Advertisement

Molecular mimicry and multiple sclerosis — a possible role for degenerate T cell recognition in the induction of autoimmune responses

  • B. Gran
  • B. Hemmer
  • R. Martin
Conference paper
Part of the 6th International Winter Conference on N eurodegeneration book series (NEURAL SUPPL, volume 55)

Summary

Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. The etiology is unknown, but several lines of evidence support the hypothesis that the pathogenesis is mediated by autoreactive T lymphocytes. Molecular mimicry has been proposed as a possible mechanism for the development of an autoimmune response to myelin antigens. According to this model, an immune reaction to self antigens could be initiated by T cells that cross-react with infectious agents that “mimic” the autoantigen, i.e. they share immunologic epitopes. It was previously thought that, in order for a cross-reaction of T cells to two different antigens to occur, a substantial amino acid sequence homology between the two antigens was required. More recent studies on the basic mechanisms of T cell antigen recognition have shown that, at least for some T cell clones, antigen recognition is more “degenerate” and sequence homology is not required for crossreactivity to occur. This article reviews the relevance of these recent advances in basic T cell receptor immunology to the occurrence of autoimmunity in the central nervous system.

Keywords

Multiple Sclerosis Experimental Autoimmune Encephalomyelitis Myelin Basic Protein Antigenic Peptide Experimental Allergic Encephalomyelitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberola-Ila J, Takaki S, Kerner JD, Perlmutter RM (1997) Differential signaling by lymphocyte antigen receptors. Annu Rev Immunol 15: 125–154.PubMedCrossRefGoogle Scholar
  2. Barnaba V, Sinigaglia F (1997) Molecular mimicry and T cell-mediated autoimmune disease. J Exp Med 185: 1529–1531.PubMedCrossRefGoogle Scholar
  3. Cannella B, Cross AH, Raine CS (1990) Upregulation and coexpression of adhesion molecules correlate with relapsing autoimmune demyelination in the central nervous system. J Exp Med 172: 1521–1524.PubMedCrossRefGoogle Scholar
  4. Davies JM (1997) Molecular mimicry: can epitope mimicry induce autoimmune disease? Immunol Cell Biol 75: 113–126.PubMedCrossRefGoogle Scholar
  5. Ebers GC, Sadovnick AD, Risch NJ (1995) A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 377: 150–151.PubMedCrossRefGoogle Scholar
  6. Ebers GC, Kukay K, Bulman DE, Sadovnick AD, Rice G, Anderson C, Armstrong H, Cousin K, Bell RB, Hader W, Paty DW, Hashimoto S, Oger J, Duquette P, Warren S, Gray T, O’Connor P, Nath A, Auty A, Metz L, Francis G, Paulseth JE, Murray TJ, Pryse-Phillips W, Risch N, et al (1996) A full genome search in multiple sclerosis. Nat Genet 13: 472–476.PubMedCrossRefGoogle Scholar
  7. Evavold BD, Sloan-Lancaster J, Allen PM (1993) Tickling the TCR: selective T-cell functions stimulated by altered peptide ligands. Immunol Today 14: 602–609.PubMedCrossRefGoogle Scholar
  8. Evavold BD, Sloan-Lancaster J, Wilson KJ, Rothbard JB, Allen PM (1995) Specific T cell recognition of minimally homologous peptides: evidence for endogenous ligands. Immunity 2: 655–663.PubMedCrossRefGoogle Scholar
  9. Fritz RB, Skeen MJ, Jen-Chou CH, Garcia M, Egorov IK (1985) Major histocompatibility complex-linked control of the murine immune response to myelin basic protein. J Immunol 134: 2328–2332.PubMedGoogle Scholar
  10. Fujinami RS, Oldstone MBA (1985) Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230: 1043–1045.PubMedCrossRefGoogle Scholar
  11. Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76: 287–299.PubMedCrossRefGoogle Scholar
  12. Germain RN, Margulies DH (1993) The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol 11: 403–450.PubMedCrossRefGoogle Scholar
  13. Goverman J, Woods A, Larson L, Weiner L, Hood L, Zaller DM (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72: 551–560.PubMedCrossRefGoogle Scholar
  14. Haines JL, Ter-Minassian M, Bazyk A, Gusella JF, Kim DJ, Terwedow H, Pericak-Vance MA, Rimmler JB, Haynes CS, Roses AD, Lee A, Shaner B, Menold M, Seboun E, Fitoussi RP, Gartioux C, Reyes C, Ribierre F, Gyapay G, Weissenbach J, Hauser SL, Goodkin DE, Lincoln R, Usuku K, Oksenberg JR et al (1996) A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. Nat Genet 13: 469–471.PubMedCrossRefGoogle Scholar
  15. Hao Q, Saida T, Kawakami H, Mine H, Maruya E, Inoko H, Saji H (1992) HLAs and genes in Japanese patients with multiple sclerosis: evidence for increased frequencies of HLA-Cw3, HLA-DR2, and HLA-DQBl*0602. Hum Immunol 35: 116–124.PubMedCrossRefGoogle Scholar
  16. Hemmer B, Fleckenstein BT, Vergelli M, Jung G, McFarland H, Martin R, Wiesmueller KH (1997) Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med 185: 1651–1659.PubMedCrossRefGoogle Scholar
  17. Hemmer B, Vergelli M, Gran B, Ling N, Conlon P, Pinilla C, Houghten R, McFarland HF, Martin R (1998a) Cutting edge: predictable TCR antigen recognition based on peptide scans leads to the identification of agonist ligands with no sequence homology. J Immunol 160: 3631–3636.PubMedGoogle Scholar
  18. Hemmer B, Vergelli M, Pinilla C, Houghten R, Martin R (1998b) Probing degeneracy in T-cell recognition using peptide combinatorial libraries. Immunol Today 19: 163–168.PubMedCrossRefGoogle Scholar
  19. Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354: 84–86.PubMedCrossRefGoogle Scholar
  20. Kuokkanen S, Sundvall M, Terwilliger JD, Tienari PJ, Wikstrom J, Holmdahl R, Pettersson U, Peltonen L (1996) A putative vulnerability locus to multiple sclerosis maps to 5pl4-pl2 in a region syntenic to the murine locus Eae2. Nat Genet 13: 477–480.PubMedCrossRefGoogle Scholar
  21. Kurtzke J (1985) Epidemiology of multiple sclerosis. In: Vinken PJ, Bruyn GB, Klawans HL, et al (eds) Handbook of clinical neurology, vol 3: Demyelinating diseases. Elsevier, Amsterdam, pp 259–287.Google Scholar
  22. Kurtzke JF (1993) Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev 6: 382–427.PubMedGoogle Scholar
  23. Marrosu MG, Muntoni F, Murru MR, Spinicci G, Pischelda MP, Goddi F, Cossu P, Pirastu M (1988) Sardinian multiple sclerosis is associated with HLA-DR4: a serological and molecular analysis. Neurology 38: 1749–1753.PubMedGoogle Scholar
  24. Martin R, McFarland HF (1997) Immunology of multiple sclerosis and experimental allergic encephalomyelitis. In: Raine CS, McFarland HF, Tourtellotte WW (eds) Multiple sclerosis: clinical and pathogenetic basis. Chapman Hall, London, pp 221–242.Google Scholar
  25. Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10: 153–187.PubMedCrossRefGoogle Scholar
  26. Nossal GJ (1994) Negative selection of lymphocytes. Cell 76: 229–239.PubMedCrossRefGoogle Scholar
  27. Oldstone MB (1987) Molecular mimicry and autoimmune disease. Cell 50: 819–820.PubMedCrossRefGoogle Scholar
  28. Pinilla C, Appel JR, Houghten RA (1994) Investigation of antigen-antibody interactions using a soluble, non-support-bound synthetic decapeptide library composed of four trillion (4 X 10(12)) sequences. Biochem J 301: 847–853.PubMedGoogle Scholar
  29. Raine CS (1997) The lesion in multiple sclerosis and chronic relapsing experimental allergic encephalomyelitis: a structural comparison. In: Raine CS, McFarland HF, Tourtellotte WW (eds) Multiple sclerosis: clinical and pathogenetic basis. Chapman Hall, London, pp 243–286.Google Scholar
  30. Rammensee HG, Friede T, Stevanovic S (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41: 178–228.PubMedCrossRefGoogle Scholar
  31. Remlinger J (1905) Accidents paralytiques au cours du traitment antirabique. Ann Inst Pasteur 19: 625–646.Google Scholar
  32. Rivers TM, Sprunt DH, Berry GP (1993) Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 58: 39–53.CrossRefGoogle Scholar
  33. Sawcer S, Jones HB, Feakes R, Gray J, Smaldon N, Chataway J, Robertson N, Clayton D, Goodfellow PN, Compston A (1996) A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 13: 464–468.PubMedCrossRefGoogle Scholar
  34. Schlüsener H, Wekerle H (1985) Autoaggressive T lymphocyte lines recognize the encephalitogenic region of myelin basic protein; in vitro selection from unprimed rat T lymphocyte populations. J Immunol 135: 3128–3133.Google Scholar
  35. Vartdal F, Sollid LM, Vandvik B, Markussen G, Thorsby E (1989) Patients with multiple sclerosis carry DQB1 genes which encode shared polymorphic aminoacid sequences. Hum Immunol 25: 103–110.PubMedCrossRefGoogle Scholar
  36. Vergelli M, Hemmer B, Utz U, Vogt A, Kalbus M, Tranquill L, Conlon P, Ling N, Steinman L, McFarland HF, Martin R (1996) Differential T cell activation by altered peptide ligands derived from myelin basic protein peptide (87–99). Eur J Immunol 26: 2624–2634.PubMedCrossRefGoogle Scholar
  37. Vergelli M, Hemmer B, Kalbus M, Vogt A, Ling N, Conlon P, Coligan JE, McFarland HF, Martin R (1997) Modifications of peptide ligands enhancing T cell responsiveness imply large numbers of stimulatory ligands for autoreactive T cells. J Immunol 158: 3746–3752.PubMedGoogle Scholar
  38. Vogt AB, Kropshofer H, Kaibacher H, Kalbus M, Rammensee HG, Coligan JE, Martin R (1994) Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. J Immunol 153: 1665–1673.PubMedGoogle Scholar
  39. von Boehmer H (1994) Positive selection of lymphocytes. Cell 76: 219–228.CrossRefGoogle Scholar
  40. Wucherpfennig KW, Strominger JL (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80: 695–705.PubMedCrossRefGoogle Scholar
  41. Wucherpfennig KW, Sette A, Southwood S, Oseroff C, Matsui M, Strominger JL, Hafler DA (1994) Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med 179: 279–290.PubMedCrossRefGoogle Scholar
  42. Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 356: 63–66.PubMedCrossRefGoogle Scholar
  43. Zinkernagel RM, Doherty PC (1974) Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248: 701–702.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • B. Gran
    • 1
  • B. Hemmer
    • 1
  • R. Martin
    • 1
    • 2
  1. 1.Cellular Immunology Section, Neuroimmunology Branch, NINDSNational Institutes of HealthBethesdaUSA
  2. 2.Department of NeurologyUniversity of Maryland at Baltimore Medical SchoolBaltimoreUSA

Personalised recommendations