Advertisement

Abstract

It was in 1979 when GROVE et al. isolated from pollen of rape (Brassica napus) a highly active plant growth promoter, named it brassinolide and elucidated its structure as (22R,23R,24S)-2α,3α, 22,23-tetrahydroxy-24-methyl-B-homo-6a-oxa-5α-cholestan-6-one (1) by spectroscopic methods including X-ray analysis (1). The original structural features of this compound and its unique high biological activity at very low concentrations stimulated intense research activities in many laboratories. Such efforts were directed towards the search for similar compounds in the plant kingdom, their chemical synthesis, biochemistry and biological mode of action leading up to their practical application in agriculture and horticulture. As a result of this interdisciplinary and rapidly processing research, brassinosteroids can nowadays be regarded as a new class of plant hormones with ubiquitous occurrence in the plant kingdom. Especially, recent molecular biological studies demonstrated their essential role for normal plant growth and development. A series of reviews have been published (2–11). Whereas the first book on brassinosteroid research covers developments up to 1990 (12), two up-to-date publications about this topic have appeared very recently (13, 14). The present article covers the literature up to December 1998 with special consideration of phytochemical, analytical and biochemical aspects.

Keywords

Immature Seed Phalaris Canariensis Fagopyrum Esculentum Side Chain Hydroxylation Brassinosteroid Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grove, M.D., G.F. Spencer, W.K. Rowedder, N. Mandava, J.F. Worley, J.D. Warthen, Jr., G.L. Steffens, J.L. Flippen-Anderson, and J.K. Cook, Jr.: Brassinolide, a Plant Growth-Promoting Steroid Isolated from Brassica napus Pollen. Nature, 281, 216 (1979).Google Scholar
  2. 2.
    Yokota, T., and N. Takahashi: Chemistry, Physiology and Agriculture Application of Brassinolide and Related Steroids. In: Plant Growth Substances (M. Bopp, ed.), p. 129. Berlin, Heidelberg, New York: Springer-Verlag. 1986.Google Scholar
  3. 3.
    Adam, G., and V. Marquardt: Brassinosteroids. Phytochemistry, 25, 1787 (1986).Google Scholar
  4. 4.
    Mandava, N.B.: Plant Growth-Promoting Brassinosteroids. Annu. Rev. Plant Physiol. Plant Mol. Biol., 39, 23 (1988).Google Scholar
  5. 5.
    Marquardt, V., and G. Adam: Recent Advances in Brassinosteroid Research. In: Chemistry of Plant Protection, 7 (W. Ebing, H. Börner, O. Martin, V. Sjut, H.-J. Stan, and J. Stetter, eds.), p. 103. Berlin, Heidelberg: Springer-Verlag. 1991.Google Scholar
  6. 6.
    Sakurai, A., and S. Fujioka: The Current Status of Physiology and Biochemistry of Brassinosteroids. Plant Growth Regul., 13, 147 (1993).Google Scholar
  7. 7.
    Adam, G., A. Porzel, J. Schmidt, B. Schneider, and B. Voigt: New Developments in Brassinosteroid Research. In: Studies in Natural Products Chemistry (Atta-Ur-Rahman, ed.), p. 495. Amsterdam: Elsevier Science. 1996.Google Scholar
  8. 8.
    Yokota, T.: Structure, Biosynthesis and Function of Brassinosteroids. Trends Plant Sci., 2, 137 (1997).Google Scholar
  9. 9.
    Sasse, J.M.: Recent Progress in Brassinosteroid Research. Physiol. Plant., 100, 696 (1997).Google Scholar
  10. 10.
    Fujioka, S., and A. Sakurai: Brassinosteroids. Nat. Prod. Rep., 14, 1 (1997).Google Scholar
  11. 11.
    Clouse, S.D., and J.M. Sasse: Brassinosteroids: Essential Regulators of Plant Growth and Development. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 427 (1998).Google Scholar
  12. 12.
    Cutler, H.G., T. Yokota, and G. Adam (eds.): Brassinosteroids — Chemistry, Bioactivity, and Applications, Washington, DC: American Chemical Society. 1991.Google Scholar
  13. 13.
    Khripach, V.A., V.N. Zhabinskii, and A.E. de Groot: Brassinosteroids — A New Class of Plant Hormones. San Diego: Academic Press. 1999.Google Scholar
  14. 14.
    Sakurai, A., T. Yokota, and S. Clouse (eds.): Brassinosteroids, Steroidal Plant Hormones. Tokyo: Springer-Verlag. 1999.Google Scholar
  15. 15.
    Plattner, R.D., S.L. Taylor, and M.D. Grove: Detection of Brassinolide and Castasterone in Alnus glutinosa (European Alder) by Mass Spectrometry/Mass Spectrometry. J. Nat. Prod., 49, 540 (1986).Google Scholar
  16. 16.
    Schmidt, J., B. Voigt, and G. Adam: 2-Deoxybrassinolide — A Naturally Occurring Brassinosteroid from Apium graveolens. Phytochemistry, 40, 1041 (1995).Google Scholar
  17. 17.
    Fujioka, S., Y.-H. Choi, S. Takatsuto, T. Yokota, J. Li, J. Chory, and A. Sakurai: Identification of Castasterone, 6-Deoxocastasterone, Typhasterol and 6-Deoxotyphasterol from Shoots of Arabidopsis thaliana. Plant Cell Physiol., 37, 1201 (1996).Google Scholar
  18. 18.
    Schmidt, J., T. Altmann, and G. Adam: Brassinosteroids from Seeds of Arabidopsis thaliana. Phytochemistry, 45, 1325 (1997).Google Scholar
  19. 19.
    Fujioka, S., T. Noguchi, T. Yokota, S. Takatsuto, and S. Yoshida: Brassinosteroids in Arabidopsis thaliana. Phytochemistry, 48, 595 (1998).Google Scholar
  20. 20.
    Takatsuto, S.: Brassinosteroids: Distribution in Plants, Bioassay and Microanalysis by Gas Chromatography-Mass Spectrometry. J. Chromatogr. A, 658, 3 (1994).Google Scholar
  21. 21.
    Schmidt, J., C. Kuhnt, and G. Adam: Brassinosteroids and Sterols from Beta vulgaris. Phytochemistry, 36, 175 (1994).Google Scholar
  22. 22.
    Ikekawa, N., S. Takatsuto, T. Kitsuwa, H. Saito, T. Morishita, and H. Abe: Analysis of Natural Brassinosteroids by Gas Chromatography and Gas Chromatography-Mass Spectrometry. J. Chromatogr., 290, 289 (1984).Google Scholar
  23. 23.
    Abe, H., T. Morishita, M. Uchiyama, S. Marumo, K. Munakata, S. Takatsuto, and N. Ikekawa: Identification of Brassinolide-Like Substances in Chinese Cabbage. Agric. Biol. Chem., 46, 2609 (1982).Google Scholar
  24. 24.
    Ikekawa, N., S. Takatsuto, S. Marumo, H. Abe, T. Morishita, M. Uchiyama, M. Ikeda, T. Sassa, and T. Kitsuwa: Identification of Brassinolide and its 6-Oxo Analog in Plant Kingdom by Selected Ion Monitoring. Proc. Japan Acad. Ser. B, 59, 9 (1983).Google Scholar
  25. 25.
    Abe, H., T. Morishita, M. Uchiyama, S. Takatsuto, N. Ikekawa, M. Ikeda, T. Sassa, T. Kitsuwa, and S. Marumo: Occurrence of Three New Brassinosteroids: Brassinone, (24S)-24-Ethylbrassinone and 28-Norbrassinone, in Higher Plants. Experientia, 39, 351 (1983).Google Scholar
  26. 26.
    Takatsuto, S., H. Abe, T. Yokota, K. Shimada, and K. Gamoh: Identification of Castasterone and Teasterone in Seeds of Cannabis sativa L. Nihon Yukagakkaishi, 45, 871 (1996).Google Scholar
  27. 27.
    Gamoh, K., H. Abe, K. Shimada, and S. Takatsuto: Liquid Chromatography/Mass Spectrometry with Atmospheric Pressure Chemical Ionization of Free Brassinosteroids. Rap. Commun. Mass Spectrom., 10, 903 (1996).Google Scholar
  28. 28.
    Park, K.-H., J.-D. Park, K.-H. Hyun, M. Nakayama, and T. Yokota: Brassinosteroids and Monoglycerides in Immature Seeds of Cassia tora as the Active Principles in the Rice Lamina Inclination Bioassay. Biosci. Biotechnol. Biochem., 58, 1343 (1994).Google Scholar
  29. 29.
    Yokota, T., M. Arima, and N. Takahashi: Castasterone, a New Phytosterol with Plant-Hormone Potency, from Chestnut Insect Gall. Tetrahedron Letters, 23, 1275 (1982).Google Scholar
  30. 30.
    Arima, M., T. Yokota, and N. Takahashi: Identification and Quantification of Brassinolide-Related Steroids in the Insect Gall and Healthy Tissues of the Chestnut Plant. Phytochemistry, 23, 1587 (1984).Google Scholar
  31. 31.
    Ikeda, M., S. Takatsuto, T. Sassa, N. Ikekawa, and M. Nukina: Identification of Brassinolide and its Analogues in Chestnut Gall Tissue. Agric. Biol. Chem., 47, 655 (1983).Google Scholar
  32. 32.
    Park, K.-H., H. Saimoto, S. Nakagawa, A. Sakurai, T. Yokota, N. Takahashi, and K. Syono: Occurrence of Brassinolide and Castasterone in Crown Gall Cells of Catharanthus roseus. Agric. Biol. Chem., 53, 805 (1989).Google Scholar
  33. 33.
    Choi, Y.-H., T. Inoue, S. Fujioka, H. Saimoto, and A. Sakurai: Identification of Brassinosteroid-Like Substances in Plant Cell Cultures. Biosci. Biotechnol. Biochem., 57, 860 (1993).Google Scholar
  34. 34.
    Choi, Y.-H., S. Fujioka, T. Nomura, A. Harada, T. Yokota, S. Takatsuto, and A. Sakurai: An Alternative Brassinolide Biosynthetic Pathway via Late C-6 Oxidation. Phytochemistry, 44, 609 (1997).Google Scholar
  35. 35.
    Motegi, C., S. Takatsuto, and K. Gamoh: Identification of Brassinolide and Castasterone in the Pollen of Orange (Citrus sinensis Osbeck). J. Chromatogr. A, 658, 27 (1994).Google Scholar
  36. 36.
    Abe, H: Rice-Lamina Inclination, Endogenous Levels in Plant Tissues and Accumulation During Pollen Development of Brassinosteroids. In: ref. 12, p. 200.Google Scholar
  37. 37.
    Yokota, T., K. Higuchi, N. Takahashi, Y. Kamuro, T. Watanabe, and S. Takatsuto: Identification of Brassinosteroids with Epimeric Substituents and/ or the 23-Oxo Group in Pollen and Anthers of Japanese Cedar. Biosci. Biotechnol. Biochem., 62, 526 (1998).Google Scholar
  38. 38.
    Schmidt, J., and G. Adam, unpublished results.Google Scholar
  39. 39.
    Griffiths, P.G., J.M. Sasse, T. Yokota, and D.W. Cameron: 6-Deoxotyphasterol and 3-Dehydro-6-deoxoteasterone, Possible Precursors to Brassinosteroids in the Pollen of Cupressus arizonica. Biosci. Biotechnol. Biochem., 59, 956 (1995).Google Scholar
  40. 40.
    Schmidt, J., A. Porzel, and G. Adam: Brassinosteroids and a Pregnane Glucoside from Daucus carota. Phytochem. Anal., 9, 14 (1998).Google Scholar
  41. 41.
    Yokota, T.: Study on Bioorganic Chemistry of Natural Brassinosteroids. Chem. Regul. Plants, Tokyo (Shokobutsu no Kagaku Chosetsu), 22, 10 (1987).Google Scholar
  42. 42.
    Abe, H., C. Honjo, Y. Kyokawa, S. Asakawa, M. Natsume, and M. Narushima: 3-Oxoteasterone and the Epimerization of Teasterone: Identification in Lily Anthers and Distylium racemosum Leaves and its Biotransformation into Typhasterol. Biosci. Biotechnol. Biochem., 58, 986 (1994).Google Scholar
  43. 43.
    Yokota, T., J. Baba, and N. Takahashi: A new Steroidal Lactone with Plant Growth-Regulatory Activity from Dolichos lablab Seed. Tetrahedron Letters, 23, 4965 (1982).Google Scholar
  44. 44.
    Baba, J., T. Yokota, and N. Takahashi: Brassinolide-Related New Bioactive Steroids from Dolichos lablab Seed. Agric. Biol. Chem., 47, 659 (1983).Google Scholar
  45. 45.
    Yokota, T., J. Baba, and N. Takahashi: Brassinolide-related Bioactive Sterols in Dolichos lablab: Brassinolide, Castasterone and a New Analog, Homodolicholide. Agric. Biol. Chem., 47, 1409 (1983).Google Scholar
  46. 46.
    Yokota, T., J. Baba, S. Koba, and N. Takahashi: Purification and Separation of Eight Steroidal Plant Growth Regulators from Dolichos lablab Seed. Agric. Biol. Chem., 48, 2529 (1984).Google Scholar
  47. 47.
    Takatsuto, S., H. Abe, and K. Gamoh: Evidence for Brassinosteroids in Strobilus of Equisetum arvense L. Agric. Biol. Chem., 54, 1057 (1990).Google Scholar
  48. 48.
    Yasuta, E., T. Terahata, M. Nakayama, H. Abe, S. Takatsuto, and T. Yokota: Free and Conjugated Brassinosteroids in the Pollen and Anthers of Erythronium japonicum Decne. Biosci. Biotechnol. Biochem., 59, 2156 (1995).Google Scholar
  49. 49.
    Takatsuto, S., K. Omote, K. Gamoh, and M. Ishibashi: Identification of Brassinolide and Castasterone in Buckwheat (Fagopyrum esculentum Moench) Pollen. Agric. Biol. Chem., 54, 757 (1990).Google Scholar
  50. 50.
    Takatsuto, S., H. Abe, K. Shimada, M. Nakayama, and T. Yokota: Identification of Teasterone and 4-Desmethylsterols in the Seeds of Ginkgo biloba L. Nihon Yukagakkaishi, 45, 1349 (1996).Google Scholar
  51. 51.
    Schmidt, J., F. Böhme, and G. Adam: 24-Epibrassinolide from Gypsophila perfoliata. Z. Naturforsch., 51c, 897 (1996).Google Scholar
  52. 52.
    Takatsuto, S., T. Yokota, K. Omote, K. Gamoh, and N. Takahashi: Identification of Brassinolide, Castasterone and Norcastasterone (Brassinone) in Sunflower (Helianthus annuus L.) Pollen. Agric. Biol. Chem., 53, 2177 (1989).Google Scholar
  53. 53.
    Yokota, T., S.-K. Kim, Y Fukui, N. Takahashi, Y Takeuchi, and T. Takematsu: Brassinosteroids and Sterols from a Green Alga, Hydrodictyon reticulatum: Configuration at C-24. Phytochemistry, 26, 503 (1987).Google Scholar
  54. 54.
    Suzuki, H., S. Fujioka, T. Yokota, N. Murofushi, and A. Sakurai: Identification of Brassinolide, Castasterone, Typhasterol, and Teasterone from the Pollen of Lilium elegans. Biosci. Biotechnol. Biochem., 58, 2075 (1994).Google Scholar
  55. 55.
    Asakawa, S., H. Abe, Y Kyokawa, S. Nakamura, and M. Natsume: Teasterone 3-myristate: A New Type of Brassinosteroid Derivative in Lilium longiflorum Anthers. Biosci. Biotechnol. Biochem., 58, 219 (1994).Google Scholar
  56. 56.
    Asakawa, S., H. Abe, N. Nishikawa, M. Natsume, and M. Koshioka: Purification and Identification of New Acyl-conjugated Teasterones in Lily Pollen. Biosci. Biotechnol. Biochem., 60, 1416 (1996).Google Scholar
  57. 57.
    Taylor, P.E., K. Spuck, P.M. Smith, J.M. Sasse, T. Yokota, P.G. Griffiths, and D.W. Cameron: Detection of Brassinosteroids in Pollen of Lolium perenne by Immunocytochemistry. Planta, 189, 91 (1993).Google Scholar
  58. 58.
    Yokota, T., T. Nomura, and M. Nakayama: Identification of Brassinosteroids that Appear to be Derived from Campesterol and Cholesterol in Tomato Shoots. Plant Cell Physiol., 38, 1291 (1997).Google Scholar
  59. 59.
    Friebe, A., A. Volz, J. Schmidt, B. Voigt, G. Adam, and H. Schnabl: 24-Episecasterone and 24-epi-Castasterone from Lychnis viscaria Seeds. In press.Google Scholar
  60. 60.
    Schmidt, J., B. Spengler, T. Yokota, and G. Adam: The Co-Occurrence of Castasterone and 24-Epicastasterone in Seeds of Ornithopus sativus. Phytochemistry, 32, 1614 (1993).Google Scholar
  61. 61.
    Spengler, B., J. Schmidt, B. Voigt, and G. Adam: 6-Deoxo-28-norcastasterone and 6-Deoxo-24-epicastasterone — Two New Brassinosteroids from Ornithopus sativus. Phytochemistry, 40, 907 (1995).Google Scholar
  62. 62.
    Abe, H., K. Nakamura, T. Morishita, M. Uchiyama, S. Takatsuto, and N. Ikekawa: Endogenous Brassinosteroids of the Rice Plant: Castasterone and Dolichosterone. Agric. Biol. Chem., 48, 1103 (1984).Google Scholar
  63. 63.
    Abe, H., S. Takatsuto, M. Nakayama, and T. Yokota: 28-Homotyphasterol, a New Natural Brassinosteroid from Rice (Oryza sativa L.) Bran. Biosci. Biotechnol. Biochem., 59, 176 (1995).Google Scholar
  64. 64.
    Park, K.-H., J.-D. Park, K.-H. Hyun, M. Nakayama, and T. Yokota: Brassinosteroids and Monoglycerides with Brassinosteroid-Like Activity in Immature Seeds of Oryza sativa and Perilla frutescens and in Cultured Cells of Nicotiana tabacum. Biosci. Biotechnol. Biochem., 58, 2241 (1994).Google Scholar
  65. 65.
    Shimada, K., H. Abe, S. Takatsuto, M. Nakayama, and T. Yokota: Identification of Castasterone and Teasterone from Seeds of Canary Grass (Phalaris canariensis). Rec. Res. Develop. Chem. Pharm. Sci., 1, 1 (1996).Google Scholar
  66. 66.
    Suzuki, Y, I. Yamaguchi, and N. Takahashi: Identification of Castasterone and Brassinone from Immature Seeds of Pharbitis purpurea. Agric. Biol. Chem., 49, 49 (1985).Google Scholar
  67. 67.
    Yokota, T., S.-K. Kim, Y. Ogino, and N. Takahashi: Various Brassinosteroids from Phaseolus vulgaris Seeds: Structures and Biological Activity. Proc. 14th Annual Meeting Plant Growth Regulator Society of America, Honolulu, p. 28. 1987.Google Scholar
  68. 68.
    Yokota, T., S.-K. Kim, Y. Kosaka, Y. Ogino, and N. Takahashi: Conjugation of Brassinosteroids. In: Conjugated Plant Hormones — Structure, Metabolism and function (K. Schreiber, H.-R. Schütte, and G. Sembdner, eds), Proc. International Symposium, Berlin. VEB Deutscher Verlag der Wissenschaften. p. 288. 1987.Google Scholar
  69. 69.
    Kim, S.-K.: Natural Occurrences of Brassinosteroids. In: ref. 12, p. 26.Google Scholar
  70. 70.
    Yokota, T., M. Morita, and N. Takahashi: 6-Deoxocastasterone and 6-Deoxo-dolichosterone: Putative Precursors for Brassinolide-Related Steroids from Phaseolus vulgaris. Agric. Biol. Chem., 47, 2149 (1983).Google Scholar
  71. 71.
    Yokota, T., S. Koba, S.-K. Kim, S. Takatsuto, N. Ikekawa, M. Sakakibara, K. Okada, K. Mori, and N. Takahashi: Diverse Structural Variations of the Brassinosteroids in Phaseolus vulgaris Seed. Agric. Biol. Chem., 51, 1625 (1987).Google Scholar
  72. 72.
    Kim, S.-K., T. Yokota, and N. Takahashi: 25-Methyldolichosterone, a New Brassinosteroid with a Tertiary Butyl Group from Immature Seeds of Phaseolus vulgaris. Agric. Biol. Chem., 51, 2303 (1987).Google Scholar
  73. 73.
    Zaki, A.K., J. Schmidt, F.M. Hammouda, and G. Adam: Steroidal Constituents from Pollen Grains of Phoenix dactylifera. Planta Med. (Suppl.), 59, A 613 (1993).Google Scholar
  74. 74.
    Yokota, T., M. Arima, N. Takahashi, and A. Croizier: Steroidal Plant Growth Regulators, Castasterone and Typhasterol (2-Deoxycastasterone) from the Shoots of Sitka Spruce (Picea sitchensis). Phytochemistry, 24, 1333 (1985).Google Scholar
  75. 75.
    Kim, S.-K., H. Abe, C.H.A. Little, and R.P. Pharis: Identification of Two Brassinosteroids from the Cambial Region Scots Pine (Pinus silverstris) by Gas Chromatography-Mass Spectrometry, after Detection using a Dwarf Rice Lamina Inclination Bioassay. Plant Physiol., 94, 1709 (1990).Google Scholar
  76. 76.
    Yokota, T., M. Arima, N. Takahashi, S. Takatsuto, N. Ikekawa and T. Takematsu: 2-Deoxycastasterone, a new Brassinolide-Related Bioactive Steroid from Pinus Pollen. Agric. Biol. Chem., 47, 2419 (1983).Google Scholar
  77. 77.
    Yokota, T., T. Matsuoka, T. Koarai, and M. Nakayama: 2-Deoxybrassinolide, a Brassinosteroid from Pisum sativum Seed. Phytochemistry, 42, 509 (1996).Google Scholar
  78. 78.
    Takahito, N., M. Nakayama, J. B. Reid, Y. Takeuchi, and T. Yokota: Blockage of Brassinosteroid Biosynthesis and Sensitivity Causes Dwarfism in Garden Pea. Plant Physiol., 113, 31 (1997).Google Scholar
  79. 79.
    Schmidt, J., T. Yokota, G. Adam, and N. Takahashi: Castasterone and Brassinolide in Raphanus sativus Seeds. Phytochemistry, 30, 364 (1991).Google Scholar
  80. 80.
    Schmidt, J., T. Yokota, B. Spengler, and G. Adam: 28-Homoteasterone — a new Naturally Occurring Brassinosteroid from Seeds of Raphanus sativus. Phytochemistry, 34, 391 (1993).Google Scholar
  81. 81.
    Schmidt, J., U. Himmelreich, and G. Adam: Brassinosteroids, Sterols and Lup-20(29)-en-2α,3β,28-triol horn Rheum rhabarbarum. Phytochemistry, 40, 527 (1995).Google Scholar
  82. 82.
    Abe, H., S. Takatsuto, R. Okuda, and T. Yokota: Identification of Castasterone, 6-Deoxocastasterone and Typhasterol in the Pollen of Robinia pseudo-acacia L. Biosci. Biotechnol. Biochem., 59, 309 (1995).Google Scholar
  83. 83.
    Schmidt, J., B. Spengler, T. Yokota, M. Nakayama, S. Takatsuto, B. Voigt, and G. Adam: Secasterone, the First Naturally Occurring 2,3-Epoxybrassinosteroid from Secale cereale. Phytochemistry, 38, 1095 (1995).Google Scholar
  84. 84.
    Morishita, T., H. Abe, M. Uchiyama, S. Marumo, S. Takatsuto, and N. Ikekawa: Evidence for Plant Growth Promoting Brassinosteroids in Leaves of Thea sinensis. Phytochemistry, 22, 1051 (1983).Google Scholar
  85. 85.
    Abe, H., T. Morishita, M. Uchiyama, S. Takatsuto, and N. Ikekawa: A new Brassinolide-Related Steroid in Leaves of Thea sinensis. Agric. Biol. Chem., 48, 2171 (1984).Google Scholar
  86. 86.
    Yokota, T., M. Nakayama, T. Wakisaki, J. Schmidt, and G. Adam: 3-Dehydro-teasterone, a 3,6-Diketobrassinosteroid as a Possible Biosynthetic Intermediate of Brassinolide from Wheat Grain. Biosci. Biotechnol. Biochem. 58, 1183 (1994).Google Scholar
  87. 87.
    Schneider, J.A., K. Yoshihara, K. Nakanishi, and N. Kato: Typhasterol (2-Deoxycastasterone): A New Plant Growth Regulator from Cat-Tail Pollen. Tetrahedron Letters, 24, 3859 (1983).Google Scholar
  88. 88.
    Park, K.-H., T. Yokota, A. Sakurai, and N. Takahashi: Occurrence of Castasterone, Brassinolide and Methyl 4-Chloroindole-3-acetate in Immature Vicia faba Seeds. Agric. Biol. Chem., 51, 3081 (1987).Google Scholar
  89. 89.
    Ikekawa, N., F. Nishiyama, and Y. Fujimoto: Identification of 24-Epibrassinolide in Bee Pollen of the Broad Bean, Vicia faba L.. Chem. Pharm. Bull., 36, 405 (1988).Google Scholar
  90. 90.
    Gamoh, K., N. Omote, N. Okamoto, and S. Takatsuto: High-Performance Liquid Chromatography of Brassinosteroids in Plants with Derivatization Using 9-Phenan-threneboronic Acid. J. Chromatogr., 469, 424 (1989).Google Scholar
  91. 91.
    Suzuki, Y, I. Yamaguchi, T. Yokota, and N. Takahashi: Identification of Castasterone, Typhasterol and Teasterone from the Pollen of Zea mays. Agric. Biol. Chem., 50, 3133 (1986).Google Scholar
  92. 92.
    Gamoh, K., N. Okamoto, S. Takatsuto, and I. Teijima: Determination of Traces of Natural Brassinosteroids as Dansylaminophenylboronates by Liquid Chromatography with Fluorimetric Detection. Anal. Chim. Acta, 228, 101 (1990).Google Scholar
  93. 93.
    Park, K.-H., S.-J. Kim, and T. Yokota: Identification of Brassinosteroids in Immature Seeds of Zea mays by GC-MS Analysis. Han’guk Nonghwa Hakhoechi, 38, 179 (1995).Google Scholar
  94. 94.
    Wada, K., S. Marumo, N. Ikekawa, M. Morisaki, and K. Mori: Brassinolide and Homobrassinolide Promotion of Lamina Inclination of Rice Seedlings. Plant Cell Physiol., 22, 323 (1981).Google Scholar
  95. 95.
    Wada, K., S. Marumo, H. Abe, T. Morishita, K. Nakamura, M. Uchiyama, and K. Mori: A Rice Lamina Inclination Test — a Micro-Quantitative Bioassay for Brassinosteroids. Agric. Biol. Chem., 48, 719 (1984).Google Scholar
  96. 96.
    Wada, K., H. Kondo, and S. Marumo: A Simple Bioassay of Brassinosteroids: A Wheat Leaf-Unrolling Test. Agric. Biol Chem., 49, 2249 (1985).Google Scholar
  97. 97.
    Yokota, T., S. Watanabe, Y. Ogino, I. Yamaguchi, and N. Takahashi: Radioimmunoassay for Brassinosteroids and its Use for Comparative Analysis of Brassinosteroids in Stems and Seeds of Phaseolus vulgaris. J. Plant Growth Regul., 9, 151 (1990).Google Scholar
  98. 98.
    Takatsuto, S., B. Ying, M. Morisaki, and N. Ikekawa: Microanalysis of Brassinolide and its Analogues by Gas Chromatography and Gas Chromatography-Mass Spectrometry. J. Chromatogr., 239, 233 (1982).Google Scholar
  99. 99.
    Ikekawa, N., and S. Takatsuto: Microanalysis of Brassinosteroids in Plants by Gas Chromatography/Mass Spectrometry. Mass Spectroscopy (Japan), 32, 55 (1984).Google Scholar
  100. 100.
    Schmidt, J., B. Spengler, B. Voigt, and G. Adam: New Brassinosteroids from European Cultivated Plants. Proc. 23rd Annual Meeting Plant Growth Regulator Society of America, Calgary, p. 61. 1996.Google Scholar
  101. 101.
    Goad, L.J.: Phytosterols. In: Methods in Plant Biochemistry (P.M. Dey, and J.B. Harborne, eds.), p. 369. London: Academic Press. 1991.Google Scholar
  102. 102.
    Gamoh, K., T. Kitsuwa, S. Takatsuto, Y. Fujimoto, and N. Ikekawa: Determination of Trace Brassinosteroids by High Performance Liquid Chromatography. Anal. Sci., 4, 533 (1988).Google Scholar
  103. 103.
    Gamoh, K., and S. Takatsuto: A Boronic Acid Derivative as a Highly Sensitive Fluorescence Derivatization Reagent for Brassinosteroids in Liquid Chromatography. Anal. Chim. Acta, 222, 201 (1989).Google Scholar
  104. 104.
    Gamoh, K., S. Takatsuto, and N. Ikekawa: Effective Separation of C-24 Epimeric Brassinosteroids by Liquid Chromatography. Anal. Chim. Acta, 256, 319 (1992).Google Scholar
  105. 105.
    Gamoh, K., H. Sawamoto, S. Takatsuto, Y. Watabe, and H. Arimoto: Ferroceneboronic Acid as a Derivatization Reagent for the Determination of Brassinosteroids by High-Performance Liquid Chromatography with Electrochemical Detection. J. Chromatogr., 515, 227 (1990).Google Scholar
  106. 106.
    Gamoh, K., M.C. Prescott, L.J. Goad, and S. Takatsuto: Analysis of Brassinosteroids by Liquid Chromatography-Mass Spectrometry. Bunseki Kagaku, 45, 523 (1996).Google Scholar
  107. 107.
    Porzel, A., V. Marquardt, G. Adam, G. Massiot, and D. Zeigan: 1H and 13C NMR Analysis of Brassinosteroids. Magn. Res. Chem., 30, 651 (1992).Google Scholar
  108. 108.
    Ando, T., M. Aburatani, N. Koseki, S. Asakawa, T. Mouri, and H. Abe: 13CNMR Assignments of Brassinosteroids by Two-Dimensional Techniques. Magn. Res. Chem., 31, 94 (1993).Google Scholar
  109. 109.
    Fung, S., and J.B. Siddall: Stereoselective Synthesis of Brassinolide: A Plant Promoting Steroidal Lactone. J. Amer. Chem. Soc., 102, 6581 (1980).Google Scholar
  110. 110.
    Ishiguro, M., S. Takatsuto, M. Morisaki, and N. Ikekawa: Synthesis of Brassinolide, a Steroidal Lactone with Plant Growth Promoting Activity. Chem. Comm., 20, 962 (1980).Google Scholar
  111. 111.
    Thompson, M.J., N.B. Mandava, W.J. Meudt, W.R. Lusby, and D.W. Spaulding: Synthesis and Biological Activity of Brassinolide and its 22β,23β-lsomer: Novel Plant Growth Steroids. Steroids, 38, 567 (1981).Google Scholar
  112. 112.
    Zhou, W.-S.: Synthesis of Brassinosteroid. Pure Appl. Chem., 61, 431 (1989).Google Scholar
  113. 113.
    Lakhvich, F.A., V.A. Khripach, and V.N. Zhabinskii: Synthesis of Brassinosteroids — A New Class of Plant Hormones. Usp. Khim. 60, 1299 (1991).Google Scholar
  114. 114.
    Back, T.G.: Stereoselective Synthesis of Brassinosteroids. In: Studies in Natural Products Chemistry (Atta-Ur-Rahman, ed.), p. 321. Amsterdam: Elsevier Science. 1995.Google Scholar
  115. 115.
    Jiang, B., L. Huang, W. Tian, and W. Zhou: Methods for Construction of Side Chain of Brassinosteroids and Application to Synthesis of Brassinosteroids. In: Studies in Natural Products Chemistry (Atta-Ur-Rahman, ed.), p. 245. Amsterdam: Elsevier Science. 1997.Google Scholar
  116. 116.
    Kovganko, N.V., and S.K. Ananich: Advances in the Chemical Synthesis of Brassinosteroids. Chem. Nat. Comp., 33, 389 (1997).Google Scholar
  117. 117.
    Mcmorris, T.C.: Chemical Synthesis of Brassinosteroids. In: ref. 14, p. 69.Google Scholar
  118. 118.
    Watanabe, T., S. Takatsuto, S. Fujioka, and A. Sakurai: Improved Synthesis of Castasterone and Brassinolide. J. Chem. Research (S), 360 (1997).Google Scholar
  119. 119.
    Okada, K., and K. Mori: Synthesis of Brassinolide Analogs and Their Plant Growth-Promoting Activity. Agric. Biol. Chem., 47, 89 (1983).Google Scholar
  120. 120.
    Amberg, W., Y.L. Bennani, R.K. Chadha, G.A. Crispino, W.D. Davis, J. Hartung, K.-S. Jeong, Y. Ogino, T. Shibata, and K.B. Sharpless: Synthesis and Crystal Structure of the Cinchona Alkaloid Derivatives used as Ligands in the Osmium-Catalyzed Asymmetric Dihydroxylation of Olefins. J. Org. Chem., 58, 844 (1993).Google Scholar
  121. 121.
    Marino, J.P., A. Dedios, L.J. Anna, and R.F. Delapradilla: Highly Stereocon-trolled Formal Synthesis of Brassinolide via Chiral Sulfoxide-Directed SN2′ Reactions. J. Org. Chem., 61, 109 (1996).Google Scholar
  122. 122.
    Mcmorris, T.C., and P.A. Patil: Improved Synthesis of 24-Epibrassinolide from Ergosterol. J. Org. Chem., 58, 2338 (1993).Google Scholar
  123. 123.
    Sakurai, A. and S. Fujioka: Studies on Biosynthesis of Brassinosteroids. Biosci. Biotech. Biochem., 61, 757 (1997).Google Scholar
  124. 124.
    Sakurai, A.: Biosynthesis. In: ref. 14, p. 91.Google Scholar
  125. 125.
    Suzuki, H., T. Inoue, S. Fujioka, T. Saito, S. Takatsuto, T. Yokota, N. Murofushi, T. Yanagisawa, and A. Sakurai: Conversion of 24-Methylcho-lesterol to 6-Oxo-24-methylcholestanol, a Putative Intermediate of the Biosynthesis of Brassinosteroids, in Cultured Cells of Catharanthus roseus. Phytochemistry, 40, 1391 (1995).Google Scholar
  126. 126.
    Fujioka, S., T. Inoue, S. Takatsuto, T. Yanagisawa, T. Yokota, and A. Sakurai: Identification of a New Brassinosteroid, Cathasterone, in Cultured Cells of Catharanthus roseus as a Biosynthetic Precursor of Teasterone. Biosci. Biotech. Biochem., 59, 1543 (1995).Google Scholar
  127. 127.
    Suzuki, H., S. Fujioka, S. Takatsuto, T. Yokota, N. Murofushi, and A. Sakurai: Biosynthesis of Brassinolide from Teasterone via Typhasterol and Castasterone in Cultured Cells of Catharanthus roseus. J. Plant Growth Regul. 13, 21 (1994).Google Scholar
  128. 128.
    Yokota, T., Y. Ogino, N. Takahashi, H. Saimoto, S. Fujioka, and A. Sakurai: Brassinolide is Biosynthesized from Castasterone in Catharanthus roseus Crown Gall Cells. Agric. Biol. Chem. 54, 1107 (1990).Google Scholar
  129. 129.
    Suzuki, H., S. Fujioka, S. Takatsuto, T. Yokota, N. Murofushi, and A. Sakurai: Biosynthesis of Brassinolide from Castasterone in Cultured Cells of Catharanthus roseus. J. Plant Growth Regul. 12, 101 (1993).Google Scholar
  130. 130.
    Fujioka, S., T. Inoue, S. Takatsuto, T. Yanagisawa, T. Yokota, and A. Sakurai: Biological Activities of Biosynthetically-Related Congeners of Brassinolide. Biosci. Biotech. Biochem., 59, 1973 (1995).Google Scholar
  131. 131.
    Choi, Y.-K., S. Fujioka, A. Harada, T. Yokota, S. Takatsuto, and A. Sakurai: A Brassinolide Biosynthetic Pathway via 6-Deoxocastastrone. Phytochemistry, 43, 593 (1996).Google Scholar
  132. 132.
    Suzuki, H., S. Fujioka, S. Takatsuto, T. Yokota, N. Murofushi, and A. Sakurai: Biosynthesis of Brassinolide in Seedlings of Catharanthus roseus, Nicotiana tabacum and Oryza sativa. Biosci. Biotech. Biochem., 59, 168 (1995).Google Scholar
  133. 133.
    Suzuki, H., T. Inoue, S. Fujioka, S. Takatsuto, T. Yanagisawa, T. Yokota, N. Murofushi, and A. Sakurai: Possible Involvement of 3-Dehydroteasterone in the Conversion of Teasterone to Typhasterol in Cultured Cells of Catharanthus roseus. Biosci. Biotech. Biochem. 58, 1186 (1994).Google Scholar
  134. 134.
    Kolbe, A., B. Schneider, A. Porzel, and G. Adam: Metabolic Inversion of the 3-Hydroxy Function in Brassinosteroids. Phytochemistry, 48, 467 (1998).Google Scholar
  135. 135.
    Adam, G., and B. Schneider: Uptake, Transport and Metabolism. In: ref. 14, p. 113.Google Scholar
  136. 136.
    Schneider, B., and G. Adam: A Metabolite of 24-epi-Brassinolide in Cell Suspension Cultures of Lycopersicon esculentum. Phytochemistry, 36, 319 (1994).Google Scholar
  137. 137.
    Yokota, T., Y. Ogino, H. Suzuki, N. Takahashi, H. Saimoto, S. Fujioka, and A. Sakurai: Metabolism and Biosynthesis of Brassinosteroids. In: ref. 12, p. 86.Google Scholar
  138. 138.
    Hai, T., B. Schneider, and G. Adam: Metabolic Conversion of 24-epi-Brassinolide into Pentahydroxylated Brassinosteroid Glucosides in Tomato Cell Cultures. Phytochemistry, 40, 443 (1995).Google Scholar
  139. 139.
    Hai, T., B. Schneider, A. Porzel, and G. Adam: Metabolism of 24-epi-Castasterone in Cell Suspension Cultures of Lycopersicon esculentum. Phytochemistry, 41, 197 (1996).Google Scholar
  140. 140.
    Winter, J., B. Schneider, D. Strack, and G. Adam: Role of a Cytochrome P450-Dependent Monooxygenase in the Hydroxylation of 24-epi-Brassinolide. Phytochemistry, 45, 233 (1997).Google Scholar
  141. 141.
    Kolbe, A., B. Schneider, A. Porzel, and G. Adam: Metabolism of 24-epi-Castasterone and 24-epi-Brassinolide in Cell Suspension Cultures of Ornithopus sativus. Phytochemistry, 41, 163 (1996).Google Scholar
  142. 142.
    Kolbe, A., B. Schneider, A. Porzel, J. Schmidt, and G. Adam: Acyl-Conjugated Metabolites of Brassinosteroids in Cell Suspension Cultures of Ornithopus sativus. Phytochemistry, 38, 633 (1995).Google Scholar
  143. 143.
    Kolbe, A., B. Schneider, A. Porzel, B. Voigt, G. Krauss, and G. Adam: Pregnane-Type Metabolites of Brassinosteroids in Cell Suspension Cultures of Ornithopus sativus. Phytochemistry, 36, 671 (1994).Google Scholar
  144. 144.
    Galbraith, M.N., D.H.S. Horn, E.J. Middleton, J.A. Thomson, J.B. Siddall, and W. Hafferl: The Catabolism of Crustecdysone in the Blowfly Calliphora stygia. J. Chem. Soc. Chem. Commun., 1134 (1969).Google Scholar
  145. 145.
    Lachaise, F., and R. Lafont: Ecdysteroid Metabolism in a Crab: Carcinus maenas. Steroids, 43, 243 (1984).Google Scholar
  146. 146.
    Meudt, W.J.: Chemical and Biological Aspects of Brassinolide. In: Ecology and Metabolism of Plant Lipids (G. Fuller, ed.), p. 53. Washington DC: American Chemical Society. 1987.Google Scholar
  147. 147.
    Adam, G., and U. Petzold: Brassinosteroide — eine neue Phytohormon-Gruppe? Naturwissenschaften, 81, 210 (1994).Google Scholar
  148. 148.
    Brosa, C.: Biological Effects of Brassinosteroids. In: Biochemistry and Function of Sterols (E.J. Parish, and W.D. Nes, eds.), p. 201. Boca Raton: CRC Press. 1997.Google Scholar
  149. 149.
    Sasse, J.: Physiological Actions of Brassinosteroids. In: ref. 14, p. 137.Google Scholar
  150. 150.
    Takatsuto, S., N. Yazawa, N. Ikekawa, T. Takematsu, Y. Takeuchi, and M. Koguchi: Structure-Activity Relationship of Brassinosteroids. Phytochemistry, 22, 2437 (1983).Google Scholar
  151. 151.
    Takatsuto, S., N. Ikekawa, T. Morishita, and H. Abe: Structure-Activity Relationship of Brassinosteroids with Respect to the A/B-Ring Functional Groups. Chem. Pharm. Bull., 39, 211 (1987).Google Scholar
  152. 152.
    Yokota, T., and K. Mori: Molecular Structure and Biological Activity of Brassinolide and Related Brassinosteroids. In: Molecular Structure and Biological Activity of Steroids (M. Bohl, and W.L. Duax, eds.), p. 317. Boca Raton: CRC. 1992.Google Scholar
  153. 153.
    Brosa, C.: Structure-Activity Relationship. In: ref 14, p. 191.Google Scholar
  154. 154.
    Brosa, C., J.M. Capdevila, and I. Zamora: Brassinosteroids: A New Way to Define the Structural Requirements. Tetrahedron, 52, 2435 (1996).Google Scholar
  155. 155.
    Brosa, C., I. Zamora, E. Terricabras, L. Soca, R. Peracaula, and C. Rodriguez-Santamarta: Synthesis and Molecular Modeling: Related Approaches to Progress in Brassinosteroid Research. Lipids, 32, 1341 (1997).Google Scholar
  156. 156.
    Stoldt, M., A. Porzel, G. Adam, and W. Brandt: Side Chain Conformation of the Growth-Promoting Phytohormones Brassinolide and 24-Epibrassinolide. Magn. Reson. Chem., 35, 629 (1997).Google Scholar
  157. 157.
    Drosihn, S., A. Porzel, B. Voigt, W. Brandt, C. Wagner, K. Merzweiler, and G. Adam: Conformational Studies of Two New Brassinosteroid Analogues with a 22,23-trans Diol Function. J. Chem. Soc., Perkin Trans. 2, (in press).Google Scholar
  158. 158.
    Hamada, K.: Brassinolide: Some Effects for Crop Cultivations. In: Plant Growth Regulators in Agriculture, p. 188. Taipei: FFTC Book Ser. 34. 1986.Google Scholar
  159. 159.
    Ikekawa, N., and Y.-J. Zhao: Application of 24-Epibrassinolide in Agriculture. In: ref. 12, p. 280.Google Scholar
  160. 160.
    Cutler, H.G.: Advances in the Use of Brassinosteroids. In: Natural and Engineering Pest Management Agents (P.A. Hedin, J.J. Menn, and R.M. Hollingworth, eds.), p. 85. Washington DC: American Chemical Society. 1994.Google Scholar
  161. 161.
    Ramraj, V.M., B.N. Vyas, N.B. Godrej, K.B. Mistry, B.N. Swami, and N. Singh: Effects of 28-Homobrassinolide on Yields of Wheat, Rice, Groundnut, Mustard, Potato and Cotton. J. Agr. Sci., 128, 405 (1997).Google Scholar
  162. 162.
    Kamuro, Y., and S. Takatsuto: Practical Application of Brassinosteroids in Agricultural Fields. In: ref. 14, p. 223.Google Scholar
  163. 163.
    Takatsuto, S., F. Futatsuya, K. Kobayashi, and H. Satoh: Synthesis and Biological Activity of 22,23-Epoxybrassinosteroid-2,3-diacetates. Agric. Biol. Chem., 53, 263 (1989).Google Scholar
  164. 164.
    Clouse, S.D.: Molecular Genetic Studies Confirm the Role of Brassinosteroids in Plant Growth and Development. Plant Journal, 10, 1 (1996).Google Scholar
  165. 165.
    Szekeres, M., and C. Koncz: Biochemical and Genetic Analysis of Brassinosteroid Metabolism and Function in Arabidopsis. Plant Phys. Biochem., 36, 145 (1998).Google Scholar
  166. 166.
    Altmann, T.: Molecular Physiology of Brassinosteroids Revealed by the Analysis of Mutants. Planta, 208, 1 (1999).Google Scholar
  167. 167.
    Clouse, S.D., and K.A. Feldman: Molecular Genetics of Brassinosteroid Action. In: ref. 14, p.163.Google Scholar
  168. 168.
    Li, J., P. Nagpal, V. Vitard, T.C. Mcmorris, and J. Chory, A Role of Brassinos-teroids in Light Dependent Development of Arabidopsis. Science, 272, 398 (1996).Google Scholar
  169. 169.
    Chory, J., M. Chatterjee, R.K. Cook, T. Elich, C. Fankhauser, J. Li, P. Nagpal, M. Neff, A. Pepper, O. Poole, J. Reed, and V. Vitard: From Seed Germination to Flowering, Light Controls Plant Development via the Pigment Phytochrome. Proc. Natl. Acad. Sci. USA, 93, 12066 (1996).Google Scholar
  170. 170.
    Fujioka, S., J. Li, Y.-H. Choi, H. Seto, S. Takatsuto, T. Noguchi, T. Watanabe, H. Kuriyama, T. Yokota, J. Chory, and A. Sakurai: The, Arabidopsis deetiolated2 Mutant is Blocked Early in Brassinosteroid Biosynthesis. Plant Cell, 9, 1951 (1997).Google Scholar
  171. 171.
    Szekeres, M., K. Németh, Z. Koncz-Kálman, J. Mathur, A. Kauschmann, T. Altmann, G.P. Rédei, F. Nagy, J. Schell, and C. Koncz: Brassinosteroids Rescue the Deficiency of CYP90, a Cytochrome P450, Controlling Cell Elongation and Deetiolation in Arabidopsis. Cell, 85, 171 (1996).Google Scholar
  172. 172.
    Kauschmann, A., A. Jessop, C. Koncz, M. Szekeres, L. Willmitzer, and T. Altmann: Genetic Evidence for an Essential Role of Brassinosteroids in Plant Development. Plant Journal, 9, 701 (1996).Google Scholar
  173. 173.
    Mathur, J., G. Molnár, S. Fujioka, S. Takatsuto, A. Sakurai, T. Yokota, G. Adam, B. Voigt, F. Nagy, C. Maas, J. Schell, C. Koncz, and M. Szekeres: Transcription of the Arabidopsis CPD Gene, Encoding a Steroidogenic P450, is Negatively Controlled by Brassinosteroids. Plant Journal, 14, 593 (1998).Google Scholar
  174. 174.
    Choe, S., B.P. Dilkes, S. Fujioka, S. Takatsuto, A. Sakurai, and K.A. Feldman: The dwf4 Gene of Arabidopsis Encodes a Cytochrome P450 that Mediates Multiple 22α-Hydroxylation Steps in Brassinosteroid Biosynthesis. Plant Cell, 10, 231 (1998).Google Scholar
  175. 175.
    Takahashi, T., A. Gasch, N. Nishizawa, and N.-H. Chua: The DIMINUTO Gene of Arabidopsis is Involved in Regulating Cell Elongation. Genes Devel., 9, 97 (1995).Google Scholar
  176. 176.
    Nomura, T., M. Nakayama, J.B. Reid, Y. Takeuchi, and T. Yokota: Blockage of Brassinosteroid Biosynthesis and Sensitivity Causes Dwarfism in Garden Pea. Plant Physiol. 113, 31 (1997).Google Scholar
  177. 177.
    Clouse, S.D., A.F. Hall, M. Langford, T.C. Mcmorris, and M.E. Baker: Physiological and Molecular Effects of Brassinosteroids on Arabidopsis thaliana. J. Plant Growth Regul., 12, 61 (1993).Google Scholar
  178. 178.
    Clouse, S.D., M. Langford, and T.C. Mcmorris: A Brassinosteroid-Insensitive Mutant in Arabidopsis thaliana Exhibits Multiple Defects in Growth and Development. Plant Physiol., 111, 671 (1996).Google Scholar
  179. 179.
    Azpiroz, R., Y. Wu, J.C. Locascio, and K.A. Feldman: An Arabidopsis Brassinosteroid-Dependent Mutant is Blocked in Cell Elongation. Plant Cell, 10, 219 (1998).Google Scholar
  180. 180.
    Xu, W., M.M. Purugganan, D.H. Polisensky, D.M. Antonsiewicz, S.C. Fry, and J. Braam: Arabidsopsis TCH4, Regulated by Hormones and the Environment, Encodes a Xyloglucan Endotransglycosylase. Plant Cell, 7, 1555 (1995).Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • G. Adam
    • 1
  • J. Schmidt
    • 1
  • B. Schneider
    • 2
  1. 1.Institute of Plant BiochemistryHalle/S.Germany
  2. 2.Max-Planck-Institute for Chemical EcologyJenaGermany

Personalised recommendations