Advertisement

Parkinson-Krankheit: Pathophysiologie und pathogenetische Faktoren

  • K. A. Jellinger

Zusammenfassung

Die Parkinson-Krankheit (PK) ist gekennzeichnet durch fortschreitende Degeneration des nigrostriären dopaminergen Systems sowie anderer subkortikaler Neuronensysteme, die neben striärem Dopaminmangel zu komplexen biochemischen Defiziten als Grundlage der vielfältigen klinischen Ausfälle führen. Die Ursachen des neuronalen Zelltodes bei dieser mit typischen Zytoskelettveränderungen einhergehenden Multisystemerkrankung sind bisher unbekannt. Die pathophysiologischen Grundlagen der klinischen Symptomatik sowie einige pathogenetische Faktoren der neuronalen Degeneration bei PK konnten in letzter Zeit aufgeklärt werden; daraus ergeben sich wichtige Hinweise für Krankheitsverlauf, mögliche Neuroprotektion und Therapie.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ahlskog JE, Richelson E, Nelson A et al. (1991) Reduced D2 dopamine and muscarinic cholinergic receptor densities in caudate specimens from fluctuating parkinsonian patients. Ann Neurol 30: 185–191PubMedGoogle Scholar
  2. Albin RL (1995) The pathophysiology of chorea, ballism and parkinsonism. Parkinsonism Rel Disord 1: 2–133Google Scholar
  3. Andrew R, Watson DG, Best SA et al. (1993) The determination of hydroxydopamines and other trace amines in the urine of Parkinsonian patients and normal controls. Neurochem Res 18: 1175–1177PubMedGoogle Scholar
  4. Anglade P, Blanchard V, Vozart RR et al. (1996a) Is dopaminergic cell death accompanied by concomitant nerve plasticity? Adv Neurol 69: 195–208PubMedGoogle Scholar
  5. Anglade P, Mouattbrigent A, Agid Y, Hirsch EC (1996b) Synaptic plasticity in the caudate nucleus of patients with Parkinson’s disease. Neurodegeneration 5: 121–128PubMedGoogle Scholar
  6. Anglade P, Vyas S, Javoy-Agid F et al. (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol His-topathol 12: 25–31Google Scholar
  7. Antonini A, Schwarz J, Oertel WH et al. (1994) [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson’s disease: influence of L-dopa and lisuride therapy on striatal dopamine D2-re-ceptors. Neurology 44: 1325–1329PubMedGoogle Scholar
  8. Antonini A, Moeller JR, Nakamura T et al. (1998) The metabolic anatomy of tremor in Parkinson’s disease. Neurology 51: 803–810PubMedGoogle Scholar
  9. Arima K, Ueda K, Sunohara N, Arakawa K, Hirai S, Nakamura M, Tonozuka-Ueahra H, Kawai M (1998) NACP/α-synuclein immunoreactivity in fibrillary components of neuronal and oli-godendroglial cytoplasmic inclusions in the pontine nuclei in multiple system atrophy. Acta Neuropathol 96: 439–444PubMedGoogle Scholar
  10. Baba M, Nakajo S, Tu PH et al. (1998) Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152: 879–884PubMedGoogle Scholar
  11. Bagmen T, Carmine B, Dde-long mre-Long MR (1994) Parkinsonian tremor is associated with low frequency oscillations in selective loops of the basal ganglia. Adv Behav Biol 41: 317–325Google Scholar
  12. Banati RB, Daniel SE, Path MRC, Blunt SB (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 13: 221–227PubMedGoogle Scholar
  13. Bannon MJ, Poosch MS, Yue X et al. (1992) Dopamine transporter messenger RNA content in human substantia nigra decreases precipitously with age. Proc Natl Acad Sci 89: 7095–7099PubMedGoogle Scholar
  14. Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31: 119–130PubMedGoogle Scholar
  15. Beal MF (1995) Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol 38: 357–366PubMedGoogle Scholar
  16. Ben-Shachar D, Youdim MBH (1993) Iron, melanin and dopamine interaction — relevance to Parkinson’s disease. Prog Biol Psychiatry 17: 139–150Google Scholar
  17. Ben-Shachar D, Zuk R, Gunka Y (1995) Dopamine neurotoxicity: inhibition of mitochondrial respiration. J Neurochem 64: 718–723PubMedGoogle Scholar
  18. Benabid AL, Pollak P, Gervason C et al. (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337: 403–406PubMedGoogle Scholar
  19. Benabid AL, Pollak P, Gao DM et al. (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84: 203–214PubMedGoogle Scholar
  20. Bernheimer H, Birkmayer W, Hornykiewicz O et al. (1973) Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological and neurochemical correlations. J Neurol Sci 20: 415–455PubMedGoogle Scholar
  21. Blanchard V, Raisman-Vozari R, Vyas S et al. (1994) Differential expression of tyrosine hydroxylase and membrane dopamine transporter genes in subpopulations of dopaminergic neurons of rat mesencephalon. Mol Brain Res 22: 29–40PubMedGoogle Scholar
  22. Blandini F, Porter RHP, Greenamyre JT (1996) Glutamate and Parkinson’s disease. Mol Neu-robiol 12: 73–94Google Scholar
  23. Boecker H, Wills AJ, Ceballos-Baumann A et al. (1997) Stereotactic thalamotomy in tremor-dominant Parkinson’s disease — an (H2O)-O-15 PET motor activation study. Ann Neurol 41: 108–111PubMedGoogle Scholar
  24. Booij J, Tissingh G, Boer GJ et al. (1997) [123I]FFP-CIT SPECTP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 133–140PubMedGoogle Scholar
  25. Braak H, Braak E, Yilmazer D et al. (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103: 455–490PubMedGoogle Scholar
  26. Bringmann G, God R, Feineis D et al. (1995) The TaClo concept: 1-trichloromethyl-1,2,3,4-tet-rahydro-ß-carboline (TaClo), a new toxin for dopaminergic neurons. J Neural Transm 46 [Suppl]: 235–244Google Scholar
  27. Bringmann G, Feineis D, God R et al. (1996) Neurotoxic effects on the dopaminergic system induced by Taclo (1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline), a potential mama-lian alkaloid; in vivo and in vitro studies. Bio-gen Amines 12: 83–102Google Scholar
  28. Brion JP, Couck AM (1995) Cortical and brain-stem-type Lewy bodies are immunoreactive for the cyclin-dependent kinase 5. Am J Pathol 147: 1465–1476PubMedGoogle Scholar
  29. Brooks DJ (1993) Functional imaging in relation to parkinsonian syndromes. J Neurol Sci 115: 1–17PubMedGoogle Scholar
  30. Bucher SF, Seelos KC, Dodel RC et al. (1997) Activation mapping in essential tremor with functional magnetic resonance imaging. Ann Neurol 41: 32–40PubMedGoogle Scholar
  31. Burn DJ, Sawle GC, Brooks DJ (1994) Differential diagnosis of Parkinson’s disease, multi system atrophy, and Steele-Richardson-Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry 57: 277–284Google Scholar
  32. Chang MH, Chang TW, Lai PH, Sy CG (1995) Resting tremor only — a variant of Parkinson’s disease or of essential tremor. J Neurol Sci 130: 215–219PubMedGoogle Scholar
  33. Chase TN, Oh JD, Blanchet PJ (1998) Neostriatal mechanisms in Parkinson’s disease. Neurology 51 [Suppl 2]: S 30–35Google Scholar
  34. Counihan TJ, Penney JB JR (1998) Regional dopamine transporter gene expression in the substantia nigra from control and Parkinson’s diseased brains. J Neurol Neurosurg Psychiatry 65: 164–169PubMedGoogle Scholar
  35. Counihan TJ, Landwehrmeer B, Lücking CH et al. (1997) Lipid peroxidation in Parkinson’s disease, an immunohistochemical study. Neurology 48: A202Google Scholar
  36. Damier P, Hirsch EC, Agid Y (1996a) Patterns of cell loss in the substantia nigra in Parkinson’s disease. Neurology 46: A442Google Scholar
  37. Damier P, Kastner A, Agid Y, Hirsch EC (1996b) Does monoamine oxidase type B play a role in dopaminergic nerve cell death in Parkinson’s disease? Neurology 46: 1262–1269PubMedGoogle Scholar
  38. Deutch AY, Goldstein M, Baldino FJ, Roth RH (1988) Telencephalic projections of the A8 dopaminergic cell group. Ann NY Acad Sci 537: 27–50PubMedGoogle Scholar
  39. Dexter DT, Rose S, Handmarsh JG et al. (1994) Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol 35: 38–44PubMedGoogle Scholar
  40. Diedrich N, Goetz CG, Stebbins GT et al. (1992) Blinded evaluation confirms long-term asymmetric effect of unilateral thalamotomy or sub-thalamotomy on tremor in Parkinson’s disease. Neurology 32: 1311–1314Google Scholar
  41. Dormont D, Cornu P, Piduux B et al. (1998) Chronic thalamic stimulation with three-dimensional MR stereotactic guidance. Am J Neuroradiol 18: 1093–1107Google Scholar
  42. Dragunow M, Faull R, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport 6: 1053–1057PubMedGoogle Scholar
  43. Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant therapy in Parkinson’s disease. Progr Neurobiol 48: 1–19Google Scholar
  44. Eel-agnaf omal-Agnaf OMA, Curran MD, Wallace A et al. (1998) Mutation screening in exons 3 and 4 of alpha-synuclein in sporadic Parkinson’s and sporadic and familial dementia with Lewy body cases. Neuro-Report 9: 3925–3927Google Scholar
  45. Elsworth J, Roth R (1996) Dopamine autorecep-tor pharmacology and function: recent insights. In: Neve K, Neve R (eds) The dopamine receptors. Humana Press, Totowa, pp 223–265Google Scholar
  46. Eve DJ, Niebet AP, Kingsbury AE et al. (1998) Selective increase in somatostatin mRNA expression in human basal ganglia in Parkinson’s disease. Mol Brain Res 50: 59–70Google Scholar
  47. Fahn S (1997) Levodopa-induced neurotoxicity: does it represent a problem for the treatment of Parkinson’s disease? CNS Drugs 8: 376–393Google Scholar
  48. Fallon J, Matthews RT, Hyman BT, Beal MF (1997) MPP+ produces progressive neuronal degeneration which is mediated by oxidative stress. Exp Neurol 144: 193–198PubMedGoogle Scholar
  49. Faucheux BA, Herrero MT, Villares J et al. (1995a) Autoradiographic localization and density of [125I]ferrotransferrin binding sites in the basal ganglia of control subjects, patients with Parkinson’s disease and MPTP-lesioned monkeys. Brain Res 691: 115–124PubMedGoogle Scholar
  50. Faucheux BA, Nillesse N, Damier P et al. (1995b) Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc Natl Acad Sci USA 92: 9603–9607PubMedGoogle Scholar
  51. Fearnley JM, Lees A (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114: 2283–2301PubMedGoogle Scholar
  52. Fernandez A, Deceballos ML, Rose S et al. (1996) Alterations in peptide levels in Parkinson’s disease and incidental Lewy body disease. Brain 119: 823–830PubMedGoogle Scholar
  53. Fernandez PM, Dujovny M (1997) Pallidotomy-Editorial review. Neurol Res 19: 25–34PubMedGoogle Scholar
  54. Foster NL, Wilhelmsen K, Sima AAF et al. (1997) Frontotemporal dementia and Parkinsonism linked to chromosome 17 — a consensus conference. Ann Neurol 41: 706–715PubMedGoogle Scholar
  55. Fowler JS, Valkow ND, Wang GJ et al. (1996) Inhibition of monoamine oxidase B in the brains of smokers. Nature 379: 733–736PubMedGoogle Scholar
  56. Frey KA, Koeppe RA, Kilbourn MR et al. (1996) Presynaptic monoeminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40: 873–884PubMedGoogle Scholar
  57. Frost JJ, Rosier AJ, Reich SG et al. (1993) Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Ann Neurol 43: 423–431Google Scholar
  58. Furukawa Y, Kondo T, Nishi K et al. (1991) Total biopterin levels in the ventricular CSF of patients with Parkinson’s disease: a comparison between akineto-rigid and tremor types. J Neurol Sci 103: 232–237PubMedGoogle Scholar
  59. Gai WP, Vickers JC, Blumbergs PC, Blessing WW (1994) Loss of nonphosphorylated neurofilament immunoreactivity, with preservation of tyrosine hydroxylase, in surviving substantia nigra neurons in Parkinson’s disease. J Neurol Neurosurg Psychiatry 57: 1039–1046PubMedGoogle Scholar
  60. Gai WP, Blessing WW, Blumbergs PC (1995) Ubiquitin-positive degenerating neuntes in the brainstem in Parkinson’s disease. Brain 118: 1447–1459PubMedGoogle Scholar
  61. Galvin JE, Lee AMY, Baba M, Mann DMA, Dickson DW, Yamaguchi H, Schmidt ML, Iwatsubo T, Trojanowski JQ (1997) Monoclonal antibodies to purified cortical Lewy bodies recognize the mid-size neurofilament subunit. Ann Neurol 42: 595–603PubMedGoogle Scholar
  62. Gash DM, Zhang Z, Ovadia A et al. (1996) Functional recovery in GDNF-treated Parkinsonian monkeys. Nature 380: 252–255PubMedGoogle Scholar
  63. Gasser T (1998) Genetics of Parkinson’s disease. Ann Neurol 44 [Suppl 1]: S53–S57PubMedGoogle Scholar
  64. Gasser T, Wszolek ZK, Trofatter J et al. (1994) Genetic linkage studies in autosomal dominant parkinsonism. Ann Neurol 387–396Google Scholar
  65. Gerfen C (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15: 133–139PubMedGoogle Scholar
  66. Gerlach M, Riederer P (1993) The pathophysiological basis of Parkinson’s disease. In: Sze-Leny I (ed) Inhibitors of monoamine oxidase B. Pharmacology and clinical use in neurodegenerative disorders. Birkhäuser, Basel, pp 25–50Google Scholar
  67. Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurosurg 63: 743–804Google Scholar
  68. Gerlach M, Gsell W, Kornhuber J et al. (1996a) A post mortem study on neurochemical markers of dopaminergic, GABA-ergic and glutamatergic neurons in basal ganglia thalamocortical circuits in Parkinson syndrome. Brain Res 741: 142–152PubMedGoogle Scholar
  69. Gerlach M, Riederer P, Youdim MBH (1996b) Molecular mechanisms of neurodegeneration. Synergism between reactive oxygen species, calcium, and excitotoxic amino acids. Adv Neurol 69: 177–194PubMedGoogle Scholar
  70. German DC, Manaye KF, Sonsalia PK, Brooks BA (1992) Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced Parkinsonism — sparing of Calbindin-D (26K)-containing cells. Ann NY Acad Sci 648: 42–62PubMedGoogle Scholar
  71. Gibb WRG (1992) Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigro-striatal projections and differential neuronal susceptibility in Parkinson’s disease. Brain Res 581: 283–291PubMedGoogle Scholar
  72. Gilman S, Frey KA, Koeppe RA, et al. (1996) Decreased striatal monoaminergic terminals in olivopontocerebellar atrophy and multiple system atrophy demonstrated with positron emission tomography. Ann Neurol 40: 885–892PubMedGoogle Scholar
  73. Golbe LI (1999) Alpha-synuclein and parkinson’s disease. Mov Disord 14: 6–9PubMedGoogle Scholar
  74. Golbe LI, Iorio G, Bonavita V et al. (1996) Clinical genetic analysis of Parkinson’s disease in the Conturs kindred. Ann Neurol 40: 767–775PubMedGoogle Scholar
  75. Good PF, Olanow CW, Perl DP (1992) Neu-romelanin-containing neurons of the substantia nigra accumulate iron and aluminium in Parkinson’s disease. A LAMMA study. Brain Res 593: 343–346Google Scholar
  76. Good PF, Olanow CW, Perl DP (1997) LAMMA studies of iron, oxidative stress, and neuroprotective strategies in Parkinson’s disease. In: Yasui M, Strong MJ, Ota K, Verity MA (eds) Mineral and metal neurotoxicology. CRC Press, Boca Raton, pp 379–390Google Scholar
  77. Gorell JM, Johnson CC, Rybicki BA et al. (1997) Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology 48: 650–658PubMedGoogle Scholar
  78. Gorell JM, Johnson CC, Rybicki BA et al. (1998) The risk of Parkinson disease with exposure to pesticides, farming, well water, and rural living. Neurology 50: 1346–1350PubMedGoogle Scholar
  79. Goto S, Matsumoto S, Ushio Y, Hirano A (1996) Subregional loss of putaminal efferents to the basal ganglia output nuclei may cause parkinsonism in striatonigral degeneration. Neurology 47: 1032–1036PubMedGoogle Scholar
  80. Götz ME, König G, Riederer P et al. (1994) Oxidative stress, free radical production ion neural degeneration. Pharmacol Ther 65: 37–122Google Scholar
  81. Greenfield SA (1992) Cell death in Parkinson’s disease. Essays Biochem 2–27: 103–118Google Scholar
  82. Gross C, Rougier A, Guehl D et al. (1997) High-frequency stimulation of the globus pal-lidus internalis in Parkinson’s disease — a study of seven cases. J Neurosurg 87: 491–498PubMedGoogle Scholar
  83. Guttman M, Burkholder J, Hussey D et al. (1997) (11C)RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson’s disease. Neurology 48: 1578–1583PubMedGoogle Scholar
  84. Halliday GM, Mcritchie DA, Cartwright HR et al. (1996) Midbrain neuropathology in idiopathic Parkinson’s disease and diffuse Lewy body disease. J Clin Neurosci 3: 52–60PubMedGoogle Scholar
  85. Hardman CD, Mcritchie DA, Halliday GM et al. (1996) The substantia nigra pars reticulata in Parkinson’s disease. Neurodegeneration 5: 49–55PubMedGoogle Scholar
  86. Hardman CD, Halliday GM, Mcritchie DA et al. (1997a) Progressive supranuclear palsy affects both the substantia nigra pars compacta and reticulata. Exp Neurol 144: 183–192PubMedGoogle Scholar
  87. Hardman CD, Halliday GM, Mcritchie DA, Morris JGL (1997b) The subthalamic nucleus in Parkinson’s disease and progressive supranuclear palsy. J Neuropathol Exp Neurol 56: 132–142PubMedGoogle Scholar
  88. Hellenbrand W, Seidler A, Robra BP et al. (1997) Smoking and Parkinson’s disease — a case-control study in Germany. Int J Epidemiol 26: 328–339PubMedGoogle Scholar
  89. Hierholzer J, Cordes M, Venz S et al. (1998) Loss of dopamine-D2 receptor binding sites in Parkinsonian-plus syndromes. J Nucl Med 39: 954–960PubMedGoogle Scholar
  90. Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348PubMedGoogle Scholar
  91. Hirsch EC, Brandel JP, Galle P et al. (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56: 446–451PubMedGoogle Scholar
  92. Hirsch EC, Mouatt A, Thomasset M et al. (1992) Expression of calbindin D (28K) — like immu-noreactivity in catecholuminergic cell groups of the human midbrain; normal distribution and distribution in Parkinson’s disease. Neurodegeneration 1: 83–93Google Scholar
  93. Hirsch EC, Faucheux B, Damier P et al. (1997) Neuronal vulnerability in Parkinson’s disease. J Neural Transm [Suppl] 50: 79–88Google Scholar
  94. Hou JGG, Lin LFH, Mytilineou C (1996) Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and re-growth after damage by 1-methyl-4-phenyl-pyridinium. J Neurochem 66: 74–82PubMedGoogle Scholar
  95. Hunot S, Boissiere F, Faucheux B et al. (1996a) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72: 355–363PubMedGoogle Scholar
  96. Hunot S, Bernard V, Faucheux B et al. (1996b) Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson’s disease. J Neural Transm 103: 1043–1052PubMedGoogle Scholar
  97. Hoogendijk WJG, Pool CW, Troost D et al. (1995) Image analyser-assisted morphometry of the locus coeruleus in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Brain 118: 131–143PubMedGoogle Scholar
  98. Hutchinson WD, Lozano AM, Tasker RR et al. (1997) Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp Brain Res 113: 557–563Google Scholar
  99. Irrizary MC, Growdon W, Gomez-Isla T et al. (1998) Nigral and cortical Lewy bodies and dystrophic nigral neuntes in Parkinson’s disease and cortical Lewy body disease contain α-synuclein immunoreactivity. J Neuropathol Exp Neurol 57: 334–337Google Scholar
  100. Ito H, Goto S, Sakamoto S, Hirano A (1992) Calbindin-D28K in the basal ganglia of patients with Parkinsonism. Ann Neurol 32: 543–550PubMedGoogle Scholar
  101. Ito H, Kosaka H, Matsumoto S, Imai T (1996) Striatal efferent involvement and its correlation to levadopa efficacy in patients with multiple system atrophy. Neurology 47:1291–1299PubMedGoogle Scholar
  102. Itoh K, Weis S, Mehraein P, Müller-Höcker J (1997) Defects of cytochrome c oxidase in the substantia nigra of Parkinson’s disease: an immunohistochemical and morphometric study. Mov Disord 12: 9–16PubMedGoogle Scholar
  103. Jackson-Lewis V, Donaldson D, Przedborski S (1997) Apoptosis and Parkinson’s disease (PD). Neurology 48: A323Google Scholar
  104. Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14:153–197PubMedGoogle Scholar
  105. Jellinger K (1993) Pathogenese und Pathophysiologic der Parkinson-Krankheit. Neuro-psychiatrie 7: 29–37Google Scholar
  106. Jellinger KA (1995) Neurodegenerative disorders with extrapyramidal features. A neuropatho-logical overview. J Neural Transm 46 [Suppl]: 33–56Google Scholar
  107. Jellinger KA (1996) Bewegungsstörungen im höheren Lebensalter. In: Zapotocky HG, Fischhoff PK (Hrsg) Handbuch der Gerontopsych-iatrie. Springer, Wien New York, S 202–290Google Scholar
  108. Jellinger KA (1998) Neuropathology of movement disorders. Neurosurg Clin North Am 9: 237–262Google Scholar
  109. Jellinger KA (1999a) Post mortem studies in Parkinson’s disease — is it possible to detect brain areas for specific symptoms? J Neural Transm [Suppl] 56: 1–27Google Scholar
  110. Jellinger KA (1999b) Cell death mechanisms in Parkinson’s disease. J Neural Transm (in Druck)Google Scholar
  111. Jellinger KA (1999c) The role of iron in neurode-generation. Prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14: 115–140Google Scholar
  112. Jellinger K, Kienzl E, Rumpelmair G et al. (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1171PubMedGoogle Scholar
  113. Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13: 24–34PubMedGoogle Scholar
  114. Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’ disease. Neurology 56 [Suppl 3]: S161–S170Google Scholar
  115. Jenner P, Olanow CW (1998) Understanding cell death in Parkinson’s disease. Ann Neurol 44: S72–72S84Google Scholar
  116. Jenner P, Schaapira AVH, Marsden CD (1992) New insights into the cause of Parkinson’s disease. Neurology 42: 2241–2250PubMedGoogle Scholar
  117. Johansson F, Malm J, Nordh E, Hariz M (1997) Usefulness of pallidotomy in advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 125–132PubMedGoogle Scholar
  118. Joyce JN, Smutzer G, Whitty CJ et al. (1997) Differential modification of dopamine transporter and tyrosine hydroxylase mRNAs in midbrain of subjects with Parkinson’s, Alzheimer’s with parkinsonism, and Alzheimer’s disease. Mov Disord 12: 885–897PubMedGoogle Scholar
  119. Kang UJ, Nakamura K (1997) Glutathione in dopaminergic neurons. Neurology 48: S-202Google Scholar
  120. Kastner A, Hirsch EC, Lejeune O et al. (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to the neuromelanin content? J Neurochem 59: 1080–1089PubMedGoogle Scholar
  121. Kastner A, Hirsch EC, Agid Y, Javoy-Agid F (1993) Tyrosine hydroxylase protein and messenger RNA in the dopamine nigral neurons of patients with Parkinson’s disease. Brain Res 606: 341–345PubMedGoogle Scholar
  122. Kienzl E, Puchinger L, Jellinger K etal. (1995) The role of transition metals in the pathogenesis of Parkinson’s disease. J Neurol Sci 134 [Suppl]: 69–75PubMedGoogle Scholar
  123. Kingsbury AE, Marsden CD, Foster OJF (1998) DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov Disord 13: 877–884PubMedGoogle Scholar
  124. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven patterns of dopamine loss in the striatum of patients with Parkinson’s disease. N Engl J Med 318: 876–880PubMedGoogle Scholar
  125. Kordower JH, Goetz CG, Freeman TB, Olanow CW (1997) Dopaminergic transplants in patients with Parkinson’s disease: neuroanatom-ical correlates of clinical recovery. Exp Neurol 144: 41–46PubMedGoogle Scholar
  126. Kösel S, Lücking CB, Egensperger R et al. (1996) Mitochondrial NADH dehydrogenase and CYP2D6 genotypes in Lewy-body parkinsonism. J Neurosci Res 44: 174–183PubMedGoogle Scholar
  127. Kösel S, Egensperger R, Von Eitzen U et al. (1997) On the question of apoptosis in the substantia nigra in Parkinson’s disease. Acta Neuropathol 93: 105–109PubMedGoogle Scholar
  128. Kraus JK, Jankovic J, Lai EC et al. (1997) Postero-ventral medial pallidotomy in Levodopa-unresponsive parkinsonism. Arch Neurol 54: 1026–1029Google Scholar
  129. Kume A, Takahashi A, Hashizume Y (1993) Neuronal cell loss of the striatonigral system in multiple system atrophy. J Neuro Sci 117: 33–40Google Scholar
  130. Kupsch A, Earl C (1999) Neurosurgical interventions in the treatment of idiopathic Parkinson disease; neurostimulation and neural implantation. J Mol Med 77: 178–184PubMedGoogle Scholar
  131. Lach H, Grimes D, Benoit B, Minkiewicz-Janda A (1992) Caudate nucleus pathology in Parkinson’s disease. Ultrastructural and biochemical findings in biopsy material. Acta Neuropathol 83: 352–360PubMedGoogle Scholar
  132. Lang AE, Curran T, Provias J et al. (1994) Striato-nigral degeneration: iron deposition in puta-men correlates with the slit-like void signal of magnetic resonance imaging. Can J Neurol Sci 21: 311–318PubMedGoogle Scholar
  133. Lange KW, Youdim MBH, Riederer P (1992) Neurotoxicity and neuroprotection in Parkinson’s disease. J Neural Transm [Suppl] 38: 27–44Google Scholar
  134. Lange KW, Rausch WD, Gsell W et al. (1994) Neuroprotection by dopamine agonists. J Neural Transm [Suppl] 43: 183–201Google Scholar
  135. Lapchak PA, Gash DM, Jiao S et al. (1997) Glial cell line-derived neurotrophic factor: a novel therapeutic approach to treat motor dysfunction in Parkinson’s disease. Exp Neurol 144: 29–34PubMedGoogle Scholar
  136. Lestienne P, Nelson I, Riederer P et al. (1991) Normal mitochondrial genome in brain from patients with Parkinson’s disease and complex I defect. J Neurochem 55: 1810–1812Google Scholar
  137. Leveugle B, Faucheux BA, Bouras C et al. (1996) Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson’s disease cases. Acta Neuropathol 91: 566–572PubMedGoogle Scholar
  138. Limousin P, Krack P, Pollak P et al. (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339: 1105–1111PubMedGoogle Scholar
  139. Limousin P, Speelman JD, Gielen F et al. (1999) Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 66: 289–296PubMedGoogle Scholar
  140. Linert W, Herlinger E, Jameson RF et al. (1996) Dopamine, 6-hydroxydopamine, iron, and dioxygen — their mutual interactions and possible implication in the development of Parkinson’s disease. Biochem Biophys Acta 1316: 160–168PubMedGoogle Scholar
  141. Litvan I, Hauw JJ, Bartko JJ et al. (1996) Validity and reliability of the preliminary NINDS neu-ropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol 55: 97–105PubMedGoogle Scholar
  142. Lowe J, Lennox G, Leigh PN (1997) Disorders of movement and system degenerations. In: Graham DI, Lantos PL (ed) Greenfield’s Neuropathology, 6th ed. E. Arnold, London, pp 280–366Google Scholar
  143. Lynd-Balta E, Haber SN (1994) Primate striato-nigral projections: a comparison of the sen-sorimotor-related striatum and the ventral striatum. J Comp Neurol 345: 562–578PubMedGoogle Scholar
  144. Ma SY, Rinne JO, Collan Y et al. (1995) A quantitative morphometrical study of the neuron degeneration in the substantia nigra in patients with Parkinson’s disease. J Neurol Sci 140: 40–45Google Scholar
  145. Ma SY, Röyttä M, Rinne JO et al. (1997) Correlation between neuromorphometry in the substantia nigra and clinical features in Parkinson’s disease using dissector counts. J Neurol Sci 151: 83–87PubMedGoogle Scholar
  146. Ma SY, Roytta M, Collan J, Rinne O (1998) Unbiased morphometric measurements show nigral neuronal loss with aging. Neurology 50: A 336Google Scholar
  147. Mann VM, Cooper JM, Daniel SE et al. (1994) Complex I, Iron, and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 36: 876–881PubMedGoogle Scholar
  148. Manza D, Saliveri P, Radice V et al. (1998) Cognitive dysfunction and impaired organization of complex mobility in degenerative parkinsonian syndromes. Arch Neurol 55: 372–378Google Scholar
  149. Marek KL, Seibyl JP, Zoghbi SS et al. (1996) (123I) B-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkin-son’s disease. Neurology 46: 231–237PubMedGoogle Scholar
  150. Mcgeer PL, Itagaki S, Akiyama H, Mcgeer EG (1988) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24: 574–576PubMedGoogle Scholar
  151. Mcritchie DA, Cartwright HR, Halliday GM (1997) Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease. Exp Neurol 144: 202–213PubMedGoogle Scholar
  152. Mezey E, Dehejia A, Harta G et al. (1998a) Alpha synuclein is present in Lewy bodies in sporadic Parkinson’s disease. Mol Psychiat 3: 493–499Google Scholar
  153. Mezey E, Dehejia A, Harta G (1998b) Alpha synuclein in neurodegenerative disorders; murderer or accomplice? Nature Med 4: 755–757PubMedGoogle Scholar
  154. Miller GW, Staley JK, Heilman CJ et al. (1997) Immunochemical analysis of dopamine transporter protein in Parkinson’s disease. Ann Neurol 41: 530–539PubMedGoogle Scholar
  155. Mizuno Y, Yoshino H, Ikeba S et al. (1998) Mitochondrial dysfunction in Parkinson’s disease. Ann Neurol 44 [Suppl 1]: S99–S109PubMedGoogle Scholar
  156. Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137: 120–123PubMedGoogle Scholar
  157. Mochizuki H, Mori H, Mizuno Y (1997) Apoptosis in neurodegenerative disorders. J Neural Transm [Suppl] 50: 125–140Google Scholar
  158. Morens DM, Grandinetti A, Reed D et al. (1995) Cigarette smoking and protection from Parkinson’s disease. Neurology 45: 1041–1051PubMedGoogle Scholar
  159. Morens DM, Grandinetti A, Davis JW et al. (1996) Evidence against the operation of selective mortality in explaining the association between cigarette smoking and reduced occurrence of idiopathic Parkinson’s disease. Am J Epidemiol 144: 400–404PubMedGoogle Scholar
  160. Morrish PK, Sawle GV, Brooks DJ (1996a) The rate of progression of Parkinson’s disease: a longitudinal (18F)DOPA PET study. Adv Neurol 69: 427–431PubMedGoogle Scholar
  161. Morrish PK, Sawle GV, Brooks DJ (1996b) Regional changes in [18F]dopa metabolism in the striatum in Parkinson’s disease. Brain 119: 2097–2103PubMedGoogle Scholar
  162. Mouatt-Prigent A, Agid Y, Hirsch EC (1994) Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson’s disease? Brain Res 668: 62–70PubMedGoogle Scholar
  163. Mouatt-Prigent A, Karlsson JO, Agid Y, Hirsch EC (1996) Increased m-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in cell death? Neuroscience 73: 979–987PubMedGoogle Scholar
  164. Neill TH, Brown SA, Rafols JA, Shoulson L (1988) Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease. Brain Res 455: 148–152Google Scholar
  165. Nirenberg MJ, Vaughan RA, Uhl GR et al. (1996) The dopamin transporter is localized to dendritic and axonal plasma membranes of nigro-striatal dopaminergic neurons. J Neurosci 16: 436–447PubMedGoogle Scholar
  166. Nisbet AP, Eve DJ, Kingsbury AE et al. (1996) Glutamate decarboxylase-67 messenger RNA expression in normal human basal ganglia and in Parkinson’s disease. Neuroscience 75: 389–406PubMedGoogle Scholar
  167. Nishio T, Furukawa S, Akiguchi I, Sunohara N (1998) Medial nigral dopamine neurons have rich neurotrophin support in humans. Neu-roRep 9: 2847–2851Google Scholar
  168. Obeso JA, Guridi J, Delong M (1997) Surgery for Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 2–8PubMedGoogle Scholar
  169. Olanow CW, Arendash GW (1994) Metals and free radicals in neurodegeneration. Curr Opin Neurol 7: 548–558PubMedGoogle Scholar
  170. Olanow CW, Tatton N, Redman R et al. (1998) Apoptosis and mitochondrial potential in Parkinson’s disease. Ann Neurol 44: 452Google Scholar
  171. Olson L (1997) The oming of age of the GDNF family and its receptor: gene delivery in a rat Parkinson model may have clinical implications. Trends Neurosci 20: 277–279PubMedGoogle Scholar
  172. Omar R, Smith M, Perry G et al. (1996) Immuno-histochemical evidence of oxidative stress in Parkinson’s disease (PD). J Neuropathol Exp Neurol 54: 634Google Scholar
  173. Oo TF, Burke RE (1997) The time cause of developmental cell death in phenotypically defined dopaminergic neurons of the substantia nigra. Dev Brain Res 98: 191–196Google Scholar
  174. Otsuka M, Ichiya Y, Kuwabara Y et al. (1996) Differences in the reduced 18F-Dopa uptakes of the caudate and the putamen in Parkinson’s disease: correlation with the three main symptoms. J Neurol Sci 136: 169–173PubMedGoogle Scholar
  175. Overton B, Clarke HG (1992) NMDA receptors regulate dopaminergic neuronal activation. Synapse 10: 131–138PubMedGoogle Scholar
  176. Pahwa R, Paolo A, Tröster A, Koller W (1998) Cognitive impairment in Parkinson’s disease. Eur J Neurol 5: 431–441PubMedGoogle Scholar
  177. Pakkenberg B, Møller A, Gundersen HJG et al. (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54: 30–33PubMedGoogle Scholar
  178. Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. I. The cortico-basal-gan-glia-thalamo-cortical loop. Brain Res Rev 20: 91–127PubMedGoogle Scholar
  179. Paulus W, Jellinger K (1991) The neuropatholog-ic basis of different clinical subtypes of Parkinson’s disease. J Neuropathol Exp Neurol 50: 143–155Google Scholar
  180. Percheron G, Francois C, Yelnik J et al. (1994) The basal ganglia related system of primates: definition, description and informational analysis. In: Percheron G, Mckensie JS, Féger J (eds) The basal ganglia, vol IV. New ideas and data on structure and function. Plenum, New York, pp 3–20Google Scholar
  181. Pillon B, Deweer B, Malapani C et al. (1994) Explicit memory disorders of demented parkinsonian patients and underlying neuronal basis. In: Korczyn AD (ed) Dementia in Parkinson’s disease. Monduzzi, Bologna, pp 265–271Google Scholar
  182. Pizzolato G, Cagnin A, Rossato A et al. (1996) Striatal dopamine D2 receptor alterations and response to L-DOPA in Parkinson’s disease. Adv Neurol 69: 467–473PubMedGoogle Scholar
  183. Pollanen MS, Dickson DW, Bergeron C (1993) Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 52: 183–191PubMedGoogle Scholar
  184. Polymeropoulos MH, Higgins JJ, Golbe LI et al. (1996) A gene for Parkinson’s disease maps to 4q21-q23. Science 274: 1197–1199PubMedGoogle Scholar
  185. Polymeropoulos MH, Lavedan C, Leroy E et al. (1997) Mutation in alpha synuclein identified in families with Parkinson’s disease. Science 276: 2045–2047PubMedGoogle Scholar
  186. Rajput AH (1993) Environmental causation of Parkinson’s disease. Arch Neurol 50: 651–652PubMedGoogle Scholar
  187. Rajput AH, Rozdislky B, Ang L, Rajput A (1991) Clinicopathologic observations in essential tremor: report of six cases. Neurology 41: 1422–1424PubMedGoogle Scholar
  188. Rice-Evans C, Burdos R (1993) Free radical-and lipid interaction and their pathological consequences. Prog Lipid Res 32: 71–110PubMedGoogle Scholar
  189. Riederer P, Dirr A, Goetz M et al. (1992) Distribution of iron in different brain regions and subcellular compartments in Parkinson’s diseases. Ann Neurol 32: 101–104Google Scholar
  190. Rioux L, Frohna PA, Joyce JN, Schneider JS (1997) The effects of chronic levodopa treatment on pre-and postsynaptic markers of dopaminergic function in striatum of parkinsonian monkeys. Mov Disord 12: 148–158PubMedGoogle Scholar
  191. Rinne JO, Lathinen A, Nagren R et al. (1995a) PET examination of the monoamine transporter with (11C)β-CIT and (11G)β-CFT in early Parkinson’s disease. Synapse 21: 97–103PubMedGoogle Scholar
  192. Rinne JO, Leihinnen A, Ruottinen H et al. (1995b) Increased densitiy of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson’s disease — a PET study with [C-ll]raclopride. J Neurol Sci 132: 156–161PubMedGoogle Scholar
  193. Rinne JO, Burn DJ, Mathias CJ et al. (1995c) Positron emission tomography studies on the dopaminergic system and striatal opioid binding in the olivopontocerebellar atrophy variant of multiple system atrophy. Ann Neurol 37: 568–573PubMedGoogle Scholar
  194. Rinne JO, Kuikka JT, Berström MA et al. (1997) Striatal dopamine transporter in Parkinson’s disease; a study with a new radioligand, (123I) B-CIT-FP. Parkinsonism Rel Disord 3: 77–81Google Scholar
  195. Robertson H (1992) Dopamine receptor interactions: some implications for the treatment of Parkinson’s disease. Trends Neurosci 15: 201–206PubMedGoogle Scholar
  196. Robertson RG, Clarke CA, Boyce S et al. (1990) The role of striatopallidal neurones utilizing gamma-aminobutyric acid in the pathophysiology of MPTP-induced parkinsonism in the primate: evidence from [(3)H] flunitrazepam autoradiography. Brain Res 531: 95–104PubMedGoogle Scholar
  197. Schapira AHV (1995) Oxidative stress in Parkinson’s disease. Neuropathol Appl Neurobiol 21: 3–9PubMedGoogle Scholar
  198. Schipper HM, Libermann A, Stopa EG (1998) Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol 150: 60–68PubMedGoogle Scholar
  199. Seeman P, Van Tol H (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15: 264–270PubMedGoogle Scholar
  200. Seibyl JP, Marek KL, Quinlan D et al. (1995) Decreased single-photon emission computed tomographic (123 I) β-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol 38: 589–598PubMedGoogle Scholar
  201. Shimada C, Kitayama S, Walther D, Uhl G (1992) Dopamine transporter mRNA: dense expression in ventral midbrain neurons. Mol Brain Res 13: 359–362PubMedGoogle Scholar
  202. Shinotoh H, Inoue O, Hirayama K et al. (1993) Dopamine Dl receptors in Parkinson’s disease and striatonigral degeneration. A positron emission tomography study. J Neurol Neurosurg Psychiatry 56: 467–472PubMedGoogle Scholar
  203. Sian J, Dexter DT, Lees AJ et al. (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Neurology 36: 348–355Google Scholar
  204. Snow BJ, Tooyama I, Mcgeer EG et al. (1993) Human positron emission tomographic (18F) Fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol 34:324–330PubMedGoogle Scholar
  205. Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142: 128–130PubMedGoogle Scholar
  206. Spencer JPE, Jenner P, Halliwell B (1995) Super-oxide-dependent depletion of reduced glutathione by L-dopa and dopamine. Relevance to Parkinson’s disease. Neuroreport 8: 1480–1484Google Scholar
  207. Spillantini MG, Schmidt ML, Lee VMY, Tro-Janowski JQ, Jakes R, Goedert M (1997) α-synuclein in Lewy bodies. Nature 388: 839–840PubMedGoogle Scholar
  208. Spillantini MG, Crowther RA, Jakes R et al. (1998) α-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95: 6469–6473PubMedGoogle Scholar
  209. Spillantini MG, Bird TD, Ghetti B (1998) Fronto-temporal dementia and Parkinsonism linked to chromosome 17 — a new group of tauopa-thies. Brain Pathol 8: 387–402PubMedGoogle Scholar
  210. Stoessl AJ, Ruth TJ (1998) Neuroreceptor imaging: new developments in PET and SPECT imaging of neuroreceptor binding (including dopamine transporters, vesicle transporters and post synaptic receptor sites). Curr Opin Neurol 11: 327–333PubMedGoogle Scholar
  211. Strafella A, Ashby P, Munz M et al. (1997) Inhibition of voluntary activity by thalamic stimulation in humans — relevance for the control of tremor. Mov Disord 12: 727–737PubMedGoogle Scholar
  212. Sun D, Leung CL, Liem RKH (1996) Phosphorylation of the high molecular weight neurofilament protein (NF-H) by cdk5 and p53. J Biol Chem 271: 14245–14251PubMedGoogle Scholar
  213. Taha JM, Favre J, Baumann TK, Burchiel KJ (1997) Tremor control after pallidotomy in patients with Parkinson’s disease — correlation with microrecording findings. J Neurosurg 86: 642–647PubMedGoogle Scholar
  214. Tasker RR, Lang AE, Lozano AM (1997) Pallidal and thalamic surgery for Parkinson’s disease. Exp Neurol 144: 35–40PubMedGoogle Scholar
  215. Tedroff J, Pedersen M, Aquilonius SM et al. (1996) Levodopa-induced changes in synaptic dopamine in patients with Parkinson’s disease as measured by [C-11]raclopride displacement and PET. Neurology 46: 1430–1436PubMedGoogle Scholar
  216. Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 61: 1191–1206PubMedGoogle Scholar
  217. Tissingh G, Booij J, Winogrodzka A et al. (1996) IBZM-and CIT-SPECT of the dopaminergic system in parkinsonism. J Neural Transm 50 [Suppl]: 31–37Google Scholar
  218. Tissingh G, Bergmans P, Booij J et al. (1998) Drug-naive patients with Parkinson’s disease in Hoehn and Yahr stages I and II show a bilateral decrease in striatal dopamine transporters as revealed by 123I-β-Cit SPECT. J Neurol 245: 14–20PubMedGoogle Scholar
  219. Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775: 24–29PubMedGoogle Scholar
  220. Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150: 119–131PubMedGoogle Scholar
  221. Trojanowski JQ, Lee VMY (1994) Phosphorylation of neuronal cytoskeletal proteins in Alzheimer’s disease and Lewy body dementia. Ann NY Acad Sci 747: 92–109PubMedGoogle Scholar
  222. Trojanowski JQ, Lee VMY (1998) Aggregation of neurofilament and α-synuclein proteins in Lewy bodies — implications for the pathogenesis of Parkinson’s disease and Lewy body dementia. Arch Neurol 55: 151–152PubMedGoogle Scholar
  223. Trojanowski JQ, Schmidt ML, Shin R-W et al. (1993) Altered tau and neurofilament proteins in neurodegenerative diseases: diagnostic implications for Alzheimer’s disease and Lewy body dementias. Brain Pathol 3: 45–54PubMedGoogle Scholar
  224. Turjanski N, Lees AJ, Brooks DJ (1997) In vivo studies on striatal dopamine D1 and D2 site binding in l-dopa treated Parkinson’s disease patients with and without dyskinesias. Neurology 49: 717–723PubMedGoogle Scholar
  225. Uhl GR (1998) Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson’s disease. Ann Neurol 43: 555–560PubMedGoogle Scholar
  226. Uhl GR, Walther D, Mash D et al. (1994) Dopamine transporter messenger RNA in Parkinson’s disease and control substantia nigra neurons. Ann Neurol 35: 494–498PubMedGoogle Scholar
  227. Varastet M, Riche D, Maziere M, Hantraye P (1994) Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons in Parkinson’s disease. Neuroscience 63: 47–56PubMedGoogle Scholar
  228. Vickers JC (1997) A cellular mechanism for the neuronal changes underlying Alzheimer’s disease. Neuroscience 78: 629–639PubMedGoogle Scholar
  229. Vieregge P (1994) Genetic factors in the etiology of idiopathic Parkinson’s disease. J Neural Transm [PD-Sect] 8: 1–37Google Scholar
  230. Vila M, Herrero MT, Levy R et al. (1996) Consequences of nigrostriatal denervation on the γ-aminobutyric acidic neurons of substantia nigra pars reticulata and superior colliculus in parkinsonian syndromes. Neurology 46: 502–509Google Scholar
  231. Wallace DC (1992) Mitochondrial genetics: a paradigma for aging and degenerative diseases? Science 256: 628–632PubMedGoogle Scholar
  232. Weihmüller FB, Ulas J, Nguyen L et al. (1992) Elevated NMDA receptors in Parkinson’s striatum. Neuroreport 3: 977–980PubMedGoogle Scholar
  233. Wilhelmsen KC, Wszolek ZK (1996) Is there a genetic susceptibility to idiopathic parkinsonism? Parkinsonism Rel Disord 1: 75–84Google Scholar
  234. Wills AJ, Thompson PD, Findley LJ, Brooks DJ (1996) A positron emission tomography study of primary orthostatic tremor. Neurology 46: 747–752PubMedGoogle Scholar
  235. Wilson JM, Levey AT, Rajput A et al. (1996) Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology 47: 718–726PubMedGoogle Scholar
  236. Wszolek ZK, Lynch T, Wilhelmsen KC (1997) Rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration (PPND) and dis-inhibition-dementia-parkinsonism-amyotro-phy complex (DDPAC) are clinically distinct conditions that are both linked to 17q21-22. Parkinsonism Rel Disord 3: 67–76Google Scholar
  237. Wüllner U, Kornhuber J, Weller M, Schultz JB, Löschmann PA, Riederer P (1999) Cell death and apoptosis regulating proteins in Parkinson’s disease — a cautionary note. Acta Neu-ropathol 97: 408–412Google Scholar
  238. Yamada T (1996) Viral etiology of Parkinson’s disease: focus on influenza A virus. Parkinsonism Rel Disord 2: 113–121Google Scholar
  239. Yoritaka A, Hattori N, Uchida K et al. (1996) Immunohistochemical detection of 4-hydro-xynonenal protein adducts in Parkinson’s disease. Proc Natl Acad Sci 93: 2696–2701PubMedGoogle Scholar
  240. Yoritaka A, Hattori N, Mori H et al. (1997) An immunohistochemical study on manganese superoxide dismutase in Parkinson’s disease. J Neurol Sci 148: 181–186PubMedGoogle Scholar
  241. Youdim MBH (1994) Inorganic neurotoxins in neurodegenerative disorders without primary dementia. In: Calne DB (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 251–276Google Scholar
  242. Yung KKL, Smith AD, Levey AL, Bolam JP (1996) Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat — evidence from dopamine receptor and neuropeptide immunostaining. Eur J Neurosci 8: 861–869PubMedGoogle Scholar
  243. Zeevalk GD, Bernard LP, Nicklas WJ (1998) Role of oxidative stress and the glutathione system in loss of dopamine neurons due to impairment of energy metabolism. J Neurochem 70: 1421–1430PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • K. A. Jellinger

There are no affiliations available

Personalised recommendations