Skip to main content

Reduced aldehyde dehydrogenase levels in the brain of patients with Down Syndrome

  • Conference paper
The Molecular Biology of Down Syndrome

Summary

Aldehyde dehydrogenase (ALDH) is a key enzyme in fructose, acetaldehyde and oxalate metabolism and represents a major detoxification system for reactive carbonyls and aldehydes. In the brain, ALDH exerts a major function in the metabolism of biogenic aldehydes, norepinephrine, dopamine and diamines and γ-aminobutyric acid. Subtractive hybridization studies in Down Syndrome (DS) fetal brain showed that mRNA for ALDH are downregulated. Here we studied the protein levels in the brain of adult patients. The proteins from five brain regions of 9 aged patients with DS and 9 controls were analyzed by two-dimensional (2-D) gel electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry. ALDH levels were reduced in the brain regions of at least half of the patients with Down Syndrome, as compared to controls. The decreased ALDH levels in the DS brain may result in accumulation of aldehydes which can lead to the formation of plaques and tangles reflecting abnormally cross-linked, insoluble and modified proteins, found in aged DS brain. Furthermore, we constructed a 2-Dmap including approximately 120 identified human brain proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378: 776–779

    Article  PubMed  CAS  Google Scholar 

  • Colzi A, Musolino A, Iuliano A, Fornai F, Bonuccelli U, Corsini GU (1996) Identification and determination of 3,4-dihydroxyphenylacetylacetaldehyde, the dopamine metabolite in in vivo dialysate from rat striatum. J Neurochem 66: 1510–1517

    Article  PubMed  CAS  Google Scholar 

  • Epstein CJ (1992) Down Syndrome (Trisomy 21). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited diseases. McGraw Hill, New York, pp 749–794

    Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 11: 81–128

    Article  PubMed  CAS  Google Scholar 

  • Fountoulakis M, Langen H (1997) Identification of proteins by matrix — assisted laser desorption ionization-mass spectroscopy following in-gel digestion in low-salt, nonvolatile buffer and simplified peptide recovery. Anal Biochem 250: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Hafer G, Agarwal DP, Goeddee HW (1987) Human brain aldehyde dehydrogenase: activity with DOPAL and isoenzyme distribution. Alcohol 4: 413–418

    Article  PubMed  CAS  Google Scholar 

  • Hague NS, LeBlanc CJ, Isacson O (1997) Differential dissecion of the rat E16 ventral mesencephalon and survival and reinnervation of the 6-OHDA — lesioned striatum by a subset of aldehyde dehydrogenase positive TH neurons. Cell Transplant 6: 239–248

    Article  Google Scholar 

  • Harrington CR, Colaco CALS (1994) Alzheimer’s disease, a glycation connection. Nature 370: 247–248

    Article  PubMed  CAS  Google Scholar 

  • Kawamura M, Kopin IJ, Kador PF, Sato S, Tjurmina O, Eisenhofer G (1997) Effects of aldehyde dehydrogenase / aldose reductase inhibition on neuronal metabolism of norepinephrine. J Auton Nerv Syst 66: 145–148

    Article  PubMed  CAS  Google Scholar 

  • Kikonyogo A, Pietruszko R (1996) Aldehyde dehydrogenase from adult brain that dehydrogenastes gamma-aminobutyraldehyde: purification, characterization, cloning and distribution. Biochem J 316: 317–324

    PubMed  CAS  Google Scholar 

  • Labudova O, Lubec G (1998) cAMP upregulates the transposable element mys-1: a possible link between signaling and mobile DNA. Life Sci 62: 431–437

    Article  PubMed  CAS  Google Scholar 

  • Langen H, Roeder D, Juranville J-F, Fountoulakis M (1997) Effect of the protein application mode and the acrylamide concentration on the resolution of protein spots separated by two-dimensional gel electrophoresis. Electrophoresis 18: 2085–2090

    Article  PubMed  CAS  Google Scholar 

  • McCaffery P, Drager UC (1994) High levels of retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc Natl Acad Sci USA 91: 7772–7776

    Article  PubMed  CAS  Google Scholar 

  • Maring JA, Deitrich RA, Little R (1985) Partial purification and properties of human brain aldehyde dehydrogenase. J Neurochem 45: 1903–1910

    Article  PubMed  CAS  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi S, Crain BJ (1991) The consortium to establish a registry for Alzheimer disease (CERAD). II. Standardisation of the neuropathol-ogical assessment of Alzheimer’s disease. Neurology 41: 479–486

    Article  PubMed  CAS  Google Scholar 

  • Nilsson GE, Tottmar O (1985) Biogenic aldehydes in brain: characterization of a reaction betwreen rat brain tissue and indole-3-acetaldehyde. J Neurochem 45: 744–75

    Article  PubMed  CAS  Google Scholar 

  • Nilsson GE, Tottmar O (1987) Biogenic aldehydes in brain: on their preparation and reactions with brain tissue. J Neurochem 48: 1566–1572

    Article  PubMed  CAS  Google Scholar 

  • Petersen DR (1985) Aldehyde dehydrogenase and aldehyde reductase in isolated bovine brain microvessels. Alcohol 2: 79–83

    Article  PubMed  CAS  Google Scholar 

  • Pietruszko R, Meier J, Major LF, Saini N, Manz H, Hawley RJ (1984) Human brain: aldehyde dehydrogenase activity and isoenzyme distribution in different areas. Alcohol 1: 363–367

    Article  PubMed  CAS  Google Scholar 

  • Quintanilla ME, Tampier L (1995) Acetaldehyde metabolism by brain mitochondria from UchA and UchB rats. Alcohol 12: 519–524

    Article  PubMed  CAS  Google Scholar 

  • Ruggeri P, Saija A, Costa G, Caputi AP (1986) Influence of several aldehyde dehydrogenase and aldehyde reductase inhibitors on diamine oxidase in rat brain. Res Commun Chem Pathol Pharmacol 51: 205–209

    PubMed  CAS  Google Scholar 

  • Ryzlak MT, Pietruszko R (1988) Human brain “high-Km” aldehyde dehydrogenase: purification, characterization, and identification as NAD+-dependent succinic semialdehyde dehydrogenase. Arch Biochem Biophys 266: 386–396

    Article  PubMed  CAS  Google Scholar 

  • Seidl R, Greber S, Schuller E, Bernert G, Cairns N, Lubec G (1997) Evidence against increased oxidative DNA damage in Down Syndrome. Neurosci Lett 235: 137–140

    Article  PubMed  CAS  Google Scholar 

  • Shiohara E, Tsukuda M, Chiba S, Yamazaki H, Nishiguchi K, Miyamoto R, Nakanishi S (1984) Subcellular aldehyde dehydrogenase activity and acetaldehyde oxidation by isolated intact mitochondria of rat brain and liver after acetaldehyde treatment. Toxicol 30: 25–30

    Article  CAS  Google Scholar 

  • Smith MA, Sayre LM, Monnier VM, Perry G (1995) Radical AGEing in Alzheimer’s disease. Trends Neurosci 18: 172–176

    Article  PubMed  CAS  Google Scholar 

  • Stewart MJ, Malek K, Crabb DW (1996) Distribution of messenger RNAs for aldehyde dehydrogenase 1, aldehyde dehydrogenase 2 and aldehyde dehydrogenase 5 in human tissues. J Invest Med 44: 42–46

    CAS  Google Scholar 

  • Tierney MC, Fisher RH, Lewis AJ, Torzitto ML, Snow WG, Reid DW, Nieuwstraaten P, Van Rooijen LAA, Derks HJGM, Van Wijk R, Bischop A (1988) The NINCDA-ADRDA work group criteria for the clinical diagnosis of probable Alzheimer’s disease. Neurology 38: 359–36

    Article  PubMed  CAS  Google Scholar 

  • Totmar O (1985) Biogenic aldehydes: metabolism, binding to brain membranes and electrophysiological effects. Prog Clin Biol Res 183: 51–66

    Google Scholar 

  • Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer’s disease. Proc Natl Acad Sci USA 91: 4766–4770

    Article  PubMed  CAS  Google Scholar 

  • Weiner H, Ardelt B (1984) Distribution and properties of aldehyde dehydrogenase in regions of the rat brain. J Neurochem 42: 109–115

    Article  PubMed  CAS  Google Scholar 

  • Yan SD, Yan SF, Chen X, Fu J, Chen M, Kuppusamy P, Smith D, Perry G, Godman C, Nawroth P, Zweier JL, Stern D (1995) Non-enzymatically glycated tau in Alzheimer’s disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide. Nature Med 1: 693–699

    Article  PubMed  CAS  Google Scholar 

  • Zimatkin SM (1991) Histochemical study of aldehyde dehydrogenase in the rat CNS. J Neurochem 56: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Zimatkin SM, Karpuk YG (1996) Regional and cellular distribution of mitochondrial high-affinity aldehyde dehydrogenase in the rat brain. Neurosci Behav Physiol 26: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Zimatkin SM, Rout UK, Koivusalo M, Buehler R, Lindros KO (1992) Regional distribution of low Km mitochondrial aldehyde dehydrogenase in the rat central nervous system. Alcohol Clin Exp Res 16: 1162–1167

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Lubec, G., Labudova, O., Cairns, N., Berndt, P., Langen, H., Fountoulakis, M. (1999). Reduced aldehyde dehydrogenase levels in the brain of patients with Down Syndrome. In: Lubec, G. (eds) The Molecular Biology of Down Syndrome. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6380-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6380-1_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83377-3

  • Online ISBN: 978-3-7091-6380-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics