Multiple mechanisms of action: the pharmacological profile of budipine

  • M. Eltze
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 56)


Four major components of the mechanism of action have been identified for the antiparkinsonian drug budipine up to now. 1) The primary action of budipine is an indirect dopaminergic effect as shown by facilitation of dopamine (DA) release, inhibition of monoamine oxidase type B (MAO-B) and of DA (re)up-take and stimulation of aromatic L-amino acid decar-boxylase (AADC), which in sum might be responsible for enhancing the endogenous dopaminergic activity. 2) Radioligand and functional studies at the N-methyl-D-aspartate (NMDA) type glutamate receptor characterize budipine as a low-affinity, uncompetitive antagonist with fast kinetics and moderate voltage-dependency at the phencyclidine (PCP) binding site, comparable to that observed with amantadine, thereby counteracting an increased excitatory glutamatergic activity. 3) The antimuscarinic action of budipine, verified by functional and binding studies at native muscarinic M1-M3 and human recombinant ml-m5 receptor subtypes in vitro, is up to 125-fold weaker than that of biperiden and corresponds to its approximately 100-fold lower potency to cause experimentally-induced peripheral antimuscarinic effects and explains only part of its high potency, which equals biperiden, to suppress cholinergically evoked tremor. 4) An additional inhibition of striatal gamma-aminobutyric acid (GABA) release by budipine may be beneficial to suppress an increased striatal GABAergic output activity. The contribution of other observed effects to the therapeutic action of budipine, i.e. weak stimulation of noradrenaline and serotonin release, binding to brain sigma1, receptors and blockade of histamine H1 receptors, is not yet clear. By means of these multiple mechanisms, budipine might correct the imbalance of striatal output pathways by restoring DA levels in the striatum, and positively influence the secondary changes in other transmitter systems (glutamate, acetylcholine, GABA) observed in Parkinson’s disease.


NMDA Receptor NMDA Receptor Antagonist Sigma Receptor Percutaneous Tibial Nerve Stimulation Postmortem Human Brain Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurol Sci 12: 366–375CrossRefGoogle Scholar
  2. Ballard P, Tetrud JW, Langston W (1985) Permanent human parkinsonism due to l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Seven cases. Neurology 35: 949–959PubMedCrossRefGoogle Scholar
  3. Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249: 1436–1438PubMedCrossRefGoogle Scholar
  4. Bien S, Wörz R (1985) Budipine-treatment of neuroleptic-induced parkinsonism. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 169–175CrossRefGoogle Scholar
  5. Brand U, Menge HG (1980) Antagonismus gegen den Tremor nach N-Carbamoyl-2-(2,6-dichlorphenyl)-acetamidin HCl (LON-954) und Oxotremorin. Eine vergleichende Studie zum Wirkungsmechanismus. Arzneim Forsch/Drug Res 30: 1242–1243Google Scholar
  6. Brotchie JM, Mitchell IJ, Sambrook MA, Crossman AR (1991) Alleviation of parkinsonism by antagonism of excitatory amino acid transmission in the medial segment of the globus pallidus in rat and primate. Mov Disord 6: 133–138PubMedCrossRefGoogle Scholar
  7. Brown RE, Fedorov NB, Haas HL, Reymann KG (1995) Histaminergic modulation of synaptic plasticity in area CA1 of rat hippocampal slices. Neuropharmacology 34: 181–190PubMedCrossRefGoogle Scholar
  8. Burt DR, Creese J, Snyder SH (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196: 326–328PubMedCrossRefGoogle Scholar
  9. Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia — implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13: 272–276PubMedCrossRefGoogle Scholar
  10. Coward DM, Dogget NS, Thomas JE (1977) Central transmitter involvement in LON-954-induced tremorgenesis. Neuropharmacology 16: 479–484PubMedCrossRefGoogle Scholar
  11. Debonnel G (1995) Current hypotheses on sigma receptors and their physiological role: possible implications in psychiatry. J Psychiatr Neurosci 18: 157–172Google Scholar
  12. Di Paola R, Utti RJ (1996) Early detection of Parkinson’s disease. Implications for treatment. Drugs Aging 9: 159–168PubMedCrossRefGoogle Scholar
  13. Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant therapy in Parkinson’s disease. Progr Neurobiol 48: 1–19CrossRefGoogle Scholar
  14. Eltze M (1980) The effects of prodipine and budipine on [14C]5-HT uptake and release by human blood platelets. Arzneim Forsch/Drug Res 30: 1129–1134Google Scholar
  15. Fisher A, Biggs CS, Starr MS (1997) Evidence that glutamate regulates dopamine synthesis via aromatic L-amino acid decarboxylase. Br J Pharmacol 120 [Suppl]: 239PCrossRefGoogle Scholar
  16. Gerlach M, Jutzi P, Stasch JP, Przuntek H (1983) Synthese und pharmakologische Eigenschaften von silierten Dopaminen und 4,4-Diphenylpiperidinen. Z Naturforsch 38b: 237–242Google Scholar
  17. Giralt MT, Bonnano G, Raiteri M (1990) GABA terminal autoreceptors in the pars compacta and in the pars reticulata of substantia nigra are GABA B. Eur J Pharmacol 175: 137–144PubMedCrossRefGoogle Scholar
  18. Greenamyre JT, O’Brian CF (1991) N-methyl-D-aspartate antagonists in the treatment of Parkinson’s disease. Arch Neurol 48: 977–981PubMedCrossRefGoogle Scholar
  19. Hackmack G, Menge HG, Eistetter K, Krüger U, Schaefer H, Klosa J (1979) 4,4-Diphenylpiperidine, ein neuer Substanztyp für die Therapie des Morbus Parkinson. Österr Chem Ztschr 80: 61–62Google Scholar
  20. Hadjiconstantinou M, Rosetti ZL, Wemlinger TA, Neff NH (1995) Dizozilpine enhances striatal tyrosine hydroxylase and aromatic L-amino acid decarboxylase activity. Eur J Pharmacol 289: 97–101PubMedCrossRefGoogle Scholar
  21. Hertting G, Zumstein A, Jackisch R, Hoffmann I, Starke K (1980) Modulation by endogenous dopamine of the release of acetylcholine in the caudate nucleus of the rabbit. Naunyn-Schmiedeb Arch Pharmacol 315: 111–117CrossRefGoogle Scholar
  22. Hornykiewicz O (1966) Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18: 925–964PubMedGoogle Scholar
  23. Iizuka J, Fischer R (1986) Beeinflussung des Parkinson-Tremors durch Budipin: Eine Vergleichsstudie mit Amantadin. Nervenarzt 57: 184–186PubMedGoogle Scholar
  24. Jackisch R, Huang HY, Reimann W, Limberger N (1993) Effects of the antiparkinsonian drug budipine on neurotransmitter release in central nervous system tissues in vitro. J Pharmacol Exp Ther 264: 889–898PubMedGoogle Scholar
  25. Jackisch R, Kruchen A, Sauermann W, Hertting G, Feuerstein TJ (1994) The antiparkinsonian drugs budipine and biperiden are use-dependent (uncompetitive) NMDA receptor antagonists. Eur J Pharmacol 264: 207–211PubMedCrossRefGoogle Scholar
  26. Jellinger K, Bliesath H (1987) Adjuvant treatment of Parkinson’s disease with budipine: A double-blind trial versus placebo. J Neurol 234: 280–282PubMedCrossRefGoogle Scholar
  27. Keim C, Mutschier E, Lambrecht G, Eltze M (1998) Affinity of the antiparkinsonian drug, budipine, on native muscarinic M1-M3 and human recombinant ml-m5 receptors. Naunyn-Schmiedeb Arch Pharmacol 357 [Suppl]: R23Google Scholar
  28. Kornhuber J, Weller M (1995) Predicting psychotomimetic properties of PCP-like NMDA receptor antagonists. In: Fog R, Gerlach J, Hemmingsen R, Krogsgaard-Larsen P, Thaysen JH (eds) Schizophrenia — an integrated view. Alfred Benzon Symposium 38. Munksgaard, Copenhagen, pp 314–325Google Scholar
  29. Kornhuber J, Weller M (1997) Psychotogenicity and N-methyl-D-aspartate receptor antagonism: Implications for neuroprotective pharmacotherapy. Biol Psychiatry 41: 135–144PubMedCrossRefGoogle Scholar
  30. Kornhuber J, Weller M, Schoppmeyer K, Riederer P (1994) Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm [Suppl] 43: 91–104Google Scholar
  31. Kornhuber J, Herr B, Thome J, Riederer P (1995) The antiparkinsonian drug budipine binds to NMDA and sigma receptors in postmortem human brain tissue. J Neural Transm [Suppl] 46: 131–137Google Scholar
  32. Klockgether T, Turski L (1989) Excitatory amino acids and the basal ganglia: implications for the therapy of Parkinson’s disease. Trends Neurosci 12: 285–286PubMedCrossRefGoogle Scholar
  33. Klockgether T, Turski L (1993) Towards the understanding of the role of glutamate in experimental parkinsonism: agonist-sensive sites in the basal ganglia. Ann Neurol 34: 585–593PubMedCrossRefGoogle Scholar
  34. Klockgether T, Jacobsen P, Löschmann PA, Turski L (1993) The antiparkinsonian agent budipine is an N-methyl-D-aspartate antagonist. J Neural Transm [P D Sect] 5: 101–106CrossRefGoogle Scholar
  35. Klockgether T, Wüllner U, Steinbach JP, Petersen V, Turski L, Löschmann PA (1996) Effect of the antiparkinsonian drug budipine on central neurotransmitter systems. Eur J Pharmacol 301: 67–73PubMedCrossRefGoogle Scholar
  36. Krüger H, Kohlhepp W, Reimann G, Przuntek H (1988) Prophylactic treatment of cluster headache with budipine. Headache 28: 344–346PubMedCrossRefGoogle Scholar
  37. Kuhn W, Russ H, Dettner O, Gerlach M, Przuntek H (1987) Interaction of deprenyl and budipine with MAO-B in vivo and in vitro. Neuroscience 22 [Suppl]: S527Google Scholar
  38. Löschmann PA, Lange KW, Kunow M, Rettig KJ, Jähnig P, Honore T, Turski L, Wachtel H, Jenner P, Marsden CD (1991) Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with L-DOPA in models of Parkinson’s disease. J Neural Transm [P D Sect] 3: 203–207CrossRefGoogle Scholar
  39. Lupp A, Lücking CH, Koch R, Jackisch R, Feuerstein TJ (1992) Inhibitory effects of the antiparkinsonian drugs memantine and amantadine on N-methyl-D-aspartate-evoked acetylcholine release in the rabbit caudate nucleus. J Pharmacol Exp Ther 263: 717–724PubMedGoogle Scholar
  40. Lupp A, Karge E, Klinger W (1996) Antioxidant properties of NMDA-receptor agonists and antagonists on the microsomal cytochrome P-450 system of rat livers in vitro. Naunyn-Schmiedb Arch Pharmacol 353 [Suppl]: R108Google Scholar
  41. McBain CJ, Mayer ML (1994) N-methyl-D-aspartatic acid receptor structure and function. Physiol Rev 74: 723–760PubMedCrossRefGoogle Scholar
  42. Menge HG, Brand U (1985) Pharmacologic bases of antiparkinsonian therapy. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 82–92CrossRefGoogle Scholar
  43. Menge HG, Brand U, Dittmann EC, Eltze M, Gernandt W, Gönne S, Müller H, Steinijans V (1982) Zusammenfassende Darstellung der Pharmakologie von Budipin, einem neuen 4,4-Diphenylpiperidin-Derivat für die Parkinson-Therapie. Arzneim Forsch/Drug Res 32: 85–98Google Scholar
  44. Mihatsch W, Russ H, Przuntek H (1988) Intracerebroventricular administration of 1-methyl-4-phenylpyridinium ion in mice: effects of simultaneously administered nomifensine, deprenyl and 1-t-butyl-4,4-diphenylpiperidine. J Neural Transm 71: 177–188PubMedCrossRefGoogle Scholar
  45. Monnet FP, Debonnel G, DeMontigny C (1992) In vivo electrophysiological evidence for a selective modulation of N-methyl-D-aspartate-induced neuronal activation in rat CA3 dorsal hippocampus by sigma ligands. J Pharmacol Exp Ther 261: 123–130PubMedGoogle Scholar
  46. Neuser D, Stasch JP, Witteler M, Kuhn W, Gerlach M, Jutzi P, Przuntek H (1983) The interaction of 1-alkyl-4,4-diphenylpiperidines with opiate receptors. Eur J Pharmacol 87: 315–318PubMedCrossRefGoogle Scholar
  47. Niznik HB, Tyndale RF, Sallee FR, Gonzales FJ, Hardwick JP, Inaba T, Kalow W (1990) The dopamine transporter and cytochrome P-450 IID1 (debrisoquine-4-hydroxylase) in brain: resolution and identification of two distinct [3H]GBR-12935 binding proteins. Arch Biochem Biophys 276: 424–432PubMedCrossRefGoogle Scholar
  48. Offermeier J, van Rooyen JM (1985) The pharmacodynamics of budipine on central neurotransmitter systems. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 93–105CrossRefGoogle Scholar
  49. Oppel F (1985) Long-term treatment with budipine. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 163–168CrossRefGoogle Scholar
  50. Parsons CG, Quack G, Bresink I, Baran L. Przegalinski E, Kostowski W, Krzascik P, Hartmann S, Danysz W (1995) Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 34: 1239–1258PubMedCrossRefGoogle Scholar
  51. Parsons CG, Hartmann S, Spielmanns P (1998) Budipine is a low affinity, N-methyl-D-aspartate receptor antagonist: patch clamp studies in cultured striatal, hippocampal, cortical and superior colliculus neurones. Neuropharmacology 37: 719–727PubMedCrossRefGoogle Scholar
  52. Payne GW, Neuman RS (1997) Effect of hypomagnesia on histamine H1 receptor mediated facilitation of NMDA responses. Br J Pharmacol 121: 199–204PubMedCrossRefGoogle Scholar
  53. Perry TL, Javoy-Agid F, Fibiger HC (1983) Striatal GABAergic neuronal activity is not reduced in Parkinson’s disease. J Neurochem 40: 1120–1123PubMedCrossRefGoogle Scholar
  54. Poewe W, Gerstenbrand F, Ransmayr G (1985) Clinical experience with budipine in parkinsonian therapy. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 122–128CrossRefGoogle Scholar
  55. Porter RHP, Greenamyre JT (1995) Regional variation in the pharmacology of NMDA receptor channel blockers: implications for therapeutic potential. J Neurochem 64: 614–623PubMedCrossRefGoogle Scholar
  56. Przegalinski E, Bigajska K, Lewandowska A (1982) The effect of budipine on the central serotonergic system. Pol J Pharmacol Pharm 34: 309–315PubMedGoogle Scholar
  57. Przuntek H, Stasch JP (1985) Biochemical and pharmacologic aspects of the mechanism of action of budipine. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 107–112CrossRefGoogle Scholar
  58. Przuntek H, Russ H, Henning K, Pindur U (1985) The protective effect of 1-t-butyl-4,4-diphenylpiperidine against the nigrostriatal neurodegeneration caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Life Sci 37: 1195–1200PubMedCrossRefGoogle Scholar
  59. Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothmann RB, Su TP, Tam SW, Taylor DP (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13: 85–86PubMedCrossRefGoogle Scholar
  60. Reimann W, Zumstein A, Jackisch R, Starke K, Hertting G (1979) Effect of extracellular dopamine on the release of dopamine in the rabbit caudate nucleus: evidence for a dopaminergic feedback inhibition. Naunyn-Schmideb Arch Pharmacol 306: 53–60CrossRefGoogle Scholar
  61. Ricaurte GA, Langston JW, DeLanney LE, Irwin I, Brooks JP (1985) Dopamine uptake blockers protect against the dopamine depleting effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse striatum. Neurosci Lett 59: 265–270CrossRefGoogle Scholar
  62. Russ H, Stasch JP, Witteler M, Neuser D, Przuntek (1983) Der Effekt von Budipin auf das Parkinson Syndrom. Versuch einer neuropharmakologischen Erklärung. In: Seitz D (ed) Verhandlungen der Deutschen Gesellschaft für Neurologic Springer, Berlin Heidelberg New York Tokyo, pp 757–760Google Scholar
  63. Russ H, Pindur U, Przuntek H (1986) The interaction of 1-alkyl-4,4-diphenylpiperidines with the 1-methyl-1,2,3,6-tetrahydropyridine receptor binding site. J Neural Transm 65: 157–165PubMedCrossRefGoogle Scholar
  64. Schaefer H, Hackmack K, Eistetter K, Krüger U, Menge HG, Klosa J (1984) Synthese, physikalis ch-chemische Eigenschaften und orientierende pharmakologische Untersuchungen von Budipin und verwandten 4,4-Diphenylpiperidinen. Arzneim Forsch/Drug Res 34: 233–240Google Scholar
  65. Schmidt WJ, Bubser M (1989) Anticataleptic effects of the N-methyl-D-aspartate antagonist MK-801 in rats. Pharmacol Biochem Behav 32: 621–629PubMedCrossRefGoogle Scholar
  66. Siegfried J, Fischer R (1983) La place pour une nouvelle substance chimique dans le traitment de la maladie de Parkinson et la role de la budipine. Med et Hyg 41: 1977–1981Google Scholar
  67. Siegfried J, Fischer R (1985) Budipine: A new chemical substance in the treatment of Parkinson’s disease. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 152–157CrossRefGoogle Scholar
  68. Soria-Jasso LE, Arias-Montano JA (1996) Histamine H1 receptor activation stimulates [3H]GABA release from human astrocytoma U373 MG cells. Eur J Pharmacol 318: 185–192PubMedCrossRefGoogle Scholar
  69. Spieker S, Löschmann P, Jentgens C, Boose A, Klockgether T, Dichgans (1995) Tremorlytic activity of budipine. a quantitative study with long-term tremor recordings. Clin Neuropharmacol 18: 266–272PubMedCrossRefGoogle Scholar
  70. Starr MS (1995) Antiparkinsonian actions of glutamate antagonists — alone and with L-DOPA: a review of evidence and suggestions for possible mechanisms. J Neural Transm [P D Sect] 10: 141–185CrossRefGoogle Scholar
  71. Starr MS, Fisher A, Biggs CS (1997) Effect of glutamate antagonists on dopamine synthesis. Amino Acids 15: 55Google Scholar
  72. Stasch JP, Ruß H, Schacht M, Witteler M, Neuser D, Gerlach M, Leven M, Kuhn W, Jutzi P, Przuntek H (1988) 4,4-Diphenylpiperidine derivatives and their sila analogues. A comparative study of their interaction with neuronal receptor binding sites and synaptosomal monoamine uptake. Arzneim Forsch/Drug Res 38: 1075–1078Google Scholar
  73. Turski L, Bressler K, Klockgether T, Stephens DN (1990) Differential effects of the excitatory amino acid antagonists, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 3-(±)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), on spinal reflex activity in mice. Neurosci Lett 113: 66–71PubMedCrossRefGoogle Scholar
  74. Walker JM, Bowen WD, Walker FO, Matsumoto RR, De Costa B, Rice KC (1990) Sigma receptors: biology and function. Pharmacol Rev 42: 355–402PubMedGoogle Scholar
  75. Wang Y (1985) Observations on the therapeutic effect of budipine on Parkinson’s disease. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 158–162Google Scholar
  76. Zech K, Sturm E, Ludwig G (1985) Pharmacokinetics and metabolism of budipine in animals and humans. In: Gerstenbrand F, Poewe W, Stern G (eds) Clinical experiences with budipine in Parkinson therapy. Springer, Berlin Heidelberg New York Tokyo, pp 113–121CrossRefGoogle Scholar
  77. Zhu MY, Juorio AV, Paterson IA, Boulton AA (1992) Regulation of aromatic L-amino acid decarboxylase by dopamine receptors in rat brain. J Neurochem 58: 636–641PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • M. Eltze
    • 1
  1. 1.Department of PharmacologyByk GuldenKonstanzFederal Republic of Germany

Personalised recommendations