Application of Alu-splice PCR on chromosome 21: DSCR1 and Intersectin

  • J. J. Fuentes
  • M. Dierssen
  • C. Pucharcós
  • C. Fillat
  • C. Casas
  • X. Estivill
  • M. Pritchard
Conference paper


Down syndrome (DS) is a major cause of mental retardation and congenital heart defects, with an overall incidence of one in 700 live births. DS is caused by increases in the amounts of a number of normal gene products, the exact number and identity of which are presently unknown. Elucidating the molecular basis of DS relies on the identification of the gene products whose augmentation by 50% or more causes symptoms of the disease.

With the aim of contributing to the transcriptional map of human chromosome 21 and to identify new genes with potential involvement in DS, we developed a technique to isolate expressed sequences called Alu-splice PCR, which is very simple to perform and is independent of gene expression patterns. Putative exons are PCR amplified in genomic DNA by virtue of their proximity to Alu repeats using primers designed from splice-site consensus sequences in combination with specific Alu repeat primers. The Alu repeats, which are repetitive DNA elements found exclusively and at high frequency in the genomes of primates, impart the human specificity to the method. The splice-site consensus sequences were used to direct primers to exon boundaries.

Using the Alu-splice technique, we have identified at least three new genes. We trapped an exon of DSCR1 (Down Syndrome Candidate Region 1) and two different exons of a gene called human Intersectin (ITSN). Presently, we are working with another novel trapped exon to identify the corresponding gene. The major advantage of Alu-splice PCR is that the technique can be readily established in any laboratory which has the basic facilities for molecular biology because no specialised materials or expertise is required.


Down Syndrome Synaptic Vesicle Pleckstrin Homology Ts65Dn Mouse Eps15 Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonarakis SE, Avramopoulos D, Blouin J-L, Talbot CC, Schinzel AA (1993) Mitotic errors in somatic cells cause trisomy 21 in about 4.5% of cases and are not associated with advanced maternal age. Nature Genet 3: 146–150PubMedCrossRefGoogle Scholar
  2. Becker LE, Mito T, Takashima S, Onodera K, Friend WC (1993) Association of pheno-typic abnormalities of Down syndrome with an imbalance of genes on chromosome 21. APMIS [Suppl] 40: 57–70Google Scholar
  3. Buckler AJ, Chang DD, Graw SL, Brook JD, Haber DA, Sharp PA, Housman DE (1991) Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc Natl Acad Sci USA 88: 4005–4009PubMedCrossRefGoogle Scholar
  4. Chen H, Fre S, Slepnev VI, Capua MR, Takei K, Butler MH, Di Fiore PP, De Camilli P (1998) Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394: 793–797PubMedCrossRefGoogle Scholar
  5. Church DM, Stotler CJ, Rutter JL, Murrell JA, Trofatter JA, Buckler AJ (1994) Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet 6: 98–105PubMedCrossRefGoogle Scholar
  6. Chumakov IM, Le Gall I, Billault A, Ougen P, Soularue P, Giullou S, Rigault P, Bui H, De Tand M-F, Barillot E, Abderrahim H, Cherif D, Berger R, Le Paslier D, Choen D (1992a) Isolation of chromosome 21-specific yeast artificial chromosomes from a total human genome library. Nature Genet 1: 222–225PubMedCrossRefGoogle Scholar
  7. Chumakov I, Rigault P, Guillou S, Ougen P, Billaut A, Guasconi G, Gervy P, LeGall I, Soularue P, Grinas L, Bougueleret L, Bellanné-Chantelot C, Lacroix B, Barillot E, Gesnouin P, Pook S, Vaysseix G, Frelat G, Schmitz A, Sambucy JL, Bosch A, Estivili X, Weissenbach J, Vignai A, Riethman H, Cox D, Patterson D, Gardiner K, Hattori M, Sakaki Y, Ichikawa H, Ohki M, Le Paslier D, Heilig R, Antonarakis S, Cohen D (1992b) Continuum of overlapping clones spanning the entire human chromosome 21q. Nature 359: 380–387PubMedCrossRefGoogle Scholar
  8. Crawford DR, Leahy KL, Abramova N, Lan L, Wang Y, Davies KJA (1997) Hamster adapt78 mRNA is a Down syndrome critical region homologue that is inducible by oxidative stress. Arch Biochem Biophys 342: 6–12PubMedCrossRefGoogle Scholar
  9. Cremona O, De Camilli P (1997) Synaptic vesicle endocytosis. Curr Opin Neurobiol 7: 323–330PubMedCrossRefGoogle Scholar
  10. Davisson MT, Schmidt C, Reeves RH, Irving NG, Akeson EC, Harris BS, Bronson RT (1993) Segmental trisomy as a mouse model for Down syndrome. Prog Clin Biol Res 384: 117–133PubMedGoogle Scholar
  11. Dierssen M, Vallina IF, Baamonde C, Lumbreras MA, Martinez-Cue C, Calatayud SG, Florez J (1996) Impaired cyclic AMP production in the hippocampus of a Down syndrome murine model. Brain Res Dev Brain Res 95: 122–124PubMedCrossRefGoogle Scholar
  12. Dierssen M, Vallina IF, Baamonde C, Garcia-Calatayud S, Lumbreras MA, Florez J (1997) Alterations of central noradrenergic transmission in Ts65Dn mouse, a model for Down syndrome. Brain Res 749: 238–244PubMedCrossRefGoogle Scholar
  13. Duyk GM, Kim SW, Myers RM, Cox DR (1990) Exon trapping: a genetic screen to identify candidate transcribed sequences in cloned mammalian genomic DNA. Proc Natl Acad Sci USA 87: 8995–8999PubMedCrossRefGoogle Scholar
  14. Epstein CJ (1986) The consequences of chromosome imbalance: principles, mechanisms, and models. Cambridge University Press, New YorkCrossRefGoogle Scholar
  15. Epstein CJ (1995) The metabolic and molecular basis of inherited disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Down syndrome, 7th edn. Mac Graw-Hill, New YorkGoogle Scholar
  16. Estivili X, Williamson R (1987) A rapid method to identify cosmids containing rare restriction sites. Nucl Acids Res 15: 1415–1425CrossRefGoogle Scholar
  17. Fuentes JJ, Pritchard MA, Planas AM, Bosch A, Ferrer I, Estivili X (1995) A new human gene from the Down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart. Hum Mol Genet 10: 1935–1944CrossRefGoogle Scholar
  18. Fuentes JJ, Pucharcos C, Pritchard M, Estivili X (1997a) Alu-splice PCR: a simple method to isolate exon-containing fragments from cloned human genomic DNA. Hum Genet 101: 346–350PubMedCrossRefGoogle Scholar
  19. Fuentes JJ, Pritchard M, Estivili X (1997b) Genomic organisation, alternative splicing and expression patterns of the DSCR1 (Down Syndrome Candidate Region 1) gene. Genomics 44: 358–361PubMedCrossRefGoogle Scholar
  20. Green MR (1986) Pre-mRNA splicing. Annu Rev Genet 20: 671–708PubMedCrossRefGoogle Scholar
  21. Guipponi M, Scott HS, Chen H, Schebesta A, Rossier C, Antonarakis SE (1998) Two isoforms of a human intersectin (ITSN) protein are produced by brain-specific alternative splicing in a stop codon. Genomics 53: 369–376PubMedCrossRefGoogle Scholar
  22. Hassold T, Jacobs P (1984) Trisomy in man. Annu Rev Genet 18: 69–97PubMedCrossRefGoogle Scholar
  23. Isakoff SJ, Cardozo T, Andreev J, Li Z, Ferguson KM, Abagyan R, Lemmon MA, Aronheim A, Skolnik EY (1998) Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in. Embo J 17: 5374–5387PubMedCrossRefGoogle Scholar
  24. Jacobs PA, Baikie AG, Court-Bourn WM, Strong JA (1959) The somatic chromosomes in mongolism. Lancet i: 710–711CrossRefGoogle Scholar
  25. Korn B, Sedlacek Z, Manca A, Kioschis P, Konecki D, Lehrach H, Poustka A (1992) A strategy for the selection of transcribed sequences in the Xq28 region. Hum Mol Genet 1: 235–242PubMedCrossRefGoogle Scholar
  26. Krawczak M, Reiss J, Cooper DN (1992) The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 90: 41–54PubMedCrossRefGoogle Scholar
  27. Lamaze C, Chuang TH, Terlecky LJ, Bokoch GM, Schmid SL (1996) Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382: 177–179PubMedCrossRefGoogle Scholar
  28. Lejeune J, Gautier M, Turpin R (1959) Etudes chromosomiques sometiques de neuf enfants mongoliens. CR Hebd Séances Acad Sci 248: 409–411Google Scholar
  29. Lovett M, Kere J, Hinton L (1991) Direct selection: a method for the isolation of cDNAs encoded by large genomic regions. Proc Natl Acad Sci USA 88: 9628–9422PubMedCrossRefGoogle Scholar
  30. Martínez-Cué C, Vallina IF, Baamonde C, Dierssen M, Fillat C, Fuentes JJ, Pritchard M, Estivili X, Flórez J (1997) Transgenic mice overexpressing the human DSCR1 gene: behavioral characterization of two lines. Proc Int Chromosome 21 Workshop (Berlin), pp 45Google Scholar
  31. Melmer G, Sood R, Rommens J, Rego D, Lap-Chee T, Buchwald M (1990) Isolation of clones on chromosome 7 that contain recognition sites for rare-cutting enzymes by oligonucleotide hybridization Genomics 7: 173–181PubMedCrossRefGoogle Scholar
  32. Miyazaki T, Kanou Y, Murata Y, Ohmori S, Niwa T, Maeda K, Yamamura H, Seo H (1996) Molecular cloning of a Novel Thyroid Hormone-responsive Gene, ZAKI-4, in human skin fibroblasts. J Biol Chem 24: 14567–14571Google Scholar
  33. Musacchio A, Saraste M, Wilmanns M (1994) High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Nat Struct Biol 1: 546–551PubMedCrossRefGoogle Scholar
  34. Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5: 2375–2390PubMedCrossRefGoogle Scholar
  35. Nimnual AS, Yatsula BA, Bar-Sagi D (1998) Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 279: 560–563PubMedCrossRefGoogle Scholar
  36. Overhauser J, Radic MZ (1987) Encapsulation of cells in agarose beads for use with pulsed-field gel electrophoresis. Focus 9: 8–9Google Scholar
  37. Padgett RA, Grabowski PJ, Konarska MM, Seiler S, Sharp A (1986) Splicing of messenger RNA precursors. Annu Rev Biochem 55: 1119–1150PubMedCrossRefGoogle Scholar
  38. Pucharcós C, Fuentes JJ, Casas C, de la Luna S, Alcántara S, Arbonés ML, Soriano E, Estivili X, Pritchard M (1999) Alu-splice cloning of human Intersectin (ITSN), a putative multivalent binding protein expressed in proliferating and differentiating neurons and overexpressed in Down syndrome. Eur Hum Gene (in press)Google Scholar
  39. Roos J, Kelly RB (1998) Dap160, a neural-specific Epsl5 homology and multiple SH3 domain-containing protein that interacts with Drosophila dynamin. J Biol Chem 273: 19108–19119PubMedCrossRefGoogle Scholar
  40. Salcini AE, Confalonieri S, Doria M, Santolini E, Tassi E, Minenkova O, Cesareni G, Pelicci PG, Di Fiore PP (1997) Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Genes Dev 11: 2239–2249PubMedCrossRefGoogle Scholar
  41. Sengar AS, Wang W, Bishay J, Cohen S, Egan SE (1999) The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps 15. EMBO J 18: 1159–1171PubMedCrossRefGoogle Scholar
  42. Siarey RJ, Stoll J, Rapoport SI, Galdzicki Z (1997) Altered long-term potentiation in the young and old Ts65Dn mouse, a model for Down Syndrome. Neuropharmacology 36: 1549–1554PubMedCrossRefGoogle Scholar
  43. Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR (1995) Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80: 929–938PubMedCrossRefGoogle Scholar
  44. Tagle DA, Collins FS (1992) An optimized Alu-PCR primer pair for human-specific amplification of YACs and somatic cell hybrids. Hum Mol Genet 1: 121–122PubMedCrossRefGoogle Scholar
  45. Ullu E, Murphy S, Melli M (1982) Human 7SL RNA consists of a 140 nucleotide middle-repetitive sequence inserted in an Alu sequence. Cell 29: 195–202PubMedCrossRefGoogle Scholar
  46. Warren AC, Chakravarti A, Wong C, Slaugenhaupt SA, Halloran SL, Satkins PC, Metazotou C (1987) Evidence for reduced recombination on the nondisjoined chromosome 21 in Down syndrome. Science 237: 652–654PubMedCrossRefGoogle Scholar
  47. Whitehead IP, Campbell S, Rossman KL, Der CJ (1997) Dbl family proteins. Biochim Biophys Acta 1332: 11–23Google Scholar
  48. Wilson R, Ainscough R, Anderson K, Baynes C, Berks M, Bonfield J, Burton J, Connell M, Copsey T, Cooper J, Coulson A, Craxton M, Dear S, Du Z, Durbin R, Favello A, Fraser A, Fulton L, Gardner A, Green P, Hawkins T, Hillier L, Jier M, Johnston L, Jones M, Kershaw J, Kirsten J, Laisster N, Latreille P, Lightning J, Lloyd C, Mortimore B, O’Callaghan M, Parsons J, Percy C, Rifken L, Roopra A, Saunders D, Shownkeen R, Sims M, Smaldon N, Smith A, Smith M, Sonnhammer E, Staden R, Sulston J, Thierry-Mieg J, Thomas K, Vaudin M, Vaughan K, Waterston R, Watson A, Weinstock L, Wilkinson-Sproat J, Wohldaman P (1994) 2.2 Mb of contigous nucleotide sequence from chromosome III of C. elegans. Nature 368: 32–38PubMedCrossRefGoogle Scholar
  49. Wisniewski KE (1990) Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. Am J Med Genet [Suppl] 7: 274–281Google Scholar
  50. Yamabhai M, Hoffman NG, Hardison NL, McPherson PS, Castagnoli L, Cesareni G, Kay BK (1998) Intersectin, a novel adaptor protein with two epsl5 homology and five src homology 3. J Biol Chem 273: 31401–31407PubMedCrossRefGoogle Scholar
  51. Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (1999) Fundamental neuroscience. Academic Press, San DiegoGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • J. J. Fuentes
    • 1
  • M. Dierssen
    • 1
  • C. Pucharcós
    • 1
  • C. Fillat
    • 1
  • C. Casas
    • 1
  • X. Estivill
    • 1
  • M. Pritchard
    • 2
  1. 1.Medical and Molecular Genetics Center-IROL’Hospitalet de LlobregatBarcelonaSpain
  2. 2.IRDMonash UniversityClaytonAustralia

Personalised recommendations