Striatal reconstruction by striatal grafts

  • Stephen Dunnett
Conference paper
Part of the 6th International Winter Conference on N eurodegeneration book series (NEURAL SUPPL, volume 55)


It is now well established that striatal lesions induce motor and cognitive deficits in rats, and that grafts of embryonic striatal tissue can survive, integrate into the lesioned host brain and alleviate the behavioural deficits in both motor and cognitive spheres. How? Since normal striatal function is dependent upon it’s integration within a connected corticalsubcortical neuronal circuitry, and the deficits following striatal damage appear to reflect a “disconnexion” syndrome, the observation of recovery suggests that the grafts re-establish a connected circuitry within the host brain. Evidence to corroborate or refute this hypothesis, in comparison with a lessspecific mechanism (or mechanisms) of recovery, is considered, including anatomical, electrophysiological and neurochemical demonstrations of functional circuit reconstruction in the host brain by striatal tissue transplants.


Globus Pallidus Striatal Neuron Medium Spiny Neuron Ibotenic Acid Striatal Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266–271.PubMedCrossRefGoogle Scholar
  2. Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 16:125–131.PubMedCrossRefGoogle Scholar
  3. Beresford IJM, Hall MD, Clark CR, Hill RG, Hughes J, Sirinathsinghji DJS (1987) Striatal lesions and transplants demonstrate that cholecystokinin receptors are localized on intrinsic striatal neurones: a quantitative autoradiographic study. Neuropeptides 10: 109–136.PubMedCrossRefGoogle Scholar
  4. Björklund A, Lindvall O, Isacson O, Brundin P, Wictorin K, Strecker RE, Clarke DJ, Dunnett SB (1987) Mechanisms of action of intracerebral neural implants — studies on nigral and striatal grafts to the lesioned striatum. Trends Neurosci 10: 509–516.CrossRefGoogle Scholar
  5. Björklund A, Campbell K, Sirinathsinghji DJS, et al (1994) Functional capacity of striatal transplants in the rat Huntington model. In: Dunnett SB, Björklund A (eds) Functional neural transplantation. Raven Press, New York, pp 157–195.Google Scholar
  6. Campbell K, Wictorin K, Björklund A (1992) Differential regulation of neuropeptide mRNA expression in intrastriatal striatal transplants by host dopaminergic afferents. Proc Natl Acad Sci USA 89: 10489–10493.PubMedCrossRefGoogle Scholar
  7. Campbell K, Kalén P, Wictorin K, Lundberg C, Mandel RJ, Björklund A (1993) Characterization of GABA release from intrastriatal striatal transplants: dependence on host-derived afferents. Neuroscience 53: 403–415.PubMedCrossRefGoogle Scholar
  8. Cheng H, Cao YH, Olson L (1996) Spinal cord repair in adult paraplegic rats — partial restoration of hind-limb function. Science 273: 510–513.PubMedCrossRefGoogle Scholar
  9. Clarke DJ, Dunnett SB (1993) Synaptic relationships between cortical and dopaminergic inputs and intrinsic GABAergic systems within intrastriatal striatal grafts. J Chem Neuroanat 6: 147–158.PubMedCrossRefGoogle Scholar
  10. Clarke DJ, Wictorin K, Dunnett SB, et al (1994) Internal composition of striatal grafts: light and electron microscopy. In: Percheron G, McKenzie JS, Féger J (eds) The basal ganglia IV, New ideas on structure and function. Plenum Press, New York, pp 189–196.Google Scholar
  11. Coyle JT, Schwarcz R (1976) Lesions of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 263: 244–246.PubMedCrossRefGoogle Scholar
  12. Deckel AW, Robinson RG, Coyle JT, Sanberg PR (1983) Reversal of long-term locomotor abnormalities in the kainic acid model of Huntington’s disease by day 18 fetal striatal implants. Eur J Pharmacol 92: 287–288.Google Scholar
  13. Deckel AW, Moran TH, Coyle JT, Sanberg PR, Robinson RG (1986) Anatomical predictors of behavioral recovery following fetal striatal transplants. Brain Res 365: 249–258.PubMedCrossRefGoogle Scholar
  14. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13: 281–285.PubMedCrossRefGoogle Scholar
  15. Divac I, Rosvold HE, Szwarcbart MK (1967) Behavioral effects of selective ablation of the caudate nucleus. J Comp Physiol Psychol 63: 184–190.PubMedCrossRefGoogle Scholar
  16. Döbrössy MD, Dunnett SB (1999) Striatal grafts alleviate deficits in response execution in a lateralised reaction time task. Brain Res Bull (in press).Google Scholar
  17. Dragunow M, Williams M, Faull RLM (1990) Haloperidol induces Fos and related molecules in intrastriatal grafts derived from fetal striatal primordium. Brain Res 530: 309–311.PubMedCrossRefGoogle Scholar
  18. Dragunow M, Faull RLM, Waldvogel HJ, Williams MN, Leah J (1991) Elevated expression of jun and fos-related proteins in transplanted striatal neurons. Brain Res 558: 321–324.PubMedCrossRefGoogle Scholar
  19. Dunnett SB, Björklund A (1992) Neural transplantation: a practical approach. IRL Press, Oxford.Google Scholar
  20. Dunnett SB, Björklund A (1994a) Mechanisms of function of neural grafts in the injured brain. In: Dunnett SB, Björklund A (eds) Functional neural transplantation. Raven Press, New York, pp 531–567.Google Scholar
  21. Dunnett SB, Björklund A (1994b) Functional neural transplantation. Raven Press, New York.Google Scholar
  22. Dunnett SB, Everitt BJ (1998) Topographic factors affecting the functional viability of dopamine-rich grafts in the neostriatum. In: Freeman TB, Kordower JH (eds) Cell transplantation for neurological disorders. Humana Press, Totowa, NJ, pp 135–169.CrossRefGoogle Scholar
  23. Dunnett SB, Isacson O, Sirinathsinghji DJS, Clarke DJ, Björklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions. III. Recovery from dopaminedependent motor asymmetry and deficits in skilled paw reaching. Neuroscience 24: 813–820.PubMedCrossRefGoogle Scholar
  24. Fricker RA, Torres EM, Hume SP, Myers R, Opacka-Juffry J, Ashworth S, Dunnett SB (1997) The effects of donor stage on the survival and function of embryonic striatal grafts. II. Correlation between positron emission tomography and reaching behaviour. Neuroscience 79: 711–722.PubMedCrossRefGoogle Scholar
  25. Geschwind N (1965a) Disconnexion syndromes in animals and man. Part I. Brain 88:237–294.PubMedCrossRefGoogle Scholar
  26. Geschwind N (1965b) Disconnexion syndromes in animals and man. Part II. Brain 88: 585–644.PubMedCrossRefGoogle Scholar
  27. Graybiel AM (1984) Neurochemically specified subsystems in the basal ganglia. In: Ciba Foundation Symposium 107 (ed) Functions of the basal ganglia. Pitman, London, pp 114–149.Google Scholar
  28. Graybiel AM, Liu FC, Dunnett SB (1989) Intrastriatal grafts derived from fetal striatal primordia. 1. Phenotypy and modular organization. J Neurosci 9: 3250–3271.PubMedGoogle Scholar
  29. Graybiel AM, Liu FC, Dunnett SB (1990) Cellular reaggregation in vivo: modular patterns in intrastriatal grafts derived from fetal striatal primordia. Prog Brain Res 82: 401–405.PubMedCrossRefGoogle Scholar
  30. Helm GA, Palmer PE, Bennett JP (1990) Fetal neostriatal transplants in the rat: a light and electron microscopic golgi study. Neuroscience 37: 735–756.PubMedCrossRefGoogle Scholar
  31. Houk JC, Davis JL, Beiser DG (1995) Models of information processing in the basal ganglia. MIT Press, Cambridge MA.Google Scholar
  32. Isacson O, Dunnett SB, Björklund A (1986) Graft-induced behavioral recovery in an animal model of Huntington disease. Proc Natl Acad Sci USA 83: 2728–2732.PubMedCrossRefGoogle Scholar
  33. Koide K, Hashitani T, Aihara N, Mabe H, Nishino H (1993) Improvement of passive avoidance task after grafting of fetal striatal cell suspensions in ischemic striatum in the rat. Rest Neurol Neurosci 5: 205–214.Google Scholar
  34. Labandeira-Garcia JL, Guerra MJ (1994) Cortical stimulation induces fos expression in intrastriatal striatal grafts. Brain Res 652: 87–97.PubMedCrossRefGoogle Scholar
  35. Labandeira-Garcia JL, Tobio JP, Guerra MJ (1994) Comparison between normal developing striatum and developing striatal grafts using drug-induced Fos expression and neuron-specific enolase immunohistochemistry. Neuroscience 60: 399–415.PubMedCrossRefGoogle Scholar
  36. Li Y, Field PM, Raisman G (1997) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277: 2000–2002.PubMedCrossRefGoogle Scholar
  37. Lindvall O (1997) Neural transplantation: a hope for patients with Parkinson’s disease? Neuroreport 8(14): iii–x.PubMedCrossRefGoogle Scholar
  38. Liu FC, Graybiel AM, Dunnett SB, Baughman RW (1990) Intrastriatal grafts derived from fetal striatal primordia. 2. Reconstitution of cholinergic and dopaminergic systems. J Comp Neurol 295: 1–14.PubMedCrossRefGoogle Scholar
  39. Liu FC, Dunnett SB, Robertson HA, Graybiel AM (1991) Intrastriatal grafts derived from fetal striatal primordia. 3. Induction of modular patterns of fos-like immunoreactivity by cocaine. Exp Brain Res 85: 501–506.PubMedCrossRefGoogle Scholar
  40. Lu SY, Pixley SK, Emerich DF, Lehman MN, Norman AB (1993) Effect of fetal striatal and astrocyte transplants into unilateral excitotoxin-lesioned striatum. J Neur Transplant Plast 4: 279–287.CrossRefGoogle Scholar
  41. Mandel RJ, Wictorin K, Cenci MA, Björklund A (1992) Fos expression in intrastriatal striatal grafts: regulation by host dopaminergic afferents. Brain Res 583: 207–215.PubMedCrossRefGoogle Scholar
  42. Mayer E, Brown VJ, Dunnett SB, Robbins TW (1992) Striatal graft-associated recovery of a lesion-induced performance deficit in the rat requires learning to use the transplant. Eur J Neurosci 4: 119–126.PubMedCrossRefGoogle Scholar
  43. Montoya CP, Astell S, Dunnett SB (1990) Effects of nigral and striatal grafts on skilled forelimb use in the rat. Prog Brain Res 82: 459–466.PubMedCrossRefGoogle Scholar
  44. Myer DK, Beinfeld MC, Oertel WH, Brownstein MJ (1981) Origin of the cholecystokinin-containing fibers in the rat caudatoputamen. Science 215: 187–188.CrossRefGoogle Scholar
  45. Nakao N, Grasbon-Frodl EM, Widner H, Brundin P (1996) DARPP-32-rich zones in grafts of lateral ganglionic eminence govern the extent of functional recovery in skilled paw reaching in an animal model of Huntington’s disease. Neuroscience 74: 959–970.PubMedGoogle Scholar
  46. Nauta WJH, Domesick VB (1984) Afferent and efferent relationships of the basal ganglia. In: Ciba Foundation Symposium 107 (ed) Functions of the basal ganglia. Pitman, London, pp 3–23.Google Scholar
  47. Olanow CW, Kordower JH, Freeman TB (1996) Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci 19: 102–109.PubMedCrossRefGoogle Scholar
  48. Ouimet CC, Miller PE, Hemmings HC, Walaas SI, Greengard P (1984) DARPP-32, a dopamine-and adenosine-3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. J Neurosci 4: 111–124.PubMedGoogle Scholar
  49. Öberg RGE, Divac I (1979) Cognitive functions of the neostriatum. In: Divac I, Öberg RGE (eds) The neostriatum. Pergamon Press, Oxford.Google Scholar
  50. Pappas GD, Lazorthes Y, Bès JC, Tafani M, Winnie AP (1997) Relief of intractable cancer pain by human chromaffin cell transplants: Experience at two medical centers. Neurol Res 19: 71–77.PubMedGoogle Scholar
  51. Pasik P, Pasik T, DiFiglia M (1979) The internal organization of the neostriatum in mammals. In: Divac I, Öberg RGE (eds) The neostriatum. Pergamon Press, Oxford, pp 5–36.Google Scholar
  52. Philpott LM, Kopyov OV, Lee AJ, Jacques S, Duma CM, Caine S, Yang M, Eagle KS (1997) Neuropsychological functioning following fetal striatal transplantation in Huntington’s chorea: Three case presentations. Cell Transplant 6: 203–212.PubMedCrossRefGoogle Scholar
  53. Piña AL, Ormsby CE, Bermúdez-Rattoni F (1994) Differential recovery of inhibitory avoidance learning by striatal, cortical, and mesencephalic fetal grafts. Behav Neur Biol 61:196–201.CrossRefGoogle Scholar
  54. Pochon NAM, Heyd B, Deglon N, Joseph JM, Zurn AD, Baetge EE, Hammang JP, Goddard M, Lysaght M, Kaplan FA, Kato AC, Schluep M, Hirt L, Regli F, Porchet F, De Tribolet N, Aebischer P (1996) Gene therapy for amyotrophic lateral sclerosis (ALS) using a polymer encapsulated xenogenic cell line engineered to secrete hCNTF. Hum Gene Ther 7: 851–860.PubMedCrossRefGoogle Scholar
  55. Popper K (1963) Conjectures and refutations: the growth of scientific knowledge. Routledge, London.Google Scholar
  56. Reading PJ, Torres EM, Dunnett SB (1995) Embryonic striatal grafts ameliorate the disinhibitory effects of ventral striatal lesions. Exp Brain Res 105: 76–86.PubMedCrossRefGoogle Scholar
  57. Rosvold HE (1972) The frontal lobe system: cortical-subcortical interrelationships. Acta Neurobiol Exp 32: 439–460.Google Scholar
  58. Rutherford A, Garcia-Munoz M, Dunnett SB, Arbuthnott GW (1987) Electrophysiological demonstration of host cortical inputs to striatal grafts. Neurosci Lett 83: 275–281.PubMedCrossRefGoogle Scholar
  59. Sanberg PR, Coyle JT (1984) Scientific approaches to Huntington’s disease. CRC Crit Rev Clin Neurobiol 1: 1–44.PubMedGoogle Scholar
  60. Schmidt RH, Björklund A, Stenevi U (1981) Intracerebral grafting of dissociated cell suspensions: a new approach for neuronal transplantation to deep brain sites. Brain Res 218: 347–356.PubMedCrossRefGoogle Scholar
  61. Sirinathsinghji DJS, Dunnett SB, Isacson O, Clarke DJ, Kendrick K, Björklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions. II. In vivo monitoring of GABA release in globus pallidus and substantia nigra. Neuroscience 24: 803–811.PubMedCrossRefGoogle Scholar
  62. Sirinathsinghji DJS, Heavens RP, Torres EM, Dunnett SB (1993a) Cholecystokinindependent regulation of host dopamine inputs to striatal grafts. Neuroscience 53: 651–663.PubMedCrossRefGoogle Scholar
  63. Sirinathsinghji DJS, Mayer E, Fernandez JM, Dunnett SB (1993b) The localisation of CCK mRNA in embryonic striatal tissue grafts: further evidence for the presence of non-striatal cells. Neuroreport 4: 659–662.PubMedCrossRefGoogle Scholar
  64. Walsh JP, Zhou FC, Hull CD, Fisher RS, Levine MS, Buchwald NA (1988) Physiological and morphological characterization of striatal neurons transplanted into the striatum of adult rats. Synapse 2: 37–44.PubMedCrossRefGoogle Scholar
  65. Wictorin K (1992) Anatomy and connectivity of intrastriatal striatal transplants. Prog Neurobiol 38: 611–639.PubMedCrossRefGoogle Scholar
  66. Wictorin K, Björklund A (1989) Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum. 2. Cortical afferents. Neuroscience 30: 297–311.PubMedCrossRefGoogle Scholar
  67. Wictorin K, Clarke DJ, Bolam JP, Björklund A (1989a) Host corticostriatal fibres establish synaptic connections with grafted striatal neurons in the ibotenic acid lesioned striatum. Eur J Neurosci 1:189–195.PubMedCrossRefGoogle Scholar
  68. Wictorin K, Ouimet CC, Björklund A (1989b) Intrinsic organization and connectivity of intrastriatal striatal transplants in rats as revealed by DARPP-32 immunohistochemistry: specificity of connections with the lesioned host brain. Eur J Neurosci 1:690–701.PubMedCrossRefGoogle Scholar
  69. Wictorin K, Simerly RB, Isacson O, Swanson LW, Björklund A (1989c) Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum. 3. Efferent projecting graft neurons and their relation to host afferents within the grafts. Neuroscience 30: 313–330.PubMedCrossRefGoogle Scholar
  70. Wilson CJ, Xu ZC, Emson PC, Feier C (1990) Anatomical and physiological properties of the cortical and thalamic innervations of neostriatal tissue grafts. Prog Brain Res 82: 417–426.PubMedCrossRefGoogle Scholar
  71. Xu ZC, Wilson CJ, Emson PC (1991) Synaptic potentials evoked in spiny neurons in rat neostriatal grafts by cortical and thalamic stimulation. J Neurophysiol 65: 477–493.PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Stephen Dunnett
    • 1
  1. 1.MRC Cambridge Centre for Brain RepairUniversity of CambridgeCambridgeUK

Personalised recommendations