Skip to main content

Antiglutamate therapies in Huntington’s disease

  • Conference paper
Advances in Research on Neurodegeneration

Part of the book series: 6th International Winter Conference on N eurodegeneration ((NEURAL SUPPL,volume 55))

Summary

Huntington’s disease is an autosomal dominant neurodegenerative disorder caused by an unstable trinucleotide CAG repeat. The mechanism by which the genetic defect leads to neuronal injury and death is unknown, but is thought to include glutamate-mediated excitotoxicity and abnormalities of mitochondrial energy production. Both of these mechanisms may lead to a final common pathway of increased production of free radical species. Prior clinical trials in patients with Huntington’s disease that have addressed these hypotheses have been limited by size. A current, NIH-funded trial of remacemide hydrochloride and Coenzyme Q10 in 340 patients with Huntington’s disease is described. This is the largest and longest multi-center trial in Huntington’s disease to address the glutamate- and mitochondrialmediated hypotheses of neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375.

    Article  PubMed  CAS  Google Scholar 

  • Albin RL, Young AB, Penney JB, Handelin B, Balfour R, Anderson KD, Markel DS, Tourtellotte WW, Reiner A (1990) Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptornatic Huntington’s disease. N Engl J Med 332: 1293–1298.

    Article  Google Scholar 

  • Bamford KA, Caine ED, Kido DR, Plassche WM, Shoulson I (1989) Clinical-pathologic correlation in Huntington’s disease: A neuropsychological and computed tomography study. Neurology 39: 796–801.

    PubMed  CAS  Google Scholar 

  • Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321: 168–171.

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Ferrante RJ, Swartz KJ, Kowall NW (1991) Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci 11: 1649–1659.

    PubMed  CAS  Google Scholar 

  • Beal W, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993a) Neurochemical and histological characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13: 4181–4192.

    PubMed  CAS  Google Scholar 

  • Beal MF, Brouillet E, Jenkins BG, Henshaw R, Rosen B, Hyman BT (1993b) Agedependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J Neurochem 61: 1147–1150.

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Henshaw DR, Jenkins BG, Rosen BR, Schulz JB (1994) Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate. Ann Neurol 36: 882–888.

    Article  PubMed  CAS  Google Scholar 

  • Brandt J (1991) The Hopkins verbal learning test: development of a new memory test with six equivalent forms. Clin Neuropsychol 5: 125–142.

    Article  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634.

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Schwarcz R (1976) Lesion of striatal neurons with kainic acid provides a model for Huntington’s chorea. Nature 263: 244–246.

    Article  PubMed  CAS  Google Scholar 

  • Feigin A, Kieburtz K, Bordwell K, Como P, Steinberg K, Sotack J, Zimmerman C, Hickey C, Orme C, Shoulson I (1995) Functional decline in Huntington’s disease. Mov Disord 10: 211–214.

    Article  PubMed  CAS  Google Scholar 

  • Graveland GA, Williams RS, DiFiglia M (1985) Evidence of degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227: 770–773.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Shoulson I (1994) Huntington’s Disease. In: Calne DB (ed) Neurodegenerative disease. Saunders, Philadelphia, pp 685–704.

    Google Scholar 

  • Greene JG, Porter MP, Eller RV, Greenamyre JT (1993) Inhibition of succinate dehydrogenase by malonic acid produces an “excitotoc” lesion in rat striatum. J Neurochem 61: 1151–1154.

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971–983.

    Article  Google Scholar 

  • The Huntington Study Group (1996) Unified Huntington’s Disease Rating Scale: Reiliability and Consistency. Mov Disord 11: 136–142.

    Article  Google Scholar 

  • Kieburtz K, Feigin A, McDermott M, Como P, Abwender D, Zimmerman C, Hickey C, Orme C, Claude K, Sotack J, Greenamyre JT, Dunn C, Shoulson I (1996) A controlled trial of the glutamate antagonist remacemide hydrochloride in Huntington’s disease. Mov Disord 11: 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Kremer B, Clark CM, Hardy M, Almqvist E, Raymond L, Hayden MR (1997) Lamotrigine does not retard the progression of Huntington’s disease. 17th International Meeting of the World Federation of Neurology Research Group on Huntington’s Disease 8/30-9/2/97 (abstract).

    Google Scholar 

  • Landwehrmeyer GB, Standaert DG, Testa CM, Penney JB, Young AB (1994) NMDA receptor subunit expression by rat striatal projection neurons and intemeurons. J Neurosci 14: 5297–5308.

    Google Scholar 

  • Myers RH, Sax DS, Koroshetz WJ, Mastromauro C, Cupples LA, Kiely DK, Pettengill FK, Bird ED (1991) Factors associated with slow progression in Huntington’s disease. Arch Neurol 48: 800–804.

    Article  PubMed  CAS  Google Scholar 

  • Penney JB Jr, Young AB, Shoulson I, Starosta-Rubenstein S, Snodgrass SR, Sanchez Ramos J, Ramos-Arroyo M, Gomez F, Penchaszadeh G, Alvir J, Esteves J, DeQuiroz I, Marsol N, Moreno H, Conneally PM, Bonilla E, Wexler NS (1990) Huntington’s disease in Venezuela: 7 years of follow-up on symptomatic and asymptomatic individuals. Mov Disord 5: 93–99.

    Article  PubMed  Google Scholar 

  • Petrides M (1990) Nonspatial conditional learning impaired in patients with unilateral frontal but not unilateral temporal lobe excisions. Neuropsychologia 28: 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Porter RHP, Greenamyre JT (1995) Regional variations in the pharmacology of NMDA receptor channel blockers: implications for therapeutic potential. J Neurochem 64: 614–623.

    Article  PubMed  CAS  Google Scholar 

  • Reitan RM, Wolfson D (1958) The Halstead-Reitan Neuropsychological Test Batttery. Neuropsychology Press, Tucson.

    Google Scholar 

  • Schretlen D, Bobholz JH, Brandt J (1996) Development and psychometric properties of the Brief Test of Attention. Clin Neuropsychol 10: 80–89.

    Article  Google Scholar 

  • Schwarcz R, Whetsell WO, Mangano RM (1982) Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219: 316–318.

    Article  Google Scholar 

  • Shoulson I, Kurlan R, Rubin AJ, Goldblatt D, Behr J, Miller C, Kennedy J, Bamford KA, Caine ED, Kido DK, Plumb S, Odoroff C (1989a) Assessment of functional capacity in neurodegenerative movement disorders: Huntington’s disease as a prototype. In: Munsat TL (ed) Quantification of neurological deficit. Butterworths, Boston, pp 271–283.

    Google Scholar 

  • Shoulson I, Odoroff C, Oakes D, Behr J, Goldblatt D, Caine E, Kennedy J, Miller C, Bamford K, Rubin A, Plumb S, Kurlan R (1989b) A controlled clinical trial of baclofen as protective therapy in early Huntington’s disease. Ann Neurol 25: 252–259.

    Article  PubMed  CAS  Google Scholar 

  • Young AB, Penney JB, Starosta-Rubinstein S, Markel DS, Berent S, Giordani B, Ehrenkaufer R, Jewett D, Hichwa R (1986a) PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 20: 296–303.

    Article  PubMed  CAS  Google Scholar 

  • Young AB, Shoulson I, Penney JB, Starosta-Rubinstein S, Gomez F, Travers H, Ramos M, Snodgrass SR, Bonilla A, Moreno H, Wexler N (1986b) Huntington’s disease in Venezuela: neurological features and functional decline. Neurology 36: 244–249.

    PubMed  CAS  Google Scholar 

  • Young AB, Greenamyre JT, Hollingsworth Z, Albin R, D’Amato C, Shoulson I, Penney JB (1988) NMDA receptor losses in putamen from patients with Huntington’s disease. Science 241: 981–983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag/Wien

About this paper

Cite this paper

Kieburtz, K. (1999). Antiglutamate therapies in Huntington’s disease. In: Poewe, W., Ransmayr, G. (eds) Advances in Research on Neurodegeneration. 6th International Winter Conference on N eurodegeneration, vol 55. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6369-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6369-6_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83261-5

  • Online ISBN: 978-3-7091-6369-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics