Skip to main content

Mechanism and consequences of nerve cell death in Parkinson’s disease

  • Conference paper
Diagnosis and Treatment of Parkinson’s Disease — State of the Art

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 56))

Summary

The etiology of Parkinson’s disease remains unknown, making it difficult to develop therapeutical approaches to stop the progression of the disease. The best known treatment to date is based on the use of L-DOPA or dopaminergic agonists. These are merely substitutive therapies and have limitations because of their side effects. Thus, the development of new therapeutical strategies will require a far better knowledge of the mechanism and the consequences of nerve cell death in Parkinson’s disease.

Parkinson’s disease is characterized by a selective vulnerability of sub-populations of dopaminergic neurons in the mesencephalon. The fact that the neurons which degenerate in Parkinson’s disease are already sensitive to oxidative stress in control subjects and the reported increased production of oxygen free radicals in Parkinson’s disease suggest that oxidative stress may be involved in the mechanism of nerve cell death. Furthermore, oxygen free radicals are also involved in an oxygen-dependent pro-apoptotic pathway stimulated by the inflammatory reaction observed in Parkinson’s disease. These data suggest that anti-oxidant or anti-inflammatory treatments may slow down the progression of the disease.

On the other hand, new substitutive therapies may be developed by trying to restore the activity of the neurons located downstream from the nigrostriatal pathway. Indeed, the nigrostriatal denervation induces a hyper- activity of the output structures of the basal ganglia (internal segment of the globus pallidus and substantia nigra pars reticulata), as demonstrated in various animal models of the disease. These changes in the activity of the output structures of the basal ganglia seem to be directly induced by the hyperactivity of the glutamatergic afferent fibers from the subthalamic nucleus. The fact that L-DOPA treatment or a reduction in the activity of the subthalamic nucleus alleviate the symptoms of the disease and restore the activity of the output structures of the basal ganglia in parkinsonism suggests that these structures play a key role in the pathophysiology of the disease and could represent a potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alam ZI, Daniel SE, Lees AJ, Marsden CD, Jenner P, Halliwell B (1997a) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 69: 1326–1329

    Article  PubMed  CAS  Google Scholar 

  • Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997b) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69: 1196–1203

    Article  PubMed  CAS  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375

    Article  PubMed  CAS  Google Scholar 

  • Aziz TZ, Peggs D, Sambrook MA, Crossman AR (1991) Lesions of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord 4: 288–292

    Article  Google Scholar 

  • Aziz TZ, Peggs D, Agarwal E, Sambrook MA, Crossman AR (1992) Subthalamic nucleotomy alleviates parkinsonism in the 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-exposed primate. Br J Neurosurg 6: 575–582

    Article  PubMed  CAS  Google Scholar 

  • Barbeau A, Roy M (1985) Identification of environemental related foci of Parkinson’s disease in the Province of Quebec. Ann Neurol 18: 138

    Google Scholar 

  • Beal MF (1996) Mitochondria, free radicals and neurodegeneration. Curr Opin Neurobiol 6: 661–666

    Article  PubMed  CAS  Google Scholar 

  • Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5: 382–389

    Article  PubMed  CAS  Google Scholar 

  • Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249: 1436–1438

    Article  PubMed  CAS  Google Scholar 

  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72: 507–520

    PubMed  CAS  Google Scholar 

  • Bernard V, Gardiol A, Faucheux B, Bloch B, Agid Y, Hirsch EC (1996) Expression of glutamate receptors in the human and rat basal ganglia: effect of the dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in Parkinson’s disease and rat with 6-OHDA lesion. J Comp Neurol 368: 553–568

    Article  PubMed  CAS  Google Scholar 

  • Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocy-tochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172: 151–154

    Article  PubMed  CAS  Google Scholar 

  • Brotchie JM, Mitchell IJ, Sambrook MA, Crossman AR (1991) Alleviation of parkinsonism by antagonism of excitatory aminoacid transmission in the medial segment of the globus pallidus in rat and primate. Mov Disord 6: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Brugg B, Michel PP, Agid Y, Ruberg M (1996) Ceramide induces apoptosis in cultured mesencephalic neurons. J Neurochem 66: 733–739

    Article  PubMed  CAS  Google Scholar 

  • Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immuno 149: 2736–2741

    CAS  Google Scholar 

  • Chesselet MF, Mercugliano M, Soghomonian JJ, Salin P, Qin Y, Gonzales C (1993) Regulation of glutamic acid decarboxylase gene expression in efferent neurons of the basal ganglia. Prog Brain Res 99: 143–154

    Article  PubMed  CAS  Google Scholar 

  • Crossman AR (1989) Neural mechanisms in disorders of movement. Comp Biochem Physiol 93: 141–149

    Article  CAS  Google Scholar 

  • Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1997) Temporospatial progression of the loss in dopaminergic neurons in the substantia nigra in Parkinson’s disease. Mov Disord 12 [Suppl 1]: 274

    Google Scholar 

  • Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 8: 6368–6371

    Article  Google Scholar 

  • Dawson VL, Brahmbhatt HP, Mong JA, Dawson TM (1994) Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures. Neuropharmacology 33: 1425–1430

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13: 281–285

    Article  Google Scholar 

  • Demerlé-Palladry C, Lonchampt MO, Chabrier PE, Braquet P (1993) Nitric oxide synthase induction in glial cells: effect on neuronal survival. Life Sci 52: 1883–1890

    Article  Google Scholar 

  • Good PF, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substan-tia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Graham DG (1979) On the origin and significance of neuromelanin. Arch Pathol Lab Med 103: 359–362

    PubMed  CAS  Google Scholar 

  • Graham WC, Robertson RG, Sambrook MA, Crossman AR (1990) Injection of excitatory amino acid antagonists into the medial pallidal segment of a (MPTP) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treated primate reverses motor symptoms of parkinsonism. Life Sci 47: PL-91–7

    Article  Google Scholar 

  • Guridi J, Herrero MT, Luquin MR, Guillen J, Ruberg M, Laguna J, Vila M, Javoy-Agid F, Agid Y, Hirsch EC, Obeso JA (1996) Subthalamotomy in parkinsonian monkeys. Behavioural and biochemical analysis. Brain 119: 1717–1727

    Google Scholar 

  • Hannun YA, Obeid LM (1995) Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci 20: 73–77

    Article  PubMed  CAS  Google Scholar 

  • Herrero MT, Levy R, Ruberg M, Luquin MR, Villares J, Guillen J, Faucheux B, Javoy-Agid F, Guridi J, Agid Y, Obeso JA, Hirsch EC (1996) Consequence of nigrostriatal denervation and L-DOPA therapy on the expression of glutamic acid decarboxylase (GAD) messenger RNA in the pallidum. Neurology 47: 219–224

    Article  PubMed  CAS  Google Scholar 

  • Hevner RF, Wong-Riley MTT (1991) Neuronal expression of nuclear and mitochondrial genes for cytochrome oxidase (CO) subunits analyzed by in situ hybridization: comparison with CO activity and protein. J Neurosci 11: 1942–1958

    PubMed  CAS  Google Scholar 

  • Hirsch EC (1993) Does oxidative stress participate in nerve cell death in Parkinson’s disease? Eur Neurol 33: 52–59

    Article  PubMed  Google Scholar 

  • Hirsch EC, Graybiel AM, Agid Y (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminium increase in the substantia nigra of patients with Parkinson’s disease. An X-ray microanalysis. J Neurochem 56: 446–451

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Hunot S, Damier P, Faucheux B (1998) Glial cells and the inflammatory reaction in Parkinson’s disease: a role in neurodegeneration? Ann Neurol 44 [Suppl]: S115–S120

    PubMed  CAS  Google Scholar 

  • Hopkins SJ, Rothwell NJ (1995) Cytokines and the nervous system I: expression and recognition. Trends Neurosci 18: 83–88

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1963) Die topische Lokalisation und das Verhalten von Noradrenalin und Dopamin (3-Hydroxytyramin) in der Substantia Nigra des normalen und parkinsonkranken Menschen. Wien Klin Wochenschr 75: 309–321

    PubMed  CAS  Google Scholar 

  • Hunot S, Boissière F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72: 355–363

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997a) Nuclear translocation of NF-kB is increased in dopaminergic neurons of patients with Parkinson’s disease. Proc Natl Acad Sci USA 94: 7531–7536

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Betard C, Faucheux B, Agid Y, Hirsch EC (1997b) Immunohistochemical analysis of interferon-γ and interleukin-lβ in the substantia nigra of Parkinsonian patients. Mov Disord 12 [Suppl 1]: 20

    Google Scholar 

  • Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Schachar D, Youdim MBH (1992) Iron-melanin complex in substantia nigra of parkinsonian brain: an X-ray microanalysis. J Neurochem 59: 1168–1171

    Article  PubMed  CAS  Google Scholar 

  • Klockgether T, Turski L (1990) NMDA antagonists potentiate antiparkinsonian actions of L-DOPA in monoamine-depleted rats. Ann Neurol 28: 539–546

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77: 325–328

    Article  PubMed  CAS  Google Scholar 

  • Limousin P, Pollak P, Benazzouz A, Hoffman D, Le Bras J-F, Broussolle E, et al (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345: 91–95

    Article  PubMed  CAS  Google Scholar 

  • Marconi R, Lefebvre-Caparros D, Bonnet AM, Vidailhet M, Dubois B, Agid Y (1994) Levodopa-induced dyskinesias in Parkinson’s disease phenomenology and pathophysiology. Mov Disord 9: 2–12

    Article  PubMed  CAS  Google Scholar 

  • Mitchell IJ, Clarke CE, Boyce S, Robertson RG, Peggs DE, Sambrook MA, Crossman AR (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 32: 213–226

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Susuki K, Sato T, Oya H, Ozawa Y, Kagawa Y (1993) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163: 1450–1455

    Article  Google Scholar 

  • Owen AD, Schapira AH, Jenner P, Marsden CD (1996) Oxidative stress and Parkinson’s disease. Ann N Y Acad Sci 786: 217–223

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedant C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Porter RHP, Greene JG, Higgins Jr DS, Greenamyre JT (1994) Polysynaptic regulation of glutamate receptors and mitochondrial enzyme activities in the basal ganglia of rats with unilateral dopamine depletion. J Neurosci 14: 7192–7199

    PubMed  CAS  Google Scholar 

  • Saggu H, Cooksey J, Dexter D, Welles FR, Lees AJ, Jenner P, Marsden CD (1989) A selective increase in particulate Superoxide dismutase activity in parkinsonian substantia nigra. J Neurochem 53: 692–697

    Article  PubMed  CAS  Google Scholar 

  • Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54: 823–827

    Article  PubMed  CAS  Google Scholar 

  • Soghomonian JJ, Chesselet MF (1992) Effects of nigrostriatal lesions on the levels of messenger RNAs encoding two isoforms of glutamate decarboxylase in the globus pallidus and entopeduncular nucleus of the rat. Synapse 11: 124–133

    Article  PubMed  CAS  Google Scholar 

  • Starr MS (1995) Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson’s disease. Synapse 19: 264–293

    Article  PubMed  CAS  Google Scholar 

  • Vila M, Herrero MT, Levy R, Faucheux B, Ruberg M, Guillen J, Luquin MR, Guridi J, Javoy-Agid F, Agid Y, Obeso JA, Hirsch EC (1996a) Consequence of nigrostiatal denervation on the GABAergic neurons of substantia nigra pars reticulata and superior colliculus in parkinsonian syndromes. Neurology 46: 802–809

    Article  PubMed  CAS  Google Scholar 

  • Vila M, Levy R, Herrero MT, Faucheux B, Obeso JA, Agid Y, Hirsch EC (1996b) Metabolic activity of the basal ganglia in parkinsonian syndromes in human and nonhuman primates: a cytochrome oxidase histochemistry study. Neuroscience 71: 903–912

    Article  PubMed  CAS  Google Scholar 

  • Vila M, Levy R, Herrero MT, Ruberg M, Faucheux B, Obeso JA, Agid Y, Hirsch EC (1997) Consequences of nigrostriatal denervation on the functioning of the basal ganglia in human and nonhuman primates: an in situ hybridization study of cytochrome oxidase subunit I mRNA. J Neurosci 17: 765–773

    PubMed  CAS  Google Scholar 

  • Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. I. Functional properties in intact animals. J Neurophysiol 72: 494–506

    PubMed  CAS  Google Scholar 

  • Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 90: 9813–9817

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley MTT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12: 94–101

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Hirsch, E.C. (1999). Mechanism and consequences of nerve cell death in Parkinson’s disease. In: Przuntek, H., Müller, T. (eds) Diagnosis and Treatment of Parkinson’s Disease — State of the Art. Journal of Neural Transmission. Supplementa, vol 56. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6360-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6360-3_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83275-2

  • Online ISBN: 978-3-7091-6360-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics