Advertisement

Neurobiochemie, Wirkungsmechanismus

  • E. Schneider
  • K. Jorga

Zusammenfassung

Das oral zugeführte L-DOPA wird nach Passieren der Blut-Hirnschranke sowohl in den dopaminergen Neuronen als auch in der umgebenden Glia — im fortgeschrittenen Stadium der Erkrankung wohl sogar zunehmend (s. o.) — zu Dopamin decarboxyliert. Dieses Dopamin wird ebenso wie das physiologischerweise gebildete an den D1und D2-Rezeptoren wirksam (Abb. 3.2.1). Mit Hilfe molekularbiologischer Techniken wurde nun gefunden, daß es eine ganze Reihe von dopaminergen Rezeptoren gibt (D1-D5), die sich in Di-ähnliche (D1, D5) und D2ähnliche (D2, D3, D4) klassifizieren lassen (übersicht bei STRANGE 1993). Die pharmakologischen Eigenschaften der Rezeptoren und deren hauptsächliche Lokalisation sind in Kapitel 6 zu finden. So haben die D1-artigen Rezeptoren eine hohe Affinität für den Dopamin-Antagonisten SCH 23390, eine geringere für Sulpirid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albin RL, Young AB, Penny JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375PubMedCrossRefGoogle Scholar
  2. Alexander GE, De Long MR, Strick PL (1986) Parallel organisation of functionally segre-gared circuits linking basal ganglia and cortex. Ann Rev Neurosci 9: 357–381PubMedCrossRefGoogle Scholar
  3. Arvidsson J, Roos B-E, Steg G (1966) Reciprocal effects on a-and y-motoneurones of drugs influencing monoaminergic and cholinergic transmission. Acta Physiol Scand 67: 398–404PubMedCrossRefGoogle Scholar
  4. Baas H (1992) Zur Pathogenese von motorischen Spät-Komplikationen des Parkinson-Syn-droms. Habilitationsschrift, Frankfurt am MainGoogle Scholar
  5. Baruzzi A, Contin M, Riva R et al. (1987) The influence of meal ingestion time on pharmacokinetics of orally administered levodopa in Parkinsonian patients. Clin Neuropharmacol 10: 527–537PubMedCrossRefGoogle Scholar
  6. Bartholini G, Pletscher A (1975) Decarboxylase inhibitors. Pharmacol Ther 13: 407–421Google Scholar
  7. Bergmann H, Wichman T, Delong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249: 1436–1438CrossRefGoogle Scholar
  8. Bermejo Pareja T, Martinez-Martin P, Muradas V et al. (1985) Carbidopa dosage modifies L-DOPA induced side effects and blood levels of L-DOPA and other amino acids in advanced parkansonism. Acta Neurol Scand 72: 506–511PubMedCrossRefGoogle Scholar
  9. Bernheimer H, Birkmayer W, Hornykiewicz O (1973) Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological, and neurochemical correlations. J Neurol Sci 20: 415–455PubMedCrossRefGoogle Scholar
  10. Berry EM, Growdon JH, Wurtman JJ et al. (1991) A balanced carbohydrate: protein diet in the management of Parkinson’s disease. Neurology 41: 1295–1297PubMedCrossRefGoogle Scholar
  11. Birkmayer W (1969) Experimentelle Ergebnisse über die Kombinationsbehandlung des Par-kinson-Syndroms mit L-DOPA und einem Decarboxylasehemmer. Wien Klin Wochen-schr 82: 677–679Google Scholar
  12. Birkmayer W, Hornykiewicz O (1961) Der L-Di-hydroxyphenyl-alanin (L-DOPA) Effekt bei Parkinson-Akinesie. Wien Klin Wochenschr 73: 787–788PubMedGoogle Scholar
  13. Birkmayer W, Mentasti M (1967) Weitere experimentelle Untersuchungen über den Ka-techolaminstoffwechsel bei extrapyramidalen Erkrankungen (Parkinson-und Chorea-Syndrom). Arch Psych Z ges Neurol 210: 29–35CrossRefGoogle Scholar
  14. Blanchet PJ, Grondin R, Bédard PJ (1996) Dyskinesia and wearing-off following dopamine D1 agonist treatment in drug-naive 1-Methyl-4-pheny1-1,2,3,6-tetrahydropyridine-lesioned primates. Mov Disord 11: 91–94PubMedCrossRefGoogle Scholar
  15. Campbell NRC, Rankine D, Goodridge AE et al. (1990) Sinemet-ferrous sulphate interaction in patients with Parkinson’s disease. Br J Clin Pharmacol 30: 599–605PubMedCrossRefGoogle Scholar
  16. Carlsson A, Lundquist M, Magnusson T (1957) 3,4-dihydroxyphenylalanine and 5-hydroxy-tryptophan as reserpine antagonists. Nature 180: 1200PubMedCrossRefGoogle Scholar
  17. Cedarbaum JM (1987) Clinical phamacokinetics of anti-parkinsonian drugs. Clin Pharmacokinet 13: 141–178PubMedCrossRefGoogle Scholar
  18. Cedarbaum JM (1989) The promise and limitations of controlled-release oral levodopa administration. Clin Neuropharmacol 12: 147–166PubMedCrossRefGoogle Scholar
  19. Cedarbaum JM, Olanow CW (1992) Aspects of levodopa pharmacokinetics and pharmacodynamics: doses of the modification of the drug response during chronic treatment of Parkinson’s disease. In: Olanow CW, Lieber-Man AN (eds) The scientific basis for the treatment of Parkinson’s disease. Parthenon, Lancs New Jersey, pp 113–137Google Scholar
  20. Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13: 277–280PubMedCrossRefGoogle Scholar
  21. Contin M, Riva R, Martinelli P et al. (1991) Effect of age on the pharmacokinetics of oral levodopa in patients with Parkinson’s disease. Eur J Clin Pharmacol 41: 463–466PubMedCrossRefGoogle Scholar
  22. Contin M, Riva R, Martinelli P, Cortelli P, Albani F, Baruzzi A (1993) Pharmacodynamic modeling of oral levodopa: clinical application in Parkinson’s disease. Neurology 43: 367–371PubMedCrossRefGoogle Scholar
  23. Contin M, Riva R, Martinelli P, Cortelli P, Albani F, Baruzzi A (1994) Longitudinal monitoring of the levodopa concentration-effect relationship in Parkinson’s disease. Neurology 44: 1287–1292PubMedCrossRefGoogle Scholar
  24. Contin M, Riva R, Albani F, Baruzzi A (1996) Pharmacokinetic optimization in the treatment of Parkinson’s disease. Clin Pharmacokinet 30: 463–481PubMedCrossRefGoogle Scholar
  25. Crossman AR (1990) A hypothesis on the pathophysiological mechanism that underlie levodopa-or dopamine agonist-induced dyskinesia in Parkinson’s disease: implications for future strategies in treatment. Mov Disord 5: 100–108PubMedCrossRefGoogle Scholar
  26. Da Prada M, Keller H, Pieri R, Kettler R, Haefely W (1984) The pharmacology of Parkinson’s disease: basic aspects and recent advances. Experientia 40: 1165–1172PubMedCrossRefGoogle Scholar
  27. De Jonge MC, Funcke ABH (1962) Sinistrotorsion in guinea-pigs as a method of screening central anticholinerg activity. Arch Int Pharmaco-dyn 137: 375–382Google Scholar
  28. De Long MR (1988) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13: 281–285CrossRefGoogle Scholar
  29. Engber TM, Susel Z, Juncos JL, Chase TN (1989) Continuous and intermittent levodopa differentially affect rotation induced by D1 and D2 dopamine agonists. Eur J Pharmacol 168: 291–298PubMedCrossRefGoogle Scholar
  30. Engber TM, Susel Z, Kuo S, Chase TN (1990) Chronic levodopa treatment alters basal and dopamine agonist stimulated cerebral glucose utilisation. J Neurosci 10: 3889–3895PubMedGoogle Scholar
  31. Everett GM (1956) Tremor produced by drugs. Nature 177: 1238PubMedCrossRefGoogle Scholar
  32. Fabbrini G, Mouradian MM, Juncos JL, Schlegel J, Mohr E, Chase TN (1988) Motor fluctuations in Parkinson’s disease: central pathophysiological mechanism, part 1. Ann Neurol 24: 366–371PubMedCrossRefGoogle Scholar
  33. Fornadi F, Milani F, Werner M (1994) Madopar dispersible in the treatment of advanced Parkinson’s disease. Clin Neuropharmacol 17[Suppl 3]: 7S–15SCrossRefGoogle Scholar
  34. Gancher ST, Nutt JG, Woodward WR (1987) Peripheral pharmacokinetis of levodopa in untreated, stable and fluctuating Parkinsonian patients. Neurology 37: 940–944PubMedCrossRefGoogle Scholar
  35. Gancher ST, Nutt JG, Woodward WR (1988) Response to brief levodopa infusions in parkinsonian patients with and without motor fluctuations. Neurology 38: 712–716PubMedCrossRefGoogle Scholar
  36. Gerfen CR, Young WS (1988) Distribution of stri-atonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridisation histochemistry and fluorescent retrograde tracing study. Brain Res 460: 161PubMedCrossRefGoogle Scholar
  37. Gerfen CR, Engber TM (1997) zit. nach Gerfen CR (1997) Dopamine function in the striatum: implications for dopamine receptor agonist treatment of Parkinson’s disease. In: Olanow WC, Obeso JA (eds) Beyond the decade of the brain, vol 2. Dopamine agonists in early Parkinson’s disease. Wells Medical Ltd, Royal Turnbridge Wells, pp 55–74Google Scholar
  38. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma PL, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250: 1429–1430PubMedCrossRefGoogle Scholar
  39. Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 103: 987–1041PubMedCrossRefGoogle Scholar
  40. Gervas JJ, Muradas V, Bazan E et al. (1983) Effects of 3-OM-dopa on monoamine metabolism in rat brain. Neurology 33: 278–282PubMedCrossRefGoogle Scholar
  41. Granerus AK, Jagenburg R, Svanborg A (1973) Intestinal decarboxylation of L-DOPA in relation to dose requirement in Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 280: 429–439PubMedCrossRefGoogle Scholar
  42. Guttman M, Leger G, Cedarbaum J, Reches A, Woodward W, Evans A, Diksic M, Gjedde A (1992) 3-O-Methyldopa administration does not alter fluorodopa transport into the brain. Ann Neurol 31: 638–664PubMedCrossRefGoogle Scholar
  43. Haefely W (1978) Pharmakologische Modelle zur Wirkung von Antiparkinsonmitteln. In: Fischer PA (Hrsg) Langzeitbehandlung des Parkinson-Syndroms. Schattauer, Stuttgart New York, S 53–64Google Scholar
  44. Heikkila RE, Hess A, Duvoisin RC (1984a) Dopaminergic neurotoxicity of 1-methyl-4-pheny1-1,2,3,6-tetrahydropyridine in mice. Science 224: 1451–1453PubMedCrossRefGoogle Scholar
  45. Heikkila RE, Manzino L, Duvoisin RC, Cabbat FS (1984b) Protection against the dopaminergic neurotoxicity of 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) by monoaminase oxidase inhibitors. Nature 311: 467–469PubMedCrossRefGoogle Scholar
  46. Heikkila RE, Manzino L, Cabbat FS, Duviosin RC (1985) Studies on the oxidation of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahy dropy ridine by monoamine oxidase B. J Neurochem 45: 1049–1054PubMedCrossRefGoogle Scholar
  47. Hellenbrand W, Vieregge P, Robra BP, Nischan P, Glass J, Haagen P, Jörg J, Oertel WH, Schneider E, Ulm G (1993) Aetiologie des Morbus Parkinson. Eine epidemiologische Perspektive mit möglichen Implikationen für die Prävention. Nervenarzt 64: 770–786PubMedGoogle Scholar
  48. Hughes AJ, Frankel JP, Kempster PA, Stern G, Lees AJ (1994) Motor response to levodopa in patients with parkinsonian motor fluctuations: a follow-up study over three years. J Neurol Neurosurg Psychiatry 57: 430–434PubMedCrossRefGoogle Scholar
  49. Jenner P, Marsden CD (1986) The actions of 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine in animals as a model of Parkinson’s disease. J Neural Transm [Suppl 20]: 11–39Google Scholar
  50. Jenner P, Tulloch I (1997) The preclinical pharmacology of ropinirole-receptor interactions, antiparkinsonian activity and potential to induce dyskinesia. In: Olanow CW, Obeso JA (eds) Beyond the decade of the brain, vol 2. Dopamine agonists in early Parkinson’s disease. Wells Medical Ltd, Royal Turnbridge Wells, pp 115–128Google Scholar
  51. Jorga K, Fotteler B, Schmitt M, Nielsen T, Zuercher G, Aitken JW (1997a) The effect of COMT inhibition by tolcapone on tolerability and pharmacokinctics of different levodopa/ benserazide formulations. Eur Neurol 38: 59–67PubMedCrossRefGoogle Scholar
  52. Jorga KM, Sedek G, Fotteler B, Zuercher G, Nielsen T, Aitken JW (1997b) Optimizing levodopa pharmacokinetics with multiple tolcapone doses in the elderly. Clin Pharmacol Ther 62: 300–310PubMedCrossRefGoogle Scholar
  53. Juncos JL, Fabbrini G, Mouradian MM, Serrati C, Chase TN (1987) Dietary influences on the antiparkinsonian response to levodopa. Arch Neurol 44: 1003–1005PubMedCrossRefGoogle Scholar
  54. Juncos JL, Engber TM, Raisman R, Susel Z, Thibaut F, Floska A, Agill Y, Chase TN (1989) Contin-uous and intermittent levodopa differentially affect basal ganglia function. Ann Neurol 25: 473–478PubMedCrossRefGoogle Scholar
  55. Kawaia S, Teräväinen H (1983) Assay of catechol-O-methyl-transferase activity. In: Pavez S, Nagatsu T, Nagatsu I, Pavez N (eds) Methods in biogenic amine research. Elsevier, Amsterdam, pp 417–439Google Scholar
  56. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. N Engl J Med 318: 876–880PubMedCrossRefGoogle Scholar
  57. Kurlan R, Nutt JG, Woodward WR et al. (1988) Duodenal and gastric delivery of levodopa in Parkinsonism. Ann Neurol 23: 589–595PubMedCrossRefGoogle Scholar
  58. Langston JW, Ballaard PA (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-l,2,3,5-tetrahydropyridine. N Engl J Med 309: 970–980CrossRefGoogle Scholar
  59. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in human due to a product of meperidine-analog synthesis. Science 219: 970–980CrossRefGoogle Scholar
  60. Leenders KL, Palmer AJ, Quinn NP, Clark IC, Firnan G, Garnett ES, Nahmias C, Jones T, Marsden CD (1986) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 49: 853–860PubMedCrossRefGoogle Scholar
  61. Lees AJ, Stern GH (1981) Sustained bromocriptine therapy in previously untreated patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 44: 1020–1023PubMedCrossRefGoogle Scholar
  62. Lewitt PA, Nelson MV, Berchou RC et al. (1989) Controlled-release carbidopa/levodopa (Sinemet 50/200 CR4): clinical and pharmacokinetic studies. Neurology 39 [Suppl 2]: 45–53PubMedGoogle Scholar
  63. Männistö PT, Kaakkola S (1989) New selective COMT inhibitors: useful for Parkinson’s disease. TIPS 10: 54–56PubMedGoogle Scholar
  64. Männistö PT, Kaakkola S (1990) Rationale for selective COMT inhibitors as adjuncts in the drug treatment of Parkinson’s disease. Pharmacol Toxicol 66: 317–323PubMedCrossRefGoogle Scholar
  65. Markey SP, Johanessen JN, Chiueh CC, Bruns RS, Herkinham MA (1984) Intraneural generation of a pyridinium metabolite may cause drug-induced parkinsonism. Nature 311: 464–467PubMedCrossRefGoogle Scholar
  66. Marsden CD (1980) „On-off“ phenomena in Parkinson’s disease. In: Rinne UK, Klinger M, Stamm G (eds) Parkinson’s disease: current progress, problems and management. Else-vier/North-Holland Biomedical, Amsterdam, pp 241–254Google Scholar
  67. Marsden CD, Parkes JD (1977) Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet i: 345–349CrossRefGoogle Scholar
  68. Melamed E, Globus M, Friedlender E, Rosenthal J (1983) Chronic L-DOPA administration decreases striatal accumulation of dopamine from exogenous L-DOPA in rats with intact nigrostriatal projections. Neurology 33: 950–953PubMedCrossRefGoogle Scholar
  69. Mena I, Cotzias GC (1975) Protein intake and treatment of Parkinson’s disease with levodopa. N Engl J Med 292: 181–184PubMedCrossRefGoogle Scholar
  70. Mouradian MM, Juncos JL, Fabbrini G, Schlegel J, Bartko JJ, Chase TN (1988) Motor fluctuations in Parkinson’s disease: central pathophysiological mechanism, part II. Ann Neurol 24: 372–378PubMedCrossRefGoogle Scholar
  71. Mouradian MM, Heuser IJE, Baronti F, Fabbrini G, Juncos JL, Chase TN (1989) Pathogenesis of dyskinesia in Parkinson’s disease. Ann Neurol 25: 253–256Google Scholar
  72. Mouradian MM, Heuser IJE, Baronti F, Chase TN (1990) Modification of central dopaminergic mechanisms by continuous levodopa therapy for advanced Parkinson’s disease. Ann Neurol 27: 18–23PubMedCrossRefGoogle Scholar
  73. Nissinen E, Tuominen R, Perhoniemi V, Kaakkola S (1988) Catechol-O-methyltransferase activity in human and rat small intestine. Life Sci 42: 2609–2614PubMedCrossRefGoogle Scholar
  74. Nutt JG (1987) Pharmacokinetics of levodopa. In: Koller WC (ed) Handbook of Parkinson’s disease. Dekker, New York, pp 339–354Google Scholar
  75. Nutt JG, Fellmann JH (1984) Pharmacokinetics of levodopa. Clin Neuropharmacol 7: 35–49PubMedCrossRefGoogle Scholar
  76. Nutt JG, Woodward WR (1986) Levodopa pharmacokinetics and pharmacodynamics in fluctuating parkinsonian patients. Neurology 36: 739–744PubMedCrossRefGoogle Scholar
  77. Nutt JG, Holford NHG (1996) The response to levodopa in Parkinson’s disease: imposing law and order. Ann Neurol 39: 561–573PubMedCrossRefGoogle Scholar
  78. Nutt JG, Woodward WR, Hammerstad JP, Carter SH, Anderson JL (1984) The „on-off“ phenomenon in Parkinson’s disease. N Engl J Med 310: 483–488PubMedCrossRefGoogle Scholar
  79. Nutt JG, Woodward WR, Anderson JL (1985) The effect of carbidopa on the pharmacokinetics of intravenously administered levodopa: the mechanism of action in the treatment of parkinsonism. Ann Neurol 18: 537–543PubMedCrossRefGoogle Scholar
  80. Nutt JG, Woodward WR, Gancher ST, Merrick D (1987) 3-O-Methyldopa and the response to levodopa in Parkinson’s disease. Ann Neurol 21: 584–588PubMedCrossRefGoogle Scholar
  81. Nutt JG, Woodward WR, Carter JH, Gancher ST (1992) Effect of long-term therapy on the pharmacodynamics of levodopa: relation to on-off-phaenomen. Arch Neurol 49: 1123–1130PubMedCrossRefGoogle Scholar
  82. Nutt JG, Carter JH, Woodward WR, Hammer-Stad JP, Gancher ST (1993) Does tolerance develop to levodopa? Comparison of 2-and 21-h levodopa infusions. Mov Disord 8: 139–143PubMedCrossRefGoogle Scholar
  83. Nutt JG, Carter JC, Woodward WR (1994) Effect of brief levodopa holidays on the short-duration response of levodopa: evidence of tolerance to the antiparkinsonian effects. Neurology 44: 1617–1622PubMedCrossRefGoogle Scholar
  84. Nutt JG, Carter JH, Woodward WR (1995) Long duration response to levodopa. Neurology 45: 1613–1616PubMedCrossRefGoogle Scholar
  85. Nutt JG, Carter JH, Van Houten L, Woodward WR (1997a) Short-and long-duration response of levodopa during the first year of levodopa therapy. Ann Neurol 42: 349–355PubMedCrossRefGoogle Scholar
  86. Nutt JG, Carter JH, Lea ES, Woodward WR (1997b) Motor fluctuations during continuous levodopa infusions in patients with Parkinson’s disease. Mov Disord 12: 285–292PubMedCrossRefGoogle Scholar
  87. Ogasahara S, Nishikawa Y, Takahashi M, Keiji W, Nakamura Y, Yorifuji S, Tarui S (1984) Dopamine metabolism in the central nervous system after discontinuation of L-DOPA therapy in patients with Parkinson’s disease. J Neurol Sci 66: 151–163PubMedCrossRefGoogle Scholar
  88. Pearce RK, Jackson M, Smith L, Jenner P, Marsden CD (1995) Chronic L-Dopa administration induces dyskinesias in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix Jacchus). Mov Disord 10: 731–740PubMedCrossRefGoogle Scholar
  89. Pincus JH, Barry KM (1987) Plasma levels of amino acids correlate with motor fluctuations in Parkinsonism. Arch Neurol 44: 1006–1009PubMedCrossRefGoogle Scholar
  90. Reches A, Fahn S (1982) 3-O-methyldopa blocks dopa metabolism in rat corpus striatum. Ann Neurol 12: 267–271PubMedCrossRefGoogle Scholar
  91. Robertson GS, Vincent SR, Fibiger HC (1992) Dl and D2 dopamine receptor differentially regulate c-fos expression in striatonigral and striatopallidal neurones. Neuroscience 49: 285PubMedCrossRefGoogle Scholar
  92. Rusk GD, Siemers ER (1993) Diurnal variation in motor ability in Parkinson’s disease. Ann Neurol 34: 266–267 (Abstract)Google Scholar
  93. Sage JL, Schuh L, Heikkila RE et al. (1988) Continuous duodenal infusions of levodopa: plasma concentrations and motor fluctuations in Parkinson’s disease. Clin Neuropharmacol 11: 36–44PubMedCrossRefGoogle Scholar
  94. Sayre LM (1989) Biochemical mechanism of action of the dopaminergic neurotoxin 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridin (MPTP). Toxicol Lett 48: 121–149PubMedCrossRefGoogle Scholar
  95. Schuh LA, Bennet JP (1993) Suppression of dyskinesia in advanced Parkinson’s disease. I. Continuous intravenous levodopa shifts dose response for production of dyskinesia but not for relief of parkinsonism in patients with advanced Parkinson’s disease. Neurology 43: 1545–1550PubMedCrossRefGoogle Scholar
  96. Sourkes TL, Gauthier S (1983) Levodopa and dopamine agonists in the treatment of Parkinson’s disease. In: Parnham MJ, Bruinuels J (eds) Discoveries in pharmacology, vol 1. Psycho-and neuropharmacology. Elsevier, Amsterdam, pp 249–267Google Scholar
  97. Strange PG (1988) The structure and mechanism of neurotransmitter receptors. Implications for the structure and function of the central nervous system. Biochem J 249: 309–318PubMedGoogle Scholar
  98. Strange PG (1993) Dopamine receptors in the basal ganglia: relevance to Parkinson’s disease. Mov Disord 8: 263–270PubMedCrossRefGoogle Scholar
  99. Tedroff J, Aquilonius SM, Hartvig P et al. (1992) Cerebral uptake and utilization of therapeutic beta-11C-L-DOPA in Parkinson’s disease measured by positron emission tomography. Relations to motor response. Acta Neurol Scand 85: 95–102PubMedCrossRefGoogle Scholar
  100. Turjanski N, Lees AJ (1992) Gamma vinyl GABA in the treatment of levodopa induced dyskinesias in Parkinson’s disease. J Neurol Neuro-surg Psychiatry 55: 413CrossRefGoogle Scholar
  101. Ungerstedt U (1968) 6-Hydroxydopamine induced degeneration of central monoamino neurons. Eur J Pharmacol 5: 107–110PubMedCrossRefGoogle Scholar
  102. Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol Scand 367 [Suppl 69]: 95–122Google Scholar
  103. Ugerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigro striatal dopamine system. Brain Res 24: 485–493CrossRefGoogle Scholar
  104. Verhagen Metman L, Hoff J, Mouradian M et al. (1994) Fluctuations in plasma levodopa and motor responses with liquid and tablet levodopa/carbidopa. Mov Disord 9: 463–465CrossRefGoogle Scholar
  105. Vingerhoets FJG, Snow BJ, Lee CS et al. (1994) Longitudinal fluorodopa positron emission tomography studies of the evolution of idiopathic parkinsonism. Ann Neurol 36: 759–764PubMedCrossRefGoogle Scholar
  106. Wade DN, Mearrick PT, Morris J (1973) Active transport of L-DOPA in the intestine. Nature 242: 463–465PubMedCrossRefGoogle Scholar
  107. Wade LS, Katzman R (1975) 3-O-methyldopa uptake and inhibition of L-DOPA at the blood-brain barrier. Life Sci 17: 131–136PubMedCrossRefGoogle Scholar
  108. Zürcher G, Da Prada M (1982) Rapid and sensitive single-step radiochemical assay for cate-chol-O-methyltransferase. J Neurochem 38: 191–195PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • E. Schneider
  • K. Jorga

There are no affiliations available

Personalised recommendations