Skip to main content

Increased levels of 14-3-3 gamma and epsilon proteins in brain of patients with Alzheimer’s disease and Down Syndrome

  • Conference paper
The Molecular Biology of Down Syndrome

Summary

The 14-3-3 family consists of homo- and heterodimeric proteins representing a novel type of “adaptor proteins” modulating the interaction between components of signal transduction pathways. 14-3-3 isoforms interact with phosphoserine motifs on many proteins as kinases, phosphatases, apoptosis related proteins etc. Performing protein mapping by 2D electrophoresis in human brain we identified two isoforms, 14-3-3 gamma and epsilon and decided to determine these two multifunctional proteins in several brain regions of aged patients with Alzheimer’s disease (AD) and Down Syndrome (DS) with AD neuropathology in comparison with control brains.

14-3-3 gamma and 14-3-3 epsilon proteins were increased in several brain regions of AD and DS patients.

These changes may contribute to the complex pathomechanisms of AD and AD in DS, evolving inevitably from the fourth decade of life. Deranged 14-3-3 isoforms gamma and epsilon may reflect impaired signaling and / or apoptosis in the brain as several kinases (protein kinase C, Ras, mitogen activated kinase MEK) involved in signaling and apoptotic factors as bcl-2 related proteins BAD and BAG-1 are binding to 14-3-3 motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken A, Howell S, Jones D, Madrazo J, Martin H, Patel Y, Robinson K (1995) Posttranslationally modified 14-3-3 isoforms and inhibition of protein kinase C. Mol Cell Biochem 149: 41–49

    Article  PubMed  Google Scholar 

  • Becker L, Mito T, Takashima S, Onodera K (1991) Growth and development of the brain in Down Syndrome. Progr Clin Biol Res 373: 133–152

    CAS  Google Scholar 

  • Bernert G, Nemethova M, Cairns N, Lubec G (1996) Decreased cyclin dependent kinase in brain of patients with Down Syndrome. Neurosci Lett 216: 68–70

    Article  PubMed  CAS  Google Scholar 

  • Beyreuther K, Pollwein P, Multhaup G, Monning U, Konig G, Dyrks T, Schubert W, Masters DL (1993) Regulation and expression of the Alzheimer’s beta/A4 amyloid protein precursor in health, disease, and Down’s Syndrome. Ann NY Acad Sci 695: 91–102

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Braselmann S, McCormick F (1995) Bcr and Raf form a complex in vivo via 14-3-3 proteins. EMBO J 14: 4839–4848

    PubMed  CAS  Google Scholar 

  • Broadie K, Rushton E, Skoulakis EM, Davis RL (1997) Leonardo, a Drosophila 14-3-3 protein involved in learning, regulates presynaptic function. Neuron 19: 391–402

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain LH, Roth D, Morgan A, Burgoyne RD (1995) Distinct effects of alpha-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocy-tosis. J Cell Biol 130: 1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Chang HC, Rubin GM (1997) 14-3-3 epsilon positively regulates Ras — mediated signaling in Drosophila. Genes Dev 11: 1132–1139

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Wagner PD (1994) 14-3-3 proteins bind to histone and affect both histone phosphorylation and dephosphorylation. FEBS Lett 347: 128–132

    Article  PubMed  CAS  Google Scholar 

  • Conklin DS, Galaktionov K, Beach D (1995) 14-3-3 proteins associate with cdc25 phosphatases. Proc Natl Acad Sci USA 92: 7892–7896

    Article  PubMed  CAS  Google Scholar 

  • Craparo A, Freund R, Gustafson TA (1997) 14-3-3 (epsilon) interacts with the insulinlike growth factor receptor and insulin receptor substrate-1 in a phosphoserine — dependent manner. J Biol Chem 272: 11663–11669

    Article  PubMed  CAS  Google Scholar 

  • Dawbarn D, Allen SJ (1995) Neurobiology of Alzheimer’s disease. Bios Scientifique Publishers, Oxford

    Google Scholar 

  • Dubois T, Howell S, Amess B, Kerai P, Learmonth M, Madrazo J, Chaudhri M, Rittinger K, Scarabel M, Soneji Y, Aitken A (1997) Structure and sites of phosphorylation of 14-3-3 protein: role in coordinating signal transductiion pathways. J Protein Chem 16: 513–522

    Article  PubMed  CAS  Google Scholar 

  • Fanger GR, Widman C, Porter AC, Sather S, Johnson GL, Vaillancourt RR (1998) 14-3-3 proteins interact with specific MEK kinases. J Biol Chem 273: 3476–3483

    Article  PubMed  CAS  Google Scholar 

  • Fanti WJ, Muslin AJ, Kikuchi A, Martin JA, MacNicol AM, Gross RW, Williams LT (1994) Activation of Raf-1 by 14-3-3 proteins. Nature 371: 612–614

    Article  CAS  Google Scholar 

  • Freed E, Symons M, Macdonald SG, McCormick F, Ruggieri R (1994) Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science 265: 1713–1716

    Article  PubMed  CAS  Google Scholar 

  • Fountoulakis M, Langen H (1997) Identification of proteins by matrix-assisted laser desorption ionization-mass spectroscopy following in-gel digestion in low-salt, nonvolatile buffer and simplified peptide recovery. Anal Biochem 250: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Greber S, Lubec G, Cairns N, Fountoulakis M (1999) Decreased synaptosomal associated protein 25 levels in brain of patients with Down Syndrome and Alzheimer’s disease. Electrophoresis (in press)

    Google Scholar 

  • Hsieh G, Kenney K, Gibbs CJ, Lee KH, Harrington MG (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 335: 924–930

    Article  Google Scholar 

  • Hsu SY, Kaipia A, Zhu L, Hsueh AJ (1997) Interference of BAD (Bcl-xL/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11. Mol Encodrinol 11: 1858–1867

    Article  CAS  Google Scholar 

  • Ichimura T, Ito M, Itagaki C, Takahashi M, Horigome T, Ornata S, Ohno S, Isobe T (1997) The 14-3-3 proteins bind its target protein with a common site located towards the C-terminus. FEBS Lett 413: 273–276

    Article  PubMed  CAS  Google Scholar 

  • Isobe T, Hiyane Y, Ichimura T, Okuyama T, Takahashi N, Nakajo S, Nakaya K (1992) Activation of protein kinase C by the 14-3-3 proteins homologous with Exol protein that stimulates calcium dependent exocytosis. FEBS Lett 308: 121–124

    Article  PubMed  CAS  Google Scholar 

  • Jones DH, Martin H, Madrazo J, Robinson KA, Nielsen P, Roseboom PH, Patel Y, Howell SA, Aitken A (1995) Expression and structural analysis of 14-3-3 proteins. J Mol Biol 245: 375–384

    Article  PubMed  CAS  Google Scholar 

  • Kumagai A, Yakowec PS, Dunphy WG (1998) 14-3-3 proteins act as negative regulators of the mitotic inducer Cdc25 in Xenopus egg extracts. Mol Biol Cell 9: 345–354

    PubMed  CAS  Google Scholar 

  • Langen H, Roeder D, Juranville J-F, Fountoulakis M (1997) Effect of the protein application mode and the acrylamide concentration on the resolution of protein spots separated by two-dimensional gel electrophoresis. Electrophoresis 18: 2085–2090

    Article  PubMed  CAS  Google Scholar 

  • Layfield R, Fergusson J, Aitken A, Lowe J, Landon M, Mayer RJ (1996) Neurofibrillary tangles of Alzheimer’s disease brains contain 14-3-3 proteins. Neurosci Lett 209: 57–60

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Harrington MG (1997) The assay development of a molecular marker for transmissible sponsiform encephalopathies. Electrophoresis 18: 502–506

    Article  PubMed  CAS  Google Scholar 

  • Liao J, Omary MB (1996) 14-3-3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progression and act as a solubility cofactor. J Cell Biol 133: 345–357

    Article  PubMed  CAS  Google Scholar 

  • Martin H, Rostas J, Patel Y, Aitken A (1994) Subcellular localisation of 14-3-3 isoforms in rat brain using specific antibodies. J Neurochem 63: 2259–2265

    Article  PubMed  CAS  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi S, Crain BJ (1991) The consortium to establish a registry for Alzheimer disease (CERAD). II. Standardisation of the neuropathologi-cal assessment of Alzheimer’s disease. Neurology 41: 479–486

    Article  PubMed  CAS  Google Scholar 

  • Muslin AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889–897

    Article  PubMed  CAS  Google Scholar 

  • Ogihara T, Isobe T, Ichimura T, Taoka M, Funaki M, Sakoda H, Onishi Y, Inukai K, Anai M, Fukushima Y, Kikuchi M, Yazaki Y, Oka Y, Asano T (1997) 14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain. J Biol Chem 272: 25267–25274

    Article  PubMed  CAS  Google Scholar 

  • Peng CY, Graves RR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine 216. Science 277: 1501–1505

    Article  PubMed  CAS  Google Scholar 

  • Petit TL, LeBoutillier JC, Alfano DP, Becker LE (1984) Synaptic development in the human fetus: a morphometric analysis of normal and Down’s syndrome neocortex. Exp Neurol 83: 13–23

    Article  PubMed  CAS  Google Scholar 

  • Pietromonaco SF, Seluja GA, Aitken A, Elias L (1996) Association of 14-3-3 proteins with centrosomes. Blood Cells Mol Dis 22: 225–237

    Article  PubMed  CAS  Google Scholar 

  • Robinson K, Jones D, Patel Y, Martin H, Madrazo J, Martin S, Howell S, Elmore M, Finnen MJ, Aitken A (1994) Mechanisms of inhibition of protein kinase C by 14-3-3 isoforms. 14-3-3 isoforms do not have phospholipase A2 activity. Biochem J 299: 853–861

    PubMed  CAS  Google Scholar 

  • Rommel C, Radziwill G, Lovric J, Noeldeke J, Heinicke T, Jones D, Aitken A, Moelling K (1996) Activated Ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene 12: 609–619

    PubMed  CAS  Google Scholar 

  • Rosenmann H, Meiner Z, Kahana E, Halimi M, Lenetsky E, Abramsky O, Gabizon R (1997) Detection of 14-3-3 protein in the CSF of genetic Creutzfeld-Jakob disease. Neurology 49: 593–595

    Article  PubMed  CAS  Google Scholar 

  • Roth D, Morgan A, Burgoyne RD (1993) Identification of a key domain in annexin and 14-3-3 proteins that stimulate calcium dependent exocytosis in permeabilized adrenal chromaffin cells. FEBS Lett 320: 207–210

    Article  PubMed  CAS  Google Scholar 

  • Seidl R, Greber S, Schuller E, Bernert G, Cairns N, Lubec G (1997) Evidence against increased oxidative DNA-damage in Down Syndrome. Neurosci Lett 235: 137–140

    Article  PubMed  CAS  Google Scholar 

  • Skoulakis EM, Davis RL (1996) Olfactory learning deficits in mutants for Leonardo, a drosophila gene encoding a 14-3-3 protein. Neuron 17: 931–944

    Article  PubMed  CAS  Google Scholar 

  • Tanji M, Horwitz R, Rosenfeld G, Waymire JC (1994) Activation of protein kinase C by purified bovine brain 14-3-3: comparison with tyrosine hydroxylase activation. J Neurochem 63: 1908–1916

    Article  PubMed  CAS  Google Scholar 

  • Tierney MC, Fisher RH, Lewis AJ, Torzitto ML, Snow WG, Reid DW, Nieuwstraaten P, Van Rooijen LAA, Derks HJGM, Van Wijk R, Bischop A (1988) The NINCDA-ADRDA work group criteria for the clinical diagnosis of probable Alzheimer’s disease. Neurology 38: 359–364

    Article  PubMed  CAS  Google Scholar 

  • Toker A, Ellis CA, Sellers LA, Aitken A (1990) Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 proteins. Eur J Biochem 191: 421–429

    Article  PubMed  CAS  Google Scholar 

  • Toker A, Sellers LA, Amess B, Patel Y, Harris A, Aitken A (1992) Multiple isoforms of a protein kinase C inhibitor (KCIP-1/14-3-3) from sheep brain. Eur J Biochem 206: 453–461

    Article  PubMed  CAS  Google Scholar 

  • Vincenz C, Dixit VM (1996) 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecule. J Biol Chem 271: 20029–20034

    Article  PubMed  CAS  Google Scholar 

  • Wang HG, Takayama S, Rapp UR, Reed JC (1996) Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc Natl Acad Sci 93: 7063–7068

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Isobe T, Ichimura T, Kuwano R, Takahashi Y, Kondo H (1993) Molecular cloning of rat cDNAs for beta and gamma subtypes of 14-3-3 proteins and developmental changes in expression of their mRNAs in the nervous system. Brain Res Mol Brain Res 17: 135–146

    Article  PubMed  CAS  Google Scholar 

  • Weber T, Otto M, Bodemer M, Zerr I (1997) Diagnosis of Creutzfeld’ Jakob disease and related human spongiform encephalopathies. Biomed Pharmacother 51: 381–387

    Article  PubMed  CAS  Google Scholar 

  • Xing H, Kornfeld K, Muslin AJ (1997) The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr Biol 7: 294–300

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley SC (1997) The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91: 961–971

    Article  PubMed  CAS  Google Scholar 

  • Zerr I, Bodemer M, Gefeller O, Otto M, Poser S, Wiltfang J, Windl O, Kretschmar HA, Weber T (1998) Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeld-Jakob disease. Ann Neurol 43: 32–40

    Article  PubMed  CAS  Google Scholar 

  • Zha J, Harada H, Yang E, Jockei J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87: 619–628

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Fountoulakis, M., Cairns, N., Lubec, G. (1999). Increased levels of 14-3-3 gamma and epsilon proteins in brain of patients with Alzheimer’s disease and Down Syndrome. In: Lubec, G. (eds) The Molecular Biology of Down Syndrome. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6380-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6380-1_23

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83377-3

  • Online ISBN: 978-3-7091-6380-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics