Skip to main content

Mechanisms of neuronal death in Down’s syndrome

  • Conference paper
The Molecular Biology of Down Syndrome

Summary

There is growing evidence that neuronal death in Down’s syndrome is due to apoptotic mechanisms. The phenomena, however, that trigger and regulate programmed cell death in the Down’s syndrome-related neurodegeneration are still much debated.

In vitro evidence has suggested that the main factor responsible for neuronal death in this condition is the accumulation of β-amyloid, due to the overexpression of its precursor protein. Another hypothesis argues for the importance of reactive oxygen species in neuronal death. However, the in vivo findings do not entirely support either theories.

We propose that neuronal apoptosis, as well as the formation of Alzheimer-type pathology, in Down’s syndrome is due to an aberrant re-entry of neurones into the cell division cycle. Due to the simultaneous over expression of conflicting cell cycle regulatory signals, the mitogenic amyloid precursor and the differentiation factor S100, the cell cycle is abandoned. Subsequently the cell cycle arrest may lead to either the formation of Alzheimer-related pathology or to apoptotic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281: 1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Altmann AE, Halliday JL, Giles GG (1998) Associations between congenital malformations and childhood cancer. A register-based case-control study. Br J Cancer 78: 1244–1249

    Article  PubMed  CAS  Google Scholar 

  • Alvarez J, Moreno RD, Inestrosa NC (1995) Mitosis of Schwann cells and demyelination are induced by the amyloid precursor protein and other protease inhibitors in the rat sciatic nerve. Eur J Neurosci 7: 152–159

    Article  PubMed  CAS  Google Scholar 

  • Araujo DM, Cotman CW (1992) Beta-amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res 569:141–145

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RA (1996) Correlations between the morphology of diffuse and primitive beta-amyloid (A beta) deposits and the frequency of associated cells in Down’s syndrome. Neuropathol Appl Neurobiol 22: 527–530

    Article  PubMed  CAS  Google Scholar 

  • Au WW, Wilkinson GS, Tyring SK, Legator MS, el Zein R, Hallberg L, Heo MY (1996) Monitoring populations for DNA repair deficiency and for cancer susceptibility. Environ Health Perspect 3: 579–584

    Google Scholar 

  • Bar Peled O, Korkotian E, Segal M, Groner Y (1996) Constitutive overexpression of Cu/Zn superoxide dismutase exacerbates kainic acid-induced apoptosis of transgenic-Cu/Zn superoxide dismutase neurons. Proc Natl Acad Sci USA 93: 8530–8535

    Google Scholar 

  • Barkats M, Bertholet JY, Venault P, Ceballos Picot I, Nicole A, Phillips J, Moutier R, Roubertoux P, Sinet PM, Cohen Salmon C (1993) Hippocampal mossy fiber changes in mice transgenic for the human copper-zinc superoxide dismutase gene. Neurosci Lett 160: 24–28

    Google Scholar 

  • Birecree E, Whetsell WO, Jr, Stoscheck C, King LE, Jr, Nanney LB (1988) Immunoreac-tive epidermal growth factor receptors in neuritic plaques from patients with Alzheimer’s disease. J Neuropathol Exp Neurol 47: 549–560

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol Berl 82: 239–259

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378: 776–779

    Article  PubMed  CAS  Google Scholar 

  • Chiarugi V, Magnelli L, Cinelli M, Basi G (1994) Apoptosis and the cell cycle. Cell Mol Biol Res 40: 603–612

    PubMed  CAS  Google Scholar 

  • Cotman CW (1998) Apoptosis decision cascades and neuronal degeneration in Alzheimer’s disease. Neurobiol Aging 19: S29–S32

    Article  PubMed  CAS  Google Scholar 

  • de la Monte SM, Sohn YK, Ganju N, Wands JR (1998) P53-and CD95-associated apoptosis in neurodegenerative diseases. Lab Invest 78: 401–411

    PubMed  Google Scholar 

  • Desjardins P, Ledoux S (1998) The role of apoptosis in neurodegenerative diseases. Metab Brain Dis 13: 79–96

    Article  PubMed  CAS  Google Scholar 

  • Dieckmann KP, Rube C, Henke RP (1997) Association of Down’s syndrome and testicular cancer. J Urol 157: 1701–1704

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Gullotta F (1990) Down’s syndrome and Alzheimer’s disease: dendritic spine counts in the hippocampus. Acta Neuropathol Berl 79: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Grana X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11: 211–219

    PubMed  CAS  Google Scholar 

  • Hayn M, Kremser K, Singewald N, Cairns N, Nemethova M, Lubec B, Lubec G (1996) Evidence against the involvement of reactive oxygen species in the pathogenesis of neuronal death in Down’s syndrome and Alzheimer’s disease. Life Sci 59: 537–544

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Bouras C, Perl DP, Sparks DL, Mehta N, Morrison JH (1995) Age-related distribution of neuropathologic changes in the cerebral cortex of patients with Down’s syndrome. Quantitative regional analysis and comparison with Alzheimer’s disease. Arch Neurol 52: 379–391

    Article  PubMed  CAS  Google Scholar 

  • Hyman BT (1992) Down syndrome and Alzheimer disease. Prog Clin Biol Res 379: 123–142

    PubMed  CAS  Google Scholar 

  • Hyman BT, West HL, Rebeck GW, Lai F, Mann DM (1995) Neuropathological changes in Down’s syndrome hippocampal formation. Effect of age and apolipoprotein E genotype. Arch Neurol 52: 373–378

    Article  PubMed  CAS  Google Scholar 

  • Imahori K, Uchida T (1997) Physiology and pathology of tau protein kinases in relation to Alzheimer’s disease. J Biochem Tokyo 121: 179–188

    PubMed  CAS  Google Scholar 

  • Lew J, Qi Z, Huang QQ, Paudel H, Matsuura I, Matsushita M, Zhu X, Wang JH (1995a) Structure, function, and regulation of neuronal Cdc2-like protein kinase. Neurobiol Aging 16: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Lew J, Wang JH (1995b) Neuronal cdc2-like kinase. Trends Biochem Sci 20: 33–37

    Article  PubMed  CAS  Google Scholar 

  • Lovestone S, Reynolds CH (1997) The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 78: 309–324

    Article  PubMed  CAS  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146: 3–15

    PubMed  CAS  Google Scholar 

  • Mann DM, Yates PO (1986a) Neurotransmitter deficits in Alzheimer’s disease and in other dementing disorders. Hum Neurobiol 5: 147–158

    PubMed  CAS  Google Scholar 

  • Mann DM, Yates PO, Marcyniuk B, Ravindra CR (1986b) The topography of plaques and tangles in Down’s syndrome patients of different ages. Neuropathol Appl Neurobiol 12: 447–457

    Article  PubMed  CAS  Google Scholar 

  • Mann DM, Yates PO, Marcyniuk B, Ravindra CR (1987) Loss of neurones from cortical and subcortical areas in Down’s syndrome patients at middle age. Quantitative comparisons with younger Down’s patients and patients with Alzheimer’s disease. J Neurol Sci 80: 79–89

    Article  PubMed  CAS  Google Scholar 

  • Mann DMA (1997) Neuropathological changes of Alzheimer’s disease in persons with Down’s syndrome. In: Esiri MM, Morris JH (eds) The neuropathology of dementia. Cambridge University Press, Cambridge, pp 122–136

    Google Scholar 

  • Masliah E, Mallory M, DeTeresa R, Alford M, Hansen L (1993a) Differing patterns of aberrant neuronal sprouting in Alzheimer’s disease with and without Lewy bodies. Brain Res 617: 258–266

    Article  PubMed  CAS  Google Scholar 

  • Masliah E, Miller A, Terry RD (1993b) The synaptic organization of the neocortex in Alzheimer’s disease. Med Hypotheses 41: 334–340

    Article  PubMed  CAS  Google Scholar 

  • Mattiace LA, Kress Y, Davies P, Ksiezak Reding H, Yen SH, Dickson DW (1991) Ubiquitin-immunoreactive dystrophic neuntes in Down’s syndrome brains. J Neuropathol Exp Neurol 50: 547–559

    Google Scholar 

  • Mattson MP (1997) Cellular actions fo beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77: 1081–1132

    PubMed  CAS  Google Scholar 

  • Meikrantz W, Schlegel R (1995) Apoptosis and the cell cycle. J Cell Biochem 58:160–174

    Article  PubMed  CAS  Google Scholar 

  • Nagy Zs, Esiri MM, Jobst KA, Morris JH, King EM, McDonald B, Litchfield S, Smith A, Barnetson L, Smith AD (1995) Relative roles of plaques and tangles in the dementia of Alzheimer’s disease: correlations using three sets of neuropathological criteria. Dementia 6: 21–31

    PubMed  CAS  Google Scholar 

  • Nagy Zs, Esiri MM (1997a) Apoptosis-related protein expression in the hippocampus in Alzheimer’s disease. Neurobiol Aging 18: 565–571

    Article  PubMed  CAS  Google Scholar 

  • Nagy Zs, Esiri MM, Cato AM, Smith AD (1997b) Cell cycle markers in the hippocampus in Alzheimer’s disease. Acta Neuropathol Berl 94: 6–15

    Article  PubMed  CAS  Google Scholar 

  • Nagy Zs, Esiri MM, Smith AD (1997c) Expression of cell division markers in the hippocampus in Alzheimer’s disease and other neurodegenerative conditions. Acta Neuropathol Berl 93: 294–300

    Article  PubMed  CAS  Google Scholar 

  • Nagy Zs, Esiri MM, Smith AD (1998) The cell division cycle and the pathophysiology of Alzheimer’s disease. Neuroscience 84: 731–739

    Google Scholar 

  • Nagy Zs, Esiri MM, LeGris M, Matthews PM (1999) Mitochondrial enzyme expression in the hippocamppus in relation to Alzheimer-type pathology. Acta Neuropathol Berl 97: 346–354

    Article  PubMed  CAS  Google Scholar 

  • Pines J (1994a) The cell cycle kinases. Semin Cancer Biol 5: 305–313

    PubMed  CAS  Google Scholar 

  • Pines J (1994b) Protein kinases and cell cycle control. Semin Cell Biol 5: 399–408

    Article  PubMed  CAS  Google Scholar 

  • Pines J (1995) Cyclins, CDKs and cancer. Semin Cancer Biol 6: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Prinz M, Prinz B, Schulz E (1997) The growth of non-pyramidal neurons in the primary motor cortex of man: a Golgi study. Histol Histopathol 12: 895–900

    PubMed  CAS  Google Scholar 

  • Satge D, Sasco AJ, Cure H, Leduc B, Sommelet D, Vekemans MJ (1997) An excess of testicular germ cell tumors in Down’s syndrome: three case reports and a review of the literature. Cancer 80: 929–935

    Article  PubMed  CAS  Google Scholar 

  • Sawa A, Oyama F, Cairns NJ, Amano N, Matsushita M (1997) Aberrant expression of bcl-2 gene family in Down’s syndrome brains. Brain Res Mol Brain Res 48: 53–59

    Article  PubMed  CAS  Google Scholar 

  • Smith TW, Lippa CF (1995) Ki-67 Immunoreactivity in Alzheimer’s disease and other neurodegenerative disorders. J Neuropathol Exp Neurol 54: 297–303

    Article  PubMed  CAS  Google Scholar 

  • Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Ando K, Isohara T, Oishi M, Lim GS, Satoh Y, Wasco W, Tanzi RE, Nairn AC, Greengard P, Gandy SE, Kirino Y (1997) Phosphorylation of Alzheimer beta-amyloid precursor-like proteins. Biochemistry 36: 4643–4649

    Article  PubMed  CAS  Google Scholar 

  • Sylvester PE (1984) Amnion’s horn or hippocampal sclerosis without epilepsy in mental handicap. Br J Psychiatry 144: 538–541

    Article  PubMed  CAS  Google Scholar 

  • Takashima S, Iida K, Mito T, Arima M (1994) Dendritic and histochemical development and ageing in patients with Down’s syndrome. J Intellect Disabil Res 38: 265–273

    Article  PubMed  Google Scholar 

  • Trojanowski JQ, Lee VM (1995) Phosphorylation of paired helical filament tau in Alzheimer’s disease neurofibrillary lesions: focusing on phosphatases. Faseb J 9: 1570–1576

    PubMed  CAS  Google Scholar 

  • Vincent I, Rosado M, Davies P (1996) Mitotic mechanisms in Alzheimer’s disease? J Cell Biol 132: 413–425

    Article  PubMed  CAS  Google Scholar 

  • Vincent I, Jicha G, Rosado M, Dickson DW (1997) Aberrant expression of mitotic cdc2/ cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J Neurosci 17:3588–3598

    PubMed  CAS  Google Scholar 

  • Vincent I, Ding XL, Zheng JH, Zhang SH (1998a) Mitotic kinases: initiators and mediators of neurodegeneration? Neurobiol Aging [Suppl] 4S

    Google Scholar 

  • Vincent I, Zheng JH, Dickson DW, Kress Y, Davies P (1998b) Mitotic phosphoepitopes precede paired helical filaments in Alzheimer’s disease. Neurobiol Aging 19: 287–296

    Article  PubMed  CAS  Google Scholar 

  • Whitaker Azmitia PM, Wingate M, Borella A, Gerlai R, Roder J, Azmitia EC (1997) Transgenic mice overexpressing the neurotrophic factor S-100 beta show neuronal cytoskeletal and behavioral signs of altered aging processes: implications for Alzheimer’s disease and Down’s syndrome. Brain Res 776: 51–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Nagy, Z. (1999). Mechanisms of neuronal death in Down’s syndrome. In: Lubec, G. (eds) The Molecular Biology of Down Syndrome. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6380-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6380-1_15

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83377-3

  • Online ISBN: 978-3-7091-6380-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics