Parallel Evolutionary Algorithms with SOM-Like Migration and their Application to Real World Data Sets

  • Th. Villmann
  • R. Haupt
  • K. Hering
  • H. Schulze
Conference paper


We introduce a multiple subpopulation approach for parallel evolutionary algorithms the migration scheme of which follows a SOM-like dynamics. We succesfully apply this approach to clustering in both VLSI-design and psychotherapy research. The advantages of the approach are shown which consist in a reduced communication overhead between the sub-populations preserving a non-vanishing information flow.


Standard Category Topological Order Migration Scheme Neighborhood Function Model Partitioning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Albani, B. Villmann, T. Villmann, A. Körner, M. Geyer, D. Pokorny, G. Blaser, and H. Kächele. Kritik und erste Reformulierung der kategorialen Strukturen der Methode des Zentralen Beziehungs-Konflikt–;Themas (ZBKT). Psychotherapie, Psycho somathik und medizinische Psychologie — G.-Thieme-Verlag Stuttgart, New York, page to appear, 1998.Google Scholar
  2. [2]
    J. Barber, P. Crits-Christoph, and L. Luborsky. A guide to the CCRT Standard Categories and their classification. In L. Luborsky and P. Crits-Chrostoph, editors, Understanding Transference, pages 37–50. Basic Books New York, 1990.Google Scholar
  3. [3]
    J. Cohen. Weighted kappa. Psychological Bulletin, 70:213–220, 1968.CrossRefGoogle Scholar
  4. [4]
    D. B. Fogel. Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. IEEE Press, Piscataway, NJ, 1995.Google Scholar
  5. [5]
    R. Haupt, K. Hering, U. Petri, and T. Villmann. Hierarchical model partitioning for parallel VLSI–;simulation using evolutionary algorithms improved by superpositions of partitions. In K. Lieven, editor, Proceedings of European Congress on Intelligent Techniques and Soft Computing (EUFIT′97), pages 804–808, Aachen, Germany, 1997.Google Scholar
  6. [6]
    R. Haupt, K. Hering, and T. Siedschlag. Integration of a Local Search Operator into Evolutionary Algorithms for VLSI-Model Partitioning. In K. Lieven, editor, Proceedings of European Congress on Intelligent Techniques and Soft Computing (EUFIT′98), pages 377–381, Aachen, Germany, 1998. ELITE Foundation.Google Scholar
  7. [7]
    K. Hering, R. Haupt, and T. Villmann. Hierarchical Strategy of Model Partitioning for VLSI-Design Using an Improved Mixture of Experts Approach. In Proc. Of the Conference on Parallel and Distributed Simulation (PADS ′96), pages 106–113. IEEE Computer Society Press, Los Alamitos, 1996.Google Scholar
  8. [8]
    T. Kohonen. Self-Organizing Maps. Springer, Berlin, Heidelberg, 1995. (Second Extended Edition 1997).CrossRefGoogle Scholar
  9. [9]
    L. Luborsky. The core conflictual relationship scheme. In N. Freedman and S. Grand, editors, Communicative Structure and Psychic Structures. Plenum Press New York, 1977.Google Scholar
  10. [10]
    Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag Berlin Heidelberg New York, third, revised and extended edition, 1996.MATHGoogle Scholar
  11. [11]
    H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer. Evolution Algorithm in Combinatorial Optimization. Parallel Computing, (7):65–88, 1988.MATHCrossRefGoogle Scholar
  12. [12]
    L. Sachs. Angewandte Statistik. Springer Verlag, 7th edition, 1992.Google Scholar
  13. [13]
    H.–P. Schwefel. Numerical Optimization of Computer Models. Wiley and Sons, 1981.Google Scholar
  14. [14]
    W. G. Spruth. The Design of a Microprocessor. Springer Berlin, Heidelberg, 1989.MATHCrossRefGoogle Scholar
  15. [15]
    G. J. Tóth and A. Lőrincz. Genetic algorithm with migration on topology conserving maps. In S. Gielen and B. Kappen, editors, Proc. ICANN′93, Int. Conf. on Artificial Neural Networks, pages 605–608, London, UK, 1993. Springer.Google Scholar
  16. [16]
    T. Villmann, B. Villmann, and C. Albani. Application of evolutionary algorithms to the problem of new clustering of psychological categories using real clinical data sets. In B. Reusch, editor, Computational IntelligenceTheory and ApplicationsProc. Of the International Conference on Computational Intelligence5th. Dortmunder Fuzzy-Days, pages 311–320, Berlin, New York, Heidelberg, 1997. Lecture Notes in Computer Science 1226, Springer—Verlag.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Th. Villmann
    • 1
  • R. Haupt
    • 2
  • K. Hering
    • 2
  • H. Schulze
    • 2
  1. 1.Klinik für PsychotherapieUniversität LeipzigLeipzigGermany
  2. 2.Institut für InformatikUniversität LeipzigLeipzigGermany

Personalised recommendations