Pathogenesis and preclinical course of Parkinson’s disease

  • P. Foley
  • P. Riederer
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 56)


Idiopathic parkinsonism (IP) is defined by its classic symptomology, its responsiveness to therapies which elevate dopamine levels, and by the failure to identify a specific etiological factor. The progressive and irreversible degeneration of dopaminergic neurons projecting from the substantia nigra pars compacta (SNc) to the striatum and the presence of SNc Lewy bodies are regarded as the essential pathological bases of IP, but neither the initiator(s) nor the nature of the degeneration have been determined, nor its relationship with degenerative changes in other parts of the IP brain. This paper discusses the various hypotheses that have been proposed to explain these phenomena, arguing that IP be regarded as a multisystem disorder, both at the level of individual neurons and at the whole brain level. It is probable that IP is the result of a multifactorial process, and that a cascade of interacting and overlapping biochemical mechanisms determine the course of the disease.


Substantia Nigra Lewy Body Idiopathic Parkinsonism Patient MPTP Toxicity Parkinsonian Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams JD, Odunze IN (1991) Biochemical mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Biochem Pharmacol 41: 1099–1105PubMedGoogle Scholar
  2. Aime S, Fasano M, Bergamasco B, Lopiano L, Quattrocolo G (1996) Nuclear magnetic resonance spectroscopy characterization and iron content determination of human mesencephalic neuromelanin. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 263–270Google Scholar
  3. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997) Oxidative DNA damage in the parkinsonian brain: a selective increase in 8-hydroxyguanine in substantia nigra? J Neurochem 69: 1196–1203PubMedGoogle Scholar
  4. Ambani LM, Van Woert MH, Murphy S (1975) Brain peroxides and catalase in Parkinson’s disease. Arch Neurol 32: 114–118PubMedGoogle Scholar
  5. Anglade P, Agid Y, Hirsch EC, Vyas S (1997) Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histol Histopathol 12: 603–610PubMedGoogle Scholar
  6. Bancher C, Lassmann H, Budka H, Budka H, Jellinger K, Grundke-Iqbal I, Iqbal K, Wiche G, Seitelberger F, Wisniewski HM (1989) An antigenic profile of Lewy bodies: immunocytochemical indication for protein phosphorylation and ubiquitination. J Neuropathol Exp Neurol 48: 81–93PubMedGoogle Scholar
  7. Barbeau A, Cloutier T, Roy M, Plasse L, Paris S, Poirier J (1985) Ecogenetics of Parkinson’s disease: 4-hydroxylation of debrisoquine. Lancet II: 1213–1216Google Scholar
  8. Baron JA (1986) Cigarette smoking and Parkinson’s disease. Neurology 36: 1490–1496PubMedGoogle Scholar
  9. Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 16: 125–131PubMedGoogle Scholar
  10. Beck KD (1994) Functions of brain-derived neurotrophic factor, insulin-like growth factor-I and basic fibroblast growth factor in the development and maintenance of dopaminergic neurons. Prog Neurobiol 44: 497–516PubMedGoogle Scholar
  11. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman PA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA 87: 1620–1624PubMedGoogle Scholar
  12. Ben-Shachar D, Youdim MBH (1991) Intranigral iron injection induces behavioral and biochemical “Parkinsonism” in rats. J Neurochem 57: 2133–2135PubMedGoogle Scholar
  13. Ben-Shachar D, Eshel G, Finberg JPM, Youdim MBH (1991) The iron chelator desferrioxamine (desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal neurons. J Neurochem 56: 1441–1444PubMedGoogle Scholar
  14. Birkmayer W, Riederer P (1985) Die Parkinson-Krankheit: Biochemie, Klinik, Therapie 2nd edn. Springer, Wien New York, pp 60–101Google Scholar
  15. Blum-Degen D, Frölich L, Hoyer S, Riederer P (1995) Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders? J Neural Transm [Suppl] 46: 139–147Google Scholar
  16. Blunt SB, Jenner P, Marsden CD (1993) Suppressive effect of 1-dopa on dopamine cells remaining in the ventral tegmental area of rats previously exposed to the neurotoxin 6-hydroxydopamine. Mov Disord 8: 129–133PubMedGoogle Scholar
  17. Braak H, Braak E, Yilmazer D, de Vos RAI, Jansen ENH, Bohl J, Jellinger K (1994) Amygdala pathology in Parkinson’s disease. Acta Neuropathol 88: 493–500PubMedGoogle Scholar
  18. Braak H, Braak E, Yilmazer D, Schultz C, de Vos RAI, Jansen ENH (1995) Nigral and extranigral pathology in Parkinson’s disease. J Neural Transm [Suppl] 46: 15–32Google Scholar
  19. Braak, H, Braak E, de Vos RAI, Jansen EHN, Bohl J (1997) Extranigrale Pathologie der Parkinson-Krankheit — limbisches System und vegetative Kerne. In: Fischer PA (ed) Parkinson-Krankheit. Entwicklungen in Diagnostik und Therapie. Schattauer, Stuttgart, pp 25–36Google Scholar
  20. Bringmann G, God R, Feineis D, Wesemann W, Riederer P, Rausch WD, Reichmann H, Sontag KH (1995) The TaClo concept: 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo), a new toxin for dopaminergic neurons. J Neural Transm [Suppl] 46: 235–244Google Scholar
  21. Brookes DJ (1991) Detection of preclinical Parkinson’s disease with PET. Neurology 41(Suppl 2): 24–27Google Scholar
  22. Buccala R, Cerami A (1992) Advanced glycosylation: chemistry, biology and implications for diabetes and aging. Adv Pharmacol 23: 1–34Google Scholar
  23. Calne DB (1994) Is idiopathic parkinsonism the consequence of an event or a process? Neurology 44: 5–10PubMedGoogle Scholar
  24. Calne DB, Eisen AA (1989) The relationship between Alzheimer’s disease, Parkinson’s disease and motoneuron disease. Can J Neurol Sci 16: 547–550PubMedGoogle Scholar
  25. Calne S, Shoenberg BS, Martin W, Uitti RJ, Spencer P, Calne DB (1987) Familial Parkinson’s disease: possible role of environmental factors. Can J Neurol Sci 14: 303–315PubMedGoogle Scholar
  26. Carlsson A, Fornstedt B (1991) Catechol metabolites in the cerebrospinal fluid as possible markers in the early diagnosis of Parkinson’s disease. Neurology 40(Suppl 2): 50–52Google Scholar
  27. Carstam R, Brinck C, Hindemith-Augustsson A, Rorsman H, Rosengren E (1991) The neuromelanin of the human substantia nigra. Biochim Biophys Acta 1097: 152–160PubMedGoogle Scholar
  28. Castellani R, Smith MA, Richey PL, Perry G (1996) Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res 737: 195–200PubMedGoogle Scholar
  29. Chandrasekaran K, Rapoport SI, Brady DR, Stoll J (1992) Localization of cytochrome oxidase (COX) activity and COX mRNA in the hippocampus and entorhinal cortex of the monkey brain: correlation with specific neuronal pathways. Brain Res 579: 333–336PubMedGoogle Scholar
  30. Chan-Palay V, Zetzsche T, Hochli M (1991) Parvalbumin neurons in the hippocampus in senile dementia of the Alzheimer type, Parkinson’s disease and multi-infarct dementia. Dementia 2: 297–313Google Scholar
  31. Cleeter MWJ, Cooper JM, Schapira AHV (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem 58: 786–789PubMedGoogle Scholar
  32. Cleeter MWJ, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AHV (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide: implications for neurodegenerative disorders. Acta Biochem Biophys 288: 481–487Google Scholar
  33. Collins MA, Neafsey EJ (1985) β-Carboline analogues of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): endogenous factors underlying idiopathic parkinsonism. Neurosci Lett 55: 179–184PubMedGoogle Scholar
  34. Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P (1995) A quantitative analysis of isoferritins in select regions of aged, parkinsonian and Alzheimer’s diseased brains. J Neurochem 65: 717–724PubMedGoogle Scholar
  35. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate and neurodegenerative disorders. Science 262: 689–695PubMedGoogle Scholar
  36. D’Amato RJ, Alexander GM, Schwartzman RJ, Kitt CA, Price DL, Snyder SH (1987) Evidence for neuromelanin involvement in MPTP-induced neurotoxicity. Nature 327: 324–326PubMedGoogle Scholar
  37. Damier P, Hirsch E, Javoy-Agid F, Zhang P, Agid Y (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52: 1–6PubMedGoogle Scholar
  38. Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiat Res 1: 249–254Google Scholar
  39. Dawson TM, Dawson VL, Snyder SH (1992) A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 32: 297–311PubMedGoogle Scholar
  40. DeLeve LD, Kaplowitz N (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther 52: 287–305Google Scholar
  41. De Michele G, Filla A, Volpe G, Gogliettino A, Ambrosio G, Campanella G (1996) Etiology of Parkinson’s disease. The role of environment and heredity. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 19–24Google Scholar
  42. Dexter DT, Wells FR, Agid FJ (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet II: 1219–1220Google Scholar
  43. Dexter DT, Cater CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantial nigra is increased in Parkinson’s disease. J Neurochem 52: 381–389PubMedGoogle Scholar
  44. Dexter DT, Carayon A, Vidailhet M, Ruberg M, Agid F, Agid Y, Lees AJ, Wells FR, Jenner P, Marsden CD (1990) Decreased ferritin levels in brain in Parkinson’s disease. J Neurochem 55: 16–20PubMedGoogle Scholar
  45. Dexter DT, Carayon A, Javoy-Agid F (1991) Alterations in the levels of iron, ferritin and other trace row diroudopically metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114: 1953–1975PubMedGoogle Scholar
  46. Dexter DT, Ward RJ, Wells FR, Daniel SE, Lees AJ, Peters IJ, Jenner P, Marsden CD (1992) α-Tocopherol levels in brain are not altered in Parkinson’s disease. Ann Neurol 32: 591–593PubMedGoogle Scholar
  47. Dexter DT, Holley AE, Flitter WD Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1994a) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9: 92–97PubMedGoogle Scholar
  48. Dexter DT, Sian J, Rose S, Hindmarsh JS, Mann VM, Cooper JM, Wells FR, Daniel SE, Lees AJ, Schapira AHV, et al (1994b) Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol 35: 38–44PubMedGoogle Scholar
  49. Difazio MC, Hollingsworth Z, Young AB, Penney JBJ (1992) Glutamate receptors in the substantia nigra of Parkinson’s disease brains. Neurology 42: 402–406PubMedGoogle Scholar
  50. DiMonte DA (1991) Mitochondrial DNA and Parkinson’s disease. Neurology 41(Suppl 2): 38–42Google Scholar
  51. Dostert P, Strolin-Benedetti M, Dordain G (1988) Dopamine-derived alkaloids in alcoholism and in Parkinson’s and Huntington’s disease. J Neural Transm 74: 61–74PubMedGoogle Scholar
  52. Doty RL, Deems DA, Stellar S (1988) Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 38: 1237–1244PubMedGoogle Scholar
  53. Double KL, Halliday GM, McRitchie DA, Reid WGJ, Hely MA, Morris JGL (1996) Regional brain atrophy in idiopathic Parkinson’s disease and diffuse Lewy body disease. Dementia 7: 304–313PubMedGoogle Scholar
  54. Double KL, Maywald M, Schmittel M, Riederer P, Gerlach M (1997) In vitro studies of ferritin iron release and neurotoxicity. J Neurochem 70: 2492–2499Google Scholar
  55. Duffy PE, Tennyson VM (1965) Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus coeruleus in Parkinson’s disease. J Neuropathol Exp Neurol 24: 398–414Google Scholar
  56. Duvoisin RC (1996) Recent advances in the genetics of Parkinson’s disease. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 33–40Google Scholar
  57. Fahn S (1992) Adverse effects of levodopa. In: Olanow CW, Lieberman AN (eds) The scientific basis for the treatment of Parkinson’s disease. Parthenon, Carnforth (UK), pp 89–112Google Scholar
  58. Faucheaux BA, Hirsch EC, Villares J, Selimi F, Mouatt-Prigent A, Javoy-Agid F, Agid Y (1993) Distribution of 125I-ferrotransferrin binding sites in the mesencephalon of control subjects and patients with Parkinson’s disease. J Neurochem 60: 2238–2241Google Scholar
  59. Faucheaux BA, Nillesse N, Damier P, Spik G, Mouatt-Prigent A, Pierce A, Leveugle B, Kubis N, Hauw JJ, Agid Y, Hirsch EC (1995) Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson’s disease. Proc Natl Acad Sci USA 92: 9303–9307Google Scholar
  60. Fawthrop DJ, Boobis AR, Davies DS (1991) Mechanisms of cell death. Arch Toxicol 65: 437–444PubMedGoogle Scholar
  61. Fearnley JM, Lees A (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114: 2283–2301PubMedGoogle Scholar
  62. Fornai F, Vaglini F, Maggio R, Bonuccelli U, Corsini GU (1996) Excitatory amino acids and MPTP toxicity. In: Battistin L, Scarlato G, Caraceni T, Ruggieṙi S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 167–176Google Scholar
  63. Forno LS (1995) Pathological considerations in the etiology of Parkinson’s disease. In: Ellenberg JH. Koller WC, Langston JW (eds) Etiology of Parkinson’s disease. Marcel Dekker, New York, pp 65–95Google Scholar
  64. Forno LS, Langston JW (1993) Lewy bodies and aging: relation to Alzheimer’s and Parkinson’s diseases. Neurodegeneration 2: 19–24Google Scholar
  65. Forno LS, DeLanney LE, Irwin I, Langson JW (1995) Ultrastructure of eosinophilic inclusion bodies in the amygdala-parahippocampal region of aged squirrel monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic toxin. Neurosci Lett 184: 44–47PubMedGoogle Scholar
  66. Forno LS, DeLanney LE, Irwin I, Langson JW (1996) Electron microscopy of Lewy bodies in the amygdala-parahippocampal region: comparison with inclusion bodies in the MPTP-treated squirrel monkey. In: Streifler MB, Korczyn AD, Melamed E, Youdim MBH (eds) Advances in neurology, vol 53, Parkinson’s disease: anatomy, pathology and therapy. Raven Press, New York, pp 217–228Google Scholar
  67. Franklin JL, Johnson EM (1992) Suppression of programmed neuronal cell death by sustained elevation of cytosolic calcium. Trends Neurosci 15: 501–508PubMedGoogle Scholar
  68. Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380: 252–255PubMedGoogle Scholar
  69. Gasser T (1997) Stand der neurogenetischen Forschung bezüglich der Parkinson-Erkrankung. In: Fischer PA (ed) Parkinson-Krankheit. Entwicklungen in Diagnostik und Therapie. Schattauer, Stuttgart, pp 59–71Google Scholar
  70. Gasser T, Wszolek ZK, Trofatter J, Ozelius L, Uitti RJ, Lee CS, Gusella J, Pfeiffer RF, Calne DB, Breakefield XO (1994) Genetic linkage studies in autosomal dominant parkinsonism: evaluation of seven candidate genes. Ann Neurol 36: 387–396PubMedGoogle Scholar
  71. Gerlach M, Riederer P (1993) The pathophysiological basis of Parkinson’s disease. In: Szelenyi (ed) Inhibitors of monoamine oxidase. Birkhäuser, Basel, pp 25–50Google Scholar
  72. Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 103: 987–1041PubMedGoogle Scholar
  73. Gerlach M, Riederer P, Przuntek H, Youdim MBH (1991) MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. Eur J Pharmacol [Mol Pharmacol Sect] 208: 273–286Google Scholar
  74. Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63: 793–807PubMedGoogle Scholar
  75. Gerlach M, Riederer P, Youdim MBH (1996) Molecular mechanisms for neurodegeneration: synergism between reactive oxygen species, calcium and excitotoxic amino acids. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 177–194Google Scholar
  76. German DC, Manaye KF, Sonsalla PK, Brooks BA (1992) Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: sparing of calbindin D28k-containing cells. Ann NY Acad Sci 648: 42–62PubMedGoogle Scholar
  77. Gibb WRG (1989) The diagnostic relevance of Lewy bodies and other inclusions in Parkinson’s disease. In: Przuntek H, Riederer P (eds) Early diagnosis and preventative therapy in Parkinson’s disease. Springer, Wien New York, pp 171–180Google Scholar
  78. Gibb WRG (1992) Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson’s disease. Brain Res 581: 283–291PubMedGoogle Scholar
  79. Gibb WRG, Lees AJ (1989) The significance of the Lewy body in the diagnosis of idiopathic Parkinson’s disease. Neuropathol Appl Neurobiol 15: 27–44PubMedGoogle Scholar
  80. Gibb WRG, Esiri MM, Lees AJ (1985) Clinical and pathologic features of diffuse cortical Lewy body disease (Lewy body dementia). Brain 110: 1131–1153Google Scholar
  81. Gibb WRG, Scott T, Lees AJ (1991) Neuronal inclusions of Parkinson’s disease. Mov Disord 6: 2–11PubMedGoogle Scholar
  82. Götz ME, Kiinig G, Riederer P, Youdim MBH (1994) Oxidative stress. Free radical production in neural degeneration. Pharmac Ther 63: 37–122Google Scholar
  83. Golbe LI (1995) Genetics of Parkinson’s disease. In: Ellenberg JH, Koller WC, Langston JW (eds) Etiology of Parkinson’s disease. Marcel Dekker, New York, pp 115–140Google Scholar
  84. Golbe LI, Lazzarini AM, Schwarz KO, Mark MH, Dickson DW, Duvoison RC (1993) Autosomal dominant parkinsonism with benign course and typical Lewy-body pathology. Neurology 43: 2222–2227PubMedGoogle Scholar
  85. Goldman JE, Yen SH, Chiu FC, Peress NS (1983) Lewy bodies of Parkinson’s disease contain neurofilament antigen. Science 221: 1082–1084PubMedGoogle Scholar
  86. Good P, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease. A LAMMA study. Brain Res 593: 343–346PubMedGoogle Scholar
  87. Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14: 633–643PubMedGoogle Scholar
  88. Greenlund LJ, Deckwerth TL, Johnson EMJ (1995) Superoxide dismutase delays neuronal aptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 14: 303–315PubMedGoogle Scholar
  89. Grote C, Clement HW, Wesemann W, Bringmann G, Feineis D, Riederer P, Sontag KH (1995) Biochemical lesions of the nigrostriatal system by TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline) and derivatives. J Neural Transm [Suppl] 46: 275–281Google Scholar
  90. Gutteridge JM, Quinlan GJ, Clark I, Halliwell B (1985) Aluminum salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim Biophys Acta 835: 441–447PubMedGoogle Scholar
  91. Halliday GM, Blumberg PC, Cotton RGH, Blessing WW, Geffen LB (1990) Loss of brainstem serotonin-and substance P-containing neurons in Parkinson’s disease. Brain Res 510: 104–107PubMedGoogle Scholar
  92. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59: 1609–1623PubMedGoogle Scholar
  93. Hansen LA, Galasko D (1992) Lewy body disease. Curr Opin Neurol Neurosurg 5: 889–894PubMedGoogle Scholar
  94. Hattori N, Tanaka M, Ozawa T, Mizuno Y (1991) Immunohistochemical studies on complexes I, II, III and IV of mitochondria in Parkinson’s disease. Ann Neurol 30: 563–571PubMedGoogle Scholar
  95. Hefti F (1994) Neurotrophic factor therapy for central nervous system degenerative disease. J Neurobiol 25: 1418–1435PubMedGoogle Scholar
  96. Hefti F, Melamed E, Bhawan J, Wurtman R (1981) Long term administration of L-dopa does not damage dopaminergic neurons in the mouse. Neurology 31: 1194–1195Google Scholar
  97. Heintz N, Zoghbi H (1997) α-synuclein — a link between Parkinson and Alzheimer diseases? Nat Genet 16: 325–327PubMedGoogle Scholar
  98. Hill W, Lee VMY, Hurtig H, Murray JM, Trojanowski JQ (1991) Epitopes located in spatially separated domains of each neurofilament subunit are present in Parkinson’s disease Lewy bodies. J Comp Neurol 309: 150–160PubMedGoogle Scholar
  99. Hirsch EC, Graybiel AM, Agid Y (1988) Melanized dopaminergic neurons are differentially affected in Parkinson’s disease. Nature 334: 345–348PubMedGoogle Scholar
  100. Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56: 446–451PubMedGoogle Scholar
  101. Hirsch EC, Mouatt A, Thomasset M, Javoy-Agid F, Agid Y, Graybiel AM (1992) Expression of calbindin D28K-like immunoreactivity in catecholaminergic cell groups in the human midbrain. Normal distribution and distribution in Parkinson’s disease. Neurodegeneration 1: 83–93Google Scholar
  102. Hirsch EC, Faucheux B, Damier P, Mouatt-Prigent A, Agid Y (1997) Neuronal vulnerability in Parkinson’s disease. J Neural Transm [Suppl] 50: 79–88Google Scholar
  103. Hotamisligil GS, Girmen AS, Fink JS, Tivol E, Shalish C, Trofatter J, Baenziger J, Diamond S, Markham C, Sullivan J, et al (1994) Hereditary variations in the monoamine oxidase as a risk factor for Parkinson’s disease. Mov Disord 9: 305–310PubMedGoogle Scholar
  104. Hunot S, Boissièrre F, Faucheux B, Brugg B, Mouatt-Prigend A, Agid Y, Hirsch EC (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72: 355–363PubMedGoogle Scholar
  105. Iacopino AM, Christakos S (1990) Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci USA 87: 4078–4082PubMedGoogle Scholar
  106. Ichimaya Y, Emson PC, Mountjoy CQ, Lawson DEM, Iizuka P (1989) Calbindin D28k-immunoreactive cholinergic neurons in the nucleus basalis of Meynert in Alzheimer-type dementia. Brain Res 499: 402–406Google Scholar
  107. Ikonomidou C, Turski L (1996) Neurodegenerative disorders: clues from glutamate and energy metabolism. Crit Rev Neurobiol 10: 239–263PubMedGoogle Scholar
  108. Irwin I, Langston JW (1995) Endogenous toxins as potential etiologic agents in Parkinson’s disease. In: Ellenberg JH, Koller WC, Langston JW (eds) Etiology of Parkinson’s disease. Marcel Dekker, New York, pp 153–201Google Scholar
  109. Itoh K, Weis S, Mehraein P, Muller-Hocker J (1997) Defects of cytochrome c oxidase in the substantia nigra of Parkinson’s disease: an immunohistochemical and morphometric study. Mov Disord 12: 9–16PubMedGoogle Scholar
  110. Janetzky B, God R, Bringmann G, Reichmann H (1995) 1-Trichloromethyl-1,2,3,4-tetrahydro-β-carboline, a new inhibitor of complex I. J Neural Transm [Suppl] 46: 265–273Google Scholar
  111. Jellinger KA (1990) New developments in the pathology of Parkinson’s disease. In: Streifler MB, Korczyn AD, Melamed E, Youdim MBH (eds) Advances in neurology, vol 53, Parkinson’s disease: anatomy, pathology and therapy. Raven Press, New York, pp 1–16Google Scholar
  112. Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14: 153–197PubMedGoogle Scholar
  113. Jellinger KA (1995) Neurodegenerative disorders with extrapyramidal features. J Neural Transm [Suppl] 46: 33–58Google Scholar
  114. Jellinger P, Paulus W, Grundke-Iqbal I, Riederer P, Youdim MBH (1990) Brain iron and ferritin in Parkinson’s disease and Alzheimer’s diseases. J Neural Transm [PD Sect] 2: 327–340Google Scholar
  115. Jellinger K, Youdim MBH, Ben-Shachar D, Stachelberger H, Riederer P, Rumpelmair G, Kienzl E (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1171PubMedGoogle Scholar
  116. Jellinger K, Linert L, Kienzl E, Youdim MBH (1995) Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease. J Neural Transm 46: 297–314Google Scholar
  117. Jenner P, Olanow CW (1996a) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47 [Suppl 3]: S161–S170PubMedGoogle Scholar
  118. Jenner P, Olanow CW (1996b) Pathological evidence for oxidative stress in Parkinson’s disease and related degenerative disorders. In: Olanow CW, Jenner P, Youdim M (eds) Neurodegeneration and neuroprotection in Parkinson’s disease. Academic Press, London, pp 24–45Google Scholar
  119. Johnson WG, Hodge SE, Duvoisin RC (1990) Twin studies and the genetics of Parkinson’s disease — a reappraisal. Mov Disord 5: 187–194PubMedGoogle Scholar
  120. Kass GEN, Wright JM, Nicotera P, Orrenius S (1988) The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity: role of intracellular calcium. Arch Biochem Biophys 260: 789–797PubMedGoogle Scholar
  121. Kish SJ, Morito CH, Hornykiewicz O (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci Lett 58: 343–346PubMedGoogle Scholar
  122. Klockgether T, Turski L (1993) Toward an understanding of the role of glutamate in experimental parkinsonism: agonist-sensitive sites in the basal ganglia. Ann Neurol 34: 585–593PubMedGoogle Scholar
  123. Koller WC, Montgomery EB (1997) Issues in the early diagnosis of Parkinson’s disease. Neurology 49 [Suppl 1]: S10–S25PubMedGoogle Scholar
  124. Kondo K, Kurland RT (1973) Parkinson’s disease, genetic analysis and evidence of a multifactorial etiology. Mayo Clin Proc 48: 465–474PubMedGoogle Scholar
  125. Kosaka K (1978) Lewy bodies in the cerebral cortex: report of three cases. Acta Neuropathol (Berl) 42: 127–134Google Scholar
  126. Kosel S, Lucking SB, Egensperger R, Mehraein P, Graeber MB (1996) Mitochondrial NADH dehydrogenase and CYP2D6 genotypes in Lewy-body parkinsonism. J Neurosci Res 44: 174–183PubMedGoogle Scholar
  127. Kuhn W, Müller T (1995) Neuroimmune mechanisms in Parkinson’s disease. J Neural Transm [Suppl] 46: 229–234Google Scholar
  128. Kuhn W, Müller T (1997) Hypersusceptibilität gegen Xenobiotika. Die potentielle Bedeutung ökogenetischer Faktoren für die Atiologie des Morbus Parkinson. In: Fischer PA (ed) Parkinson-Krankheit. Entwicklungen in Diagnostik und Therapie. Schattauer, Stuttgart, pp 87–93Google Scholar
  129. Kuhn W, Müller T, Groβe H, Rommelspacher H (1995) Plasma harman and norharman in Parkinson’s disease. J Neural Transm [Suppl] 46: 291–295Google Scholar
  130. Kupsch A, Oertel WH, Earl CD, Sautter J (1995) Neuronal transplantation and neurotrophic factors in the treatment of Parkinson’s disease — update February 1995. J Neural Transm [Suppl] 46: 193–207Google Scholar
  131. Kurth JH, Kurth MC, Poduslo SE, Schwankhaus JD (1993) Association of a monoamine oxidase B allele with Parkinson’s disease. Neurology 33: 368–372Google Scholar
  132. Landfield PW, Applegate MD, Schwitzer-Osborne SE, Naylor CE (1991) Phosphate/ calcium alterations in the first stages of Alzheimer’s disease: Implications for etiology and pathogenesis. J Neurol Sci 106: 221–229PubMedGoogle Scholar
  133. Landi MT, Ceroni M, Martignoni E, Bertazzi PA, Caporaso NE, Nappi G (1996) Gene-environment action in Parkinson’s disease. The case of CYP2D6 polymorphism. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 61–72Google Scholar
  134. Langston JW (1996) The etiology of Parkinson’s disease with emphasis on the MPTP story. Neurology 47 [Suppl 3]: S153–S160PubMedGoogle Scholar
  135. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 970–980Google Scholar
  136. Lazzarini AM, Myers RH, Zimmerman TR, Mark MH, Golbe JI, Sage JI, Johnson WG, Duvoisin RC (1994) A clinical genetic study of Parkinson’s disease: evidence for dominant transmission. Neurology 44: 499–506PubMedGoogle Scholar
  137. Lee CS, Schulzer M, Mak E, Snow BJ, Tsui JK, Calne S, Hammerstad J, Calne B (1994) Clinical observations on the rate of progression of idiopathic parkinsonism. Brain 117: 501–507PubMedGoogle Scholar
  138. Leigh P, Probst A, Gale G, Dale GE, Power DP, Brion JP, Dodson A, Anderton BH (1989) New aspects of the pathology of neurodegenerative disorders as revealed by ubiquitin antibodies. Acta Neuropathol (Berl) 79: 61–72Google Scholar
  139. Leveugle B, Faucheux BA, Bouras C, Nillesse N, Spik G, Hirsch EC, Agid Y, Hof PR (1996) Immunohistochemical analysis of the iron binding protein lactotransferrin in the mesencephalon of Parkinson’s disease cases. Acta Neuropathol 566–572Google Scholar
  140. Lewy FH (1912) Paralysis agitans. I. Pathologische Anatomie. In: Lewandowsky M (ed) Handbuch der Neurologie, vol III. Springer, Berlin, pp 920–933Google Scholar
  141. Lindquist NG, Larsson BS, Lyden-Sokolowski A (1987) Neuromelanin and its possible protective and destructive properties. Pigment Cell Res: 133–136Google Scholar
  142. Mann DMA, Yates PO (1983) Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech Age Dev 21: 193–203Google Scholar
  143. Mann DMA, Yates PO, Barton CM (1977) Neuromelanin and RNA in cells of substantia nigra. J Neuropathol Exp Neurol 36: 379–383PubMedGoogle Scholar
  144. Mann VM, Cooper JM, Daniel SE, Srai K, Jenner P, Marsden CD, Schapira AH (1994) Complex I, iron and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 36: 876–881PubMedGoogle Scholar
  145. Maraganore DM, Harding AE, Marsden CD (1991) A clinical and genetic study of familial Parkinson’s disease. Mov Disord 6: 205–211PubMedGoogle Scholar
  146. Marklund S, Adolfsson R, Gottfries C, Winblad B (1985) Superoxide dismutase isoenzymes in normal brains and in brains from patients with dementia of Alzheimer type. J Neurol Sci 67: 319–325PubMedGoogle Scholar
  147. Marsden CD (1983) Neuromelanin and Parkinson’s disease. J Neural Transm [Suppl] 19: 121–141Google Scholar
  148. Martilla RJ, Rinne UK (1981) Epidemiology of Parkinson’s disease: an overview. J Neural Transm 51: 135–148Google Scholar
  149. Martilla RJ, Lorentz H, Rinne UK (1988) Oxygen toxicity protecting enzymes in Parkinson’s disease: increase of Superoxide dismutase-like activity in the substantial nigra and basal nucleus. J Neurol Sci 86: 321–331Google Scholar
  150. Matsubara K, Koyabashi S, Koyabashi Y, Yamashita K, Koide H, Hatta M, Iwamoto K, Tanaka O, Kimura K (1995) β-Carbolinium cations, endogenous MPP+ analogs, in the lumbar cerebrospinal fluid of patients with Parkinson’s disease. Neurology 45: 2240–2245PubMedGoogle Scholar
  151. McCall T, Vallance P (1991) Nitric oxide takes center stage with newly defined roles. Trends Pharmacol Sci 13: 1–6Google Scholar
  152. McGeer PL, Itagaki S, Akiyama K, McGeer EG (1988) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24: 574–576PubMedGoogle Scholar
  153. Miller DM, Buettner GR, Aust SD (1990) Transition metals as catalysts of auto-oxidation reactions. Free Radical Biol Med 8: 95–108Google Scholar
  154. Mizuno Y, Matuda S, Yoshino H, Mori H, Hattori N, Ikebe SI (1994) An immunohistochemical study on α-ketoglutarate dehydrogenase complex in Parkinson’s disease. Ann Neurol 35: 204–210PubMedGoogle Scholar
  155. Mjönes H (1949) Paralysis agitans: a clinical and genetic study. Acta Psychiatr Neurol 54: 1–95Google Scholar
  156. Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137: 120–123PubMedGoogle Scholar
  157. Mogi M, Harada M, Kondo T, Mizuno Y, Narabayashi H, Riederer P, Nagatsu T (1996) The soluble form of Fas molecule is elevated in parkinsonian brain tissues. Neurosci Lett 220: 195–198PubMedGoogle Scholar
  158. Moroo I, Yamada T, Makino H, Tooyama I, McGeer PL, McGeer EG, Hirayama K (1994) Loss of insukin receptor immunoreactivity from the substantia nigra pars compacta neurons in Parkinson’s disease. Acta Neuropathol 87: 343–348PubMedGoogle Scholar
  159. Morrish PK, Sawle GV, Brooks PJ (1996) An [18F]dopa PET and clinical study of the rate of progression in Parkinson’s disease. Brain 119: 585–591PubMedGoogle Scholar
  160. Mouant-Prigent A, Karlsson JO, Agid Y, Hirsch EC (1996) Increased m-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in cell death? Neuroscience 73: 979–987Google Scholar
  161. Münch G, Thome J, Foley P, Schinzel R, Riederer P (1997) Advanced glycation end products in ageing and disease. Brain Res Rev 23: 134–143PubMedGoogle Scholar
  162. Mufson EJ, Brandabur MM (1994) Sparing of NADPH-diaphorase striatal neurons in Parkinson’s and Alzheimer’s diseases. Neuroreport 5: 705–708PubMedGoogle Scholar
  163. Nishino N, Noguchi-Kuno SA, Sugiyama T, Tanaka C (1986) [3H]Nitrendipine binding sites are decreased in the substantia nigra and striatum of the brain from patients with Parkinson’s disease. Brain Res 377: 186–189PubMedGoogle Scholar
  164. Nussbaum RL, Polymeropoulos MH (1997) Genetics of Parkinson’s disease. Hum Mol Genet 6: 1687–1691PubMedGoogle Scholar
  165. Oestreicher E, Sengstock GJ, Riederer P, Olanow CW, Dunn AJ, Arendash G (1994) Degeneration of nigrostriatal dopaminergic neurons increases iron in within the substantia nigra: a histochemical and neurochemical study. Brain Res 660: 8–18PubMedGoogle Scholar
  166. Offen D, Ziv I, Barzilai A, Gorodin S, Glater E, Hochman A, Melamed E (1997) Dopamine-melanin induces apoptosis in PC12 cells: possible implications for etiology of Parkinson’s disease. Neurochem Int 31: 207–216PubMedGoogle Scholar
  167. Olanow CW (1997) Attempts to obtain neuroprotection in Parkinson’s disease. Neurology 49 [Suppl 1]: S26–S33PubMedGoogle Scholar
  168. Olney JW (1978) Neurotoxicity of excitatory amino acids. In: McGeer EG, Olney JW (eds) Kainic acid as a tool in neurobiology. Raven, New York, pp 95–121Google Scholar
  169. Olney JW (1989) Excitatory amino acids and neuropsychiatric disorders. Biol Psychiatry 26: 505–525PubMedGoogle Scholar
  170. Olson L (1997) The coming of age of the GDNF family and its receptors: gene delivery in a rat Parkinson model may have clinical implications. Trends Neurosci 20: 277–279PubMedGoogle Scholar
  171. Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol 50: 743–755PubMedGoogle Scholar
  172. Pearce RKB, Owen A, Daniel S, Jenner P, Marsden CD (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104: 661–677PubMedGoogle Scholar
  173. Perry TL, Goden DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency. Neurosci Lett 33: 305–310PubMedGoogle Scholar
  174. Perry TL, Young VW, Ito M, Foulks JG, Wall RA, Godin DV, Clavier RM (1984) Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-dopa and carbidopa chronically. J Neurochem 43: 990–993PubMedGoogle Scholar
  175. Perry RH, Irving D, Tomlinson BE (1990) Lewy body prevalence in the aging brain: relationship to neuropsychiatric disorders, Alzheimer-type pathology and catecholaminergic nuclei. J Neurol Sci 100: 223–233 (published erratum in J Neural Sci (1991) 102:121)PubMedGoogle Scholar
  176. Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7: 695–702PubMedGoogle Scholar
  177. Pigott MA, Candy JM, Perry RH (1991) [3H]Nitrendipine binding in temporal cortex in Alzheimer’s and Huntington’s diseases. Brain Res 565: 42–47Google Scholar
  178. Pilas B, Sarna T, Kalyanaraman B, Swartz RM (1988) The effect of melanin on iron associated decomposition of hydrogen peroxide. Free Radical Biol Med 4: 285–293Google Scholar
  179. Pileblad E, Magnusson T, Fornstedt B (1996) Reduction of brain glutathione by L-buthionine sulfoximine potentiates the dopamine-depleting action of 6-hydroxydopamine in rat striatum. J Neurochem 52: 978–980Google Scholar
  180. Poewe W, Gerstenbrand F, Ransmayr G, Plorer S (1983) Premorbid personality of Parkinsonian patients. J Neural Transm [Suppl] 19: 215–224Google Scholar
  181. Polymeropoulos MH, Lowedern C, Leroy E, Ide SE, Dehija A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, et al (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047PubMedGoogle Scholar
  182. Przedborski S, Kostic V, Jackson-Lewis V, Naini AB, Simonetti S, Fahn S, Carlson E, Epstein CJ, Cadet JL (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to MPTP-induced neurotoxicity. J Neurosci 12: 1658–1667PubMedGoogle Scholar
  183. Przedborski S, Jackson-Lewis V, Muthane U, Jiang H, Ferreira M, Naini AB, Fahn S (1993) Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity. Ann Neurol 34: 715–723PubMedGoogle Scholar
  184. Przuntek H, Müller T, Kuhn W, Hoffmann V (1997) Ist Apoptose, ein zentraler Mechanismus der Neurodegeneration, durch Selegiline beeinflußbar? In: Fischer PA (ed) Parkinson-Krankheit. Entwicklungen in Diagnostik und Therapie. Schattauer, Stuttgart, pp 259–274Google Scholar
  185. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane peroxidation: the cytotoxic potential of Superoxide and nitric oxide. Arch Biochem Biophys 288: 481–487PubMedGoogle Scholar
  186. Reichmann H, Lestienne P, Jellinger K, Riederer P (1993) Parkinson’s disease and the electron transport chain in post mortem brain. In: Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y (eds) Advances in neurology, vol 60, Parkinson’s disease: from basic research to treatment. Raven, New York, pp 297–299Google Scholar
  187. Reif DW, Simmons RD (1990) Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 283: 537–541PubMedGoogle Scholar
  188. Riederer P, Youdim MBH (eds) (1993) Iron in central nervous system disorders. Springer, Wien New YorkGoogle Scholar
  189. Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease: a detailed study of influential factors in human brain amine analogues. J Neural Transm [P-D Sect] 38: 277–301Google Scholar
  190. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J Neurochem 52: 515–520PubMedGoogle Scholar
  191. Rinne JO, Halonen T, Riekinnen PJ, Rinne UK (1988) Free amino acids in the brain of patients with Parkinson’s disease. Neurosci Lett 94: 182–186PubMedGoogle Scholar
  192. Robbins JH, Otsuka F, Nee LE (1985) Parkinson’s disease and Alzheimer’s disease: hypersensitivity to x-rays in cultured cell lines. J Neurol Neurosurg Psychiatry 48: 916–923PubMedGoogle Scholar
  193. Roman GC, Zhang ZX, Ellenberg JH (1995) The neuroepidemiology of Parkinson’s disease. In: Ellenberg JH, Koller WC, Langston JW (eds) Etiology of Parkinson’s disease. Marcel Dekker, New York, pp 203–243Google Scholar
  194. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, et al (1993) Mutations in Cu/Zn Superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62 (published erratum: Nature 364: 362)PubMedGoogle Scholar
  195. Rubanyi GM, Ho EH, Cantor EH, Lumma WC, Botelho LH (1991) Cytoprotective function of nitric oxide: inactivation of Superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun 181: 1392–1397PubMedGoogle Scholar
  196. Saggu H, Cooksey J, Dexter D, Wells FR, Lees A, Jenner P, Marsen CD (1989) A selective increase in particulate Superoxide dismutase activity in Parkinsonian sub-stantia nigra. J Neurochem 53: 692–697PubMedGoogle Scholar
  197. Sanchez-Ramos JR, Övervik E, Ames BN (1994) A marker of oxyradical-mediated DNA damage (8-hydroxy-2′-deoxyguanosine) is increased in nigro-striatum of Parkinson’s disease brain. Neurodegeneration 3: 197–204Google Scholar
  198. Sawle GV, Wroe SJ, Lees AJ, Brooks DJ, Frackowiak RS (1992) The identification of presymptomatic parkinsonism: clinical and [l8F]dopa positron emission tomography studies in an Irish kindred. Ann Neurol 32: 609–617PubMedGoogle Scholar
  199. Schapira AHV (1994) Evidence for mitochondrial dysfunction in Parkinson’s disease — a critical appraisal. Mov Disord 9: 125–13PubMedGoogle Scholar
  200. Schapira AHV (1996) Neurotoxicity and the mechanisms of cell death in Parkinson’s disease. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 161–165Google Scholar
  201. Schapira AHV (1997) Mitochondrial disorders. Curr Opin Neurol 10: 43–47PubMedGoogle Scholar
  202. Schapira AHV, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55: 2142–2145PubMedGoogle Scholar
  203. Scherman D, Desnos C, Darchen F, Javoy-Agid F, Agid Y (1989) Striatal dopamine deficiency in Parkinson’s disease: role of aging. Ann Neurol 26: 551–557PubMedGoogle Scholar
  204. Seaton TA, Marsden CD, Jenner P (1996) Mitochondrial respiratory enzyme function and Superoxide dismutase activity following brain glutathione depletion in the rat. Biochem Pharmacol 13: 1657–1663Google Scholar
  205. Sen AP, Boksa P, Quirion R (1993) Brain calcium channel-related dihydropyridine and phenylalkylamine binding sites in Alzheimer’s, Parkinson’s and Huntington’s diseases. Brain Res 611: 216–221PubMedGoogle Scholar
  206. Sengstock GJ, Olanow CW, Dunn AJ, Arendash GW (1992) Iron induces degeneration of nigrostriatal neurons. Brain Res Bull 28: 645–649PubMedGoogle Scholar
  207. Sengstock GJ, Olanow CW, Dunn AJ, Barone S, Arendash GW (1994) Progressive changes in striatal dopaminergic markers, nigral volume and rotational behavior following iron infusion into rat substantia nigra. Exp Neurol 130: 82–94PubMedGoogle Scholar
  208. Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 36: 356–361PubMedGoogle Scholar
  209. Siesjö BK (1990) Calcium in the brain under physiological and pathological conditions. Eur Neurol 30: 3–9PubMedGoogle Scholar
  210. Singer TP, Castagnoli N, Ramsay RR, Trevor AJ (1987) Biochemical events in the development of parkinsonism induced by of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 49: 1–8PubMedGoogle Scholar
  211. Smith TA, Prayson RA (1996) Lewy body disease. South Med J 89: 1174–1180PubMedGoogle Scholar
  212. Snow BJ (1996) Fluorodopa PET scanning in Parkinson’s disease. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 449–457Google Scholar
  213. Sofic E, Riederer P, Heinsen H, Beckman H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Increased iron(III) and total iron content in post mortem substantia nigra of Parkinsonian brain. J Neural Transm 74: 199–205PubMedGoogle Scholar
  214. Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142: 128–130PubMedGoogle Scholar
  215. Sontag KH, Heim C, Sontag TA, God R, Reichmann H, Wesemann W, Rausch WD, Riederer, Bringmann G (1995) Long-term behavioural effects of TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline) after subchronic treatment in rats. J Neural Transm [Suppl] 46: 283–289Google Scholar
  216. Spencer PS, Butterfield PG (1995) Environmental agents and Parkinson’s disease. In: Ellenberg JH, Koller WC, Langston JW (eds) Etiology of Parkinson’s disease. Marcel Dekker, New York, pp 319–365Google Scholar
  217. Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, Robertson RC (1987) Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237: 517–522PubMedGoogle Scholar
  218. Spencer JPE, Jenner A, Aruoma OI, Evans PJ, Kaur H, Dexter DT, Jenner P, Lees AJ, Marsden DC, Halliwell B (1994) Intense oxidative DNA damage promoted by l-dopa and its metabolites: implications for neurodegenerative disease. FEBS Lett 353: 246–250PubMedGoogle Scholar
  219. Spencer-Smith T, Parker WD, Bennett JP (1994) L-Dopa increases nigral production of hydroxyl radicals in vivo: potential 1-dopa toxicity? Neuroreport 5: 1009–1011Google Scholar
  220. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R. Goedert M (1997) α-synuclein in Lewy bodies (letter). Nature 388: 839–840PubMedGoogle Scholar
  221. Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson’s disease. Proc Natl Acad Sci USA 88: 1398–1400Google Scholar
  222. Springer JE, Mu X, Bergmann LW, Trojanowsky Q (1994) Expression of GDNF mRNA in rat and human nervous tissue. Exp Neurol 127: 167–170PubMedGoogle Scholar
  223. Swan GA (1963) Chemical structure of melanins. Ann NY Acad Sci 100: 1005PubMedGoogle Scholar
  224. Swartz HM, Sarna T, Zecca L (1992) Modulation by neuromelanin of the availability and reactivity of metal ions. Ann Neurol 32 [Suppl]: S69–S75PubMedGoogle Scholar
  225. Taussig D, Plante-Bordeneuve V (1997) Les syndromes parkinsoniens familiaux “atypiques”. Maladies de Parkinson ou entites autonomes? Presse Med 26: 290–296PubMedGoogle Scholar
  226. Temlet JA, Landsberg JP, Watt F, Grime GW (1994) Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 62: 134–146Google Scholar
  227. Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 61: 1191–1206PubMedGoogle Scholar
  228. Toffa S, Kunikowska GM, Zeng BY, Jenner P, Marsden CD (1997) Chronic glutathione depletion in rat brain does not cause nigrostriatal pathway degeneration. J Neural Transm [PD Sect] 104: 67–75Google Scholar
  229. Tomac A, Lindquist E, Lin LFH, Ögren SO, Young D, Hoffer BJ, Olsen L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373: 335–339PubMedGoogle Scholar
  230. Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150: 119–131PubMedGoogle Scholar
  231. Tooyama I, Kawamata T, Walker D, Yamada I, Hanai K, Kimura H, Iwane M, Igarashi K, McGeer EG, McGeer PL (1993) Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinson’s disease. Neurology 43: 372–376PubMedGoogle Scholar
  232. Turski L, Bressler K, Rettig KJ, Löschmann PA, Wachtel H (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-d-aspartate antagonists. Nature 349: 414–418PubMedGoogle Scholar
  233. Vieregge P (1994) Genetic factors in the etiology of Parkinson’s disease. J Neural Transm 8: 1–37Google Scholar
  234. Walinshaw G, Waters CM (1995) Induction of apoptosis in catecholaminergic PC12 cells by L-dopa: imolications for the treatment of Parkinson’s disease. J Clin Invest 95: 2458–2464Google Scholar
  235. Wallace DC (1992a) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256: 628–632PubMedGoogle Scholar
  236. Wallace DC (1992b) Diseases of the mitochondrial DNA Ann Rev Biochem 61: 1175–1212PubMedGoogle Scholar
  237. Waters CH, Miller CA (1994) Autosomal dominant Lewy body parkinsonism in a four-generation family. Ann Neurol 35: 59–64PubMedGoogle Scholar
  238. Wesemann W, Blaschke S, Solbach M, Grote C, Clement HW, Riederer P (1994) Intranigral injected iron progressively reduces striatal dopamine metabolism. J Neural Transm [PD Sect] 8: 209–214Google Scholar
  239. Wüllner U, Löschmann PA, Schulz JB, Schmid A, Dringen R, Eblen F, Turski L. Klockgether T (1996) Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurones. Neuroreport 7: 921–923PubMedGoogle Scholar
  240. Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra neurons containing calbindin D28K. Brain Res 526: 303–307PubMedGoogle Scholar
  241. Yen TC, Chen YS, King KL, Yeh SH, Wei YH (1989) Liver mitochondrial functions decline with age. Biochem Biophys Res Commun 165: 994–1003Google Scholar
  242. Yoritaki A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson’s disease. Proc Natl Acad Sci USA 93: 2696–2713Google Scholar
  243. Yoshida E, Mokuno K, Aoki SI, Takahashi A, Riku S, Murayama T, Yanagi T, Kato K (1994) Cerebrospinal fluid levels of Superoxide dismutases in neurological diseases detected by sensitive enzyme immunoassays. J Neurol Sci 124: 25–31PubMedGoogle Scholar
  244. Youdim MBH, Ben-Shachar D, Riederer P (1994) The enigma of neuromelanin in Parkinson’s disease substantia nigra. J Neural Transm [Suppl] 43: 113–132Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • P. Foley
    • 1
  • P. Riederer
    • 1
  1. 1.Clinical Neurochemistry, Department of PsychiatryUniversity of WürzburgWüzburgFederal Republic of Germany

Personalised recommendations