Advertisement

STIGMA: a 4-dimensional modeller for animation

  • Sylvain Brandel
  • Dominique Bechmann
  • Yves Bertrand
Part of the Eurographics book series (EUROGRAPH)

Abstract

This article presents an animation method and a software based on 4-D object modelling. This method uses a topological model and a free-form deformation model. It defines a set of 4-D modelling operations for the construction of 4-D objects. The resulting animation is a sequence of 3-D objects, obtained by successive sections of 4-D object. Using 4-D objects allows topological modification of the animated 3-D objects, such as the merging and the splitting of volumes.

Keywords

Fusion Operation Modelling Operation Computer Animation Salt Dome Polygonal Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubert F., Bechmann D., Animation by Deformation of Space-Time Objects, Eurographics’97, Budapest, Hungary, 1997.Google Scholar
  2. 2.
    Baumgart B.G., A Polyhedron Representation for Computer Vision, Proc. AFIPS Nat. Conf. 44, pp 589–596, 1975.Google Scholar
  3. 3.
    Borrel P., Bechmann D., Deformation of n-dimensional objects, Intern. Journal of Comp. Geometry and Appl. vol. 1, n4, pp 427–453, 1991.MATHCrossRefGoogle Scholar
  4. 4.
    Bechmann D., Dubreuil N., Animation through space and time based on a space deformation model, The journal of visualisation and computer animation, vol.4, n3, pp 165–184, 1993.CrossRefGoogle Scholar
  5. 5.
    Bertrand Y., Dufourd J.-F., Algebraic Specification of a 3D-Modeller Based on Hypermaps, Computer vision, graphical model, and image processing, vol. 56, nl, pp 29–60, 1994.CrossRefGoogle Scholar
  6. 6.
    Bechmann D., Dubreuil N., Order controlled Free-Form Animation, The Journal of Visualization and Computer Animation, Wiley, vol. 5, n1, pp 11–32, 1995.Google Scholar
  7. 7.
    Bertrand Y., Dufourd J.-F., Francon J., Lienhardt P., Modélisation volumique à base topologique, actes du MICAD 92, Paris, février 1992.Google Scholar
  8. 8.
    Bertrand Y., Topofil: un modeleur interactif d’objets 3D à base topologique, to appear in TSI.Google Scholar
  9. 9.
    Coquillart S., Jancene P., Animated free-form deformation: an interactive animation technique, Computer Graphics (SIGGRAPH’91), vol 25, pp 23–26, 1991.CrossRefGoogle Scholar
  10. 10.
    Dubreuil N., Lienhardt P., un modèle d’ani-mation basé sur les ensembles simpliciaux cubiques 4D, Rapport de recherche IRCOM-SIC, Poitiers, 1997.Google Scholar
  11. 11.
    Fousse A., Bertrand Y., Dufourd J.-F., Francon J., Rodrigues D., Localisation des points d’un maillage généré en vue de calculs en différences finies, Journées ”Modélisation du sous-sol”, Orléans, février 1997 (Rapport de recherche 96–21, Université Louis Pasteur, Strasbourg).Google Scholar
  12. 12.
    Hsu W.-M., Hughes J.-F., Kaufman H., direct manipulation on free-form deformation, SIGGRAPH’92, ACM Comp. Graph., vol. 26, n2, pp 177–184, 1992.Google Scholar
  13. 13.
    Jacques A., Constellations et graphes topologiques, in Combinatorial Theory and Applications, Budapest, Hungary, pp 657–673, 1970.Google Scholar
  14. 14.
    Lienhardt P., Bertrand Y., Bechmann D., 4D-Modelling with G-maps and DOGME, Gocad Meeting, Nancy, France, 1997.Google Scholar
  15. 15.
    Lienhardt P., Subdivisions of N-Dimensional Spaces and N-Dimensional Generalized Maps, Proc. 5-th Annual A.C.M. Symposium on Computational Geometry, Saarbrücken, Germany, pp 228–236, 1989.Google Scholar
  16. 16.
    Lienhardt P., Topological models for boundary representation: a comparison with n-dimensional generalized maps, C.A.D., vol. 23, nl, pp 59–82, 1991.MATHGoogle Scholar
  17. 17.
    Lazarus F., Verroust, A., Metamorphosis of Cylinder-like Objects, The journal of visualization and computer animation, vol 8, n3, pp 131–146, 1997.CrossRefGoogle Scholar
  18. 18.
    Rossignac J., Kaul A., AGRELS and BIBs: metamorphosis as a Bezier curve in the space of polyedra, Eurographic’ s 94, Oslo, Norway, pp 179–194, 1994.Google Scholar
  19. 19.
    Sederberg T.-W., Parry S.-R., Free-Form Deformation of Solid Geometric Models, Proc. Siggraph 86, Dallas, USA, pp 151–160, 1986.Google Scholar
  20. 20.
    Terraz O., Lienhardt P., A study of basic tools for simulating metamorphoses of subdivided 2D and 3D objects. Applications to the internal growing of wood and to the simulation of the growing of fishes, 6th Eurographics Workshop on animation and simulation, Maastricht, Netherlands, in Computer Animation and Simulation’95 (D. Terzopoulos et D. Thalmann eds, springer), pp. 104–129, 1995.Google Scholar
  21. 21.
    Weiler K., Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments, IEEE Comp. Graphics and Appl., vol. 5, nl, pp 21–40, 1985.Google Scholar
  22. 22.
    Weiler K., Boundary Graph Operators for Non-Manifold Geometric Modeling Topology Representation, IFIP Conf. on Geometric Modeling for CAD Applications, Elsevier, North-Holland, pp 37–66, 1988.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Sylvain Brandel
    • 1
  • Dominique Bechmann
    • 1
  • Yves Bertrand
    • 1
  1. 1.LSIIT UPRES-A ULP-CNRS 7005 —Université Louis-PasteurILLKIRCH, CedexFrance

Personalised recommendations