 44: 913–919PubMedCrossRefGoogle Scholar
  59. Ruottinen HM, Rinne UK (1996a) A double-blind pharmacokinetic and clinical doseresponse study of entacapone as an adjuvant to levodopa therapy in advanced Parkinson’s disease. Clin Neuropharmacol 19: 283–296PubMedCrossRefGoogle Scholar
  60. Ruottinen HM, Rinne UK (1996b) Entacapone prolongs levodopa response in a one month double blind study in parkinsonian patients with levodopa related fluctuations. J Neurol Neurosurg Psychiatry 60: 36–40PubMedCrossRefGoogle Scholar
  61. Ruottinen HM, Rinne UK (1996c) Effect of one month’s treatment with peripherally acting catechol-O-methyltransferase inhibitor, entacapone, on pharmacokinetics and motor response to levodopa in advanced parkinsonian patients. Clin Neuropharmacol 19: 222–233PubMedCrossRefGoogle Scholar
  62. Salminen M, Lundstrom K, Tilgmann C, Savolainen R, Kalkkinen N, Ulmanen I (1990) Molecular cloning and characterization of rat liver catechol-O-methyltransferase. Gene 93: 241–247PubMedCrossRefGoogle Scholar
  63. Schultz E, Nissinen E (1989) Inhibition of rat liver and duodenum soluble catechol-O-methyltransferase by a tight-binding inhibitor OR-462. Biochem Pharmacol 38: 3953–3956PubMedCrossRefGoogle Scholar
  64. Schultz E, Tarpila S, Backstrom AC, Gordin A, Nissinen E, Pohto P (1991) Inhibition of human erythrocyte and gastroduodenal catechol-O-methyltransferase activity by nite-capone. Eur J Clin Pharmacol 40: 577–580PubMedGoogle Scholar
  65. Steulet AF, Stocklin K, Wicki P, Waldmeier P (1993) Effects of CGP 28014 on the in vivo release and metabolism of dopamine in the rat striatum assessed by brain microdialysis. Neu-rochem Res 18: 1131–1136Google Scholar
  66. Sundberg S, Gordin A (1991) COMT inhibition with nitecapone does not affect the tyramine pressor response. Br J Clin Pharmacol 32:130–132PubMedCrossRefGoogle Scholar
  67. Sundberg S, Scheinin M, Ojala Karlsson P, Akkila J, Gordin A (1993) The effects of the COMT inhibitor nitecapone for one week on exercise haemodynamics and catecholamine disposition. Eur J Clin Pharmacol 44: 287–290PubMedCrossRefGoogle Scholar
  68. Tedroff J, Hartvig P, Bjurling P, Andersson Y, Antoni G, Langstrom B (1991) Central action of benserazide after COMT inhibition demonstrated in vivo by PET. J Neural Transm [Gen Sect] 85: 11–17CrossRefGoogle Scholar
  69. Tenhunen J, Salminen M, Lundstrom K, Kiviluoto T, Savolainen R, Ulmanen I (1994) Genomic organization of the human catechol O-meth-yltransferase gene and its expression from two distinct promoters. Eur J Biochem 223: 1049–1059PubMedCrossRefGoogle Scholar
  70. Tilgmann C, Melen K, Lundstrom K, Jalanko A, Julkunen I, Kalkkinen N, Ulmanen I (1992) Expression of recombinant soluble and membrane-bound catechol O-methyltransferase in eukaryotic cells and identification of the respective enzymes in rat brain. Eur J Biochem 207: 813–821PubMedCrossRefGoogle Scholar
  71. Timm U, Erdin R (1992) Determination of the catechol-O-methyltransferase inhibitor Ro 40-7592 in human plasma by high-performance liquid chromatography with coulometric detection. J Chromatogr 593: 63–68PubMedCrossRefGoogle Scholar
  72. Tornwall M, Männistö PT (1991) Acute toxicity of three new selective COMT inhibitors in mice with special emphasis on interactions with drugs increasing catecholaminergic neurotransmission. Pharmacol Toxicol 69: 64–70PubMedCrossRefGoogle Scholar
  73. Tornwall M, Tuomainen P, Männistö PT (1992) Neurochemical and psychomotor interactions of new selective COMT inhibitors with clor-gyline and nomifensine in levodopatreated rats and mice. Arch Int Pharmacodyn Ther 320: 5–20PubMedGoogle Scholar
  74. Tornwall M, Kaakkola S, Tuomainen P, Kask A, Männistö PT (1994) Comparison of two new inhibitors of catechol O-methylation on striatal dopamine metabolism: a microdialysis study in rats. Br J Pharmacol 112: 13–18PubMedCrossRefGoogle Scholar
  75. Tuomainen P, Tornwall M, Männistö PT (1996) Minor effect of tolcapone, a catechol-O-methyltransferase inhibitor, on extracellular dopamine levels modified by amphetamine or pargyline: a microdialysis study in anaesthetized rats. Pharmacol Toxicol 78: 392–396PubMedCrossRefGoogle Scholar
  76. Ulmanen I, Peranen J, Tenhunen J, Tilgmann C, Karhunen T, Panula P, Bernasconi L, Aubry JP, Lundstrom K (1997) Expression and intracellular localization of catechol O-methyltransferase in transfected mammalian cells. Eur J Biochem 243: 452–459PubMedCrossRefGoogle Scholar
  77. Vieira Coelho MA, Soares DA Silva P (1996) Ontogenic aspects of liver and kidney catechol-O-methyltransferase sensitivity to tolcapone. Br J Pharmacol 117: 516–520PubMedCrossRefGoogle Scholar
  78. Waldmeier PC, Baumann PA, Feldtrauer JJ, Hauser K, Bittiger H, Bischoff S, Von Sprecher G (1990a) CGP 28014, a new inhibitor of cerebral catechol-O-methylation with a non-cate-chol structure. Naunyn Schmiedebergs Arch Pharmacol 342: 305–311PubMedCrossRefGoogle Scholar
  79. Waldmeier PC, DE Herdt P, Maitre L (1990b) Effects of the COMT inhibitor, CGP 28014, on plasma homovanillic acid and O-methylation of exogenous L-dopa in the rat. J Neural Transm [Suppl] 32: 381–386Google Scholar
  80. Waldmeier PC, Buchle AM, Steulet AF (1993) Inhibition of catechol-O-methyltransferase (COMT) as well as tyrosine and tryptophan hydroxylase by the orally active iron chelator, l,2-dimethyl-3-hydroxypyridin-4-one (LI, CP 20), in rat brain in vivo. Biochem Pharmacol 45: 2417–2424PubMedCrossRefGoogle Scholar
  81. Youdim MBH (1990) Inhibitors of dopamine inactivating systems as antiparkinsonian drugs. Adv Neurol 53: 483–488PubMedGoogle Scholar
  82. Zürcher G, Colzi A, Da Prada M (1990) Ro 40-7592: inhibition of COMT in rat brain and extracerebral tissues. J Neural Transm [Suppl] 32: 375–380Google Scholar
  83. Rcher G, Dingemanse J, Da Prada M (1993) Potent COMT inhibition by Ro 40-7592 in the periphery and in the brain. Preclinical and clinical findings. Adv Neurol 60: 641–647PubMedGoogle Scholar
  84. Rcher G, Da Prada M, Dingemanse J (1996) Assessment of catechol-O-methyltransferase activity and its inhibition in erythrocytes of animals and humane. Biomed Chromatogr 10: 32–36PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Th. Müller
  • W. Kuhn

There are no affiliations available

Personalised recommendations