Skip to main content

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 56))

Summary

Idiopathic parkinsonism (IP) is defined by its classic symptomology, its responsiveness to therapies which elevate dopamine levels, and by the failure to identify a specific etiological factor. The progressive and irreversible degeneration of dopaminergic neurons projecting from the substantia nigra pars compacta (SNc) to the striatum and the presence of SNc Lewy bodies are regarded as the essential pathological bases of IP, but neither the initiator(s) nor the nature of the degeneration have been determined, nor its relationship with degenerative changes in other parts of the IP brain. This paper discusses the various hypotheses that have been proposed to explain these phenomena, arguing that IP be regarded as a multisystem disorder, both at the level of individual neurons and at the whole brain level. It is probable that IP is the result of a multifactorial process, and that a cascade of interacting and overlapping biochemical mechanisms determine the course of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JD, Odunze IN (1991) Biochemical mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Biochem Pharmacol 41: 1099–1105

    PubMed  CAS  Google Scholar 

  • Aime S, Fasano M, Bergamasco B, Lopiano L, Quattrocolo G (1996) Nuclear magnetic resonance spectroscopy characterization and iron content determination of human mesencephalic neuromelanin. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 263–270

    Google Scholar 

  • Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997) Oxidative DNA damage in the parkinsonian brain: a selective increase in 8-hydroxyguanine in substantia nigra? J Neurochem 69: 1196–1203

    PubMed  CAS  Google Scholar 

  • Ambani LM, Van Woert MH, Murphy S (1975) Brain peroxides and catalase in Parkinson’s disease. Arch Neurol 32: 114–118

    PubMed  CAS  Google Scholar 

  • Anglade P, Agid Y, Hirsch EC, Vyas S (1997) Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histol Histopathol 12: 603–610

    PubMed  CAS  Google Scholar 

  • Bancher C, Lassmann H, Budka H, Budka H, Jellinger K, Grundke-Iqbal I, Iqbal K, Wiche G, Seitelberger F, Wisniewski HM (1989) An antigenic profile of Lewy bodies: immunocytochemical indication for protein phosphorylation and ubiquitination. J Neuropathol Exp Neurol 48: 81–93

    PubMed  CAS  Google Scholar 

  • Barbeau A, Cloutier T, Roy M, Plasse L, Paris S, Poirier J (1985) Ecogenetics of Parkinson’s disease: 4-hydroxylation of debrisoquine. Lancet II: 1213–1216

    Google Scholar 

  • Baron JA (1986) Cigarette smoking and Parkinson’s disease. Neurology 36: 1490–1496

    PubMed  CAS  Google Scholar 

  • Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci 16: 125–131

    PubMed  CAS  Google Scholar 

  • Beck KD (1994) Functions of brain-derived neurotrophic factor, insulin-like growth factor-I and basic fibroblast growth factor in the development and maintenance of dopaminergic neurons. Prog Neurobiol 44: 497–516

    PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman PA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA 87: 1620–1624

    PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Youdim MBH (1991) Intranigral iron injection induces behavioral and biochemical “Parkinsonism” in rats. J Neurochem 57: 2133–2135

    PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Eshel G, Finberg JPM, Youdim MBH (1991) The iron chelator desferrioxamine (desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal neurons. J Neurochem 56: 1441–1444

    PubMed  CAS  Google Scholar 

  • Birkmayer W, Riederer P (1985) Die Parkinson-Krankheit: Biochemie, Klinik, Therapie 2nd edn. Springer, Wien New York, pp 60–101

    Google Scholar 

  • Blum-Degen D, Frölich L, Hoyer S, Riederer P (1995) Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders? J Neural Transm [Suppl] 46: 139–147

    CAS  Google Scholar 

  • Blunt SB, Jenner P, Marsden CD (1993) Suppressive effect of 1-dopa on dopamine cells remaining in the ventral tegmental area of rats previously exposed to the neurotoxin 6-hydroxydopamine. Mov Disord 8: 129–133

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Yilmazer D, de Vos RAI, Jansen ENH, Bohl J, Jellinger K (1994) Amygdala pathology in Parkinson’s disease. Acta Neuropathol 88: 493–500

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Yilmazer D, Schultz C, de Vos RAI, Jansen ENH (1995) Nigral and extranigral pathology in Parkinson’s disease. J Neural Transm [Suppl] 46: 15–32

    CAS  Google Scholar 

  • Braak, H, Braak E, de Vos RAI, Jansen EHN, Bohl J (1997) Extranigrale Pathologie der Parkinson-Krankheit — limbisches System und vegetative Kerne. In: Fischer PA (ed) Parkinson-Krankheit. Entwicklungen in Diagnostik und Therapie. Schattauer, Stuttgart, pp 25–36

    Google Scholar 

  • Bringmann G, God R, Feineis D, Wesemann W, Riederer P, Rausch WD, Reichmann H, Sontag KH (1995) The TaClo concept: 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo), a new toxin for dopaminergic neurons. J Neural Transm [Suppl] 46: 235–244

    CAS  Google Scholar 

  • Brookes DJ (1991) Detection of preclinical Parkinson’s disease with PET. Neurology 41(Suppl 2): 24–27

    Google Scholar 

  • Buccala R, Cerami A (1992) Advanced glycosylation: chemistry, biology and implications for diabetes and aging. Adv Pharmacol 23: 1–34

    Google Scholar 

  • Calne DB (1994) Is idiopathic parkinsonism the consequence of an event or a process? Neurology 44: 5–10

    PubMed  CAS  Google Scholar 

  • Calne DB, Eisen AA (1989) The relationship between Alzheimer’s disease, Parkinson’s disease and motoneuron disease. Can J Neurol Sci 16: 547–550

    PubMed  CAS  Google Scholar 

  • Calne S, Shoenberg BS, Martin W, Uitti RJ, Spencer P, Calne DB (1987) Familial Parkinson’s disease: possible role of environmental factors. Can J Neurol Sci 14: 303–315

    PubMed  CAS  Google Scholar 

  • Carlsson A, Fornstedt B (1991) Catechol metabolites in the cerebrospinal fluid as possible markers in the early diagnosis of Parkinson’s disease. Neurology 40(Suppl 2): 50–52

    Google Scholar 

  • Carstam R, Brinck C, Hindemith-Augustsson A, Rorsman H, Rosengren E (1991) The neuromelanin of the human substantia nigra. Biochim Biophys Acta 1097: 152–160

    PubMed  CAS  Google Scholar 

  • Castellani R, Smith MA, Richey PL, Perry G (1996) Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res 737: 195–200

    PubMed  CAS  Google Scholar 

  • Chandrasekaran K, Rapoport SI, Brady DR, Stoll J (1992) Localization of cytochrome oxidase (COX) activity and COX mRNA in the hippocampus and entorhinal cortex of the monkey brain: correlation with specific neuronal pathways. Brain Res 579: 333–336

    PubMed  CAS  Google Scholar 

  • Chan-Palay V, Zetzsche T, Hochli M (1991) Parvalbumin neurons in the hippocampus in senile dementia of the Alzheimer type, Parkinson’s disease and multi-infarct dementia. Dementia 2: 297–313

    Google Scholar 

  • Cleeter MWJ, Cooper JM, Schapira AHV (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem 58: 786–789

    PubMed  CAS  Google Scholar 

  • Cleeter MWJ, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AHV (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide: implications for neurodegenerative disorders. Acta Biochem Biophys 288: 481–487

    Google Scholar 

  • Collins MA, Neafsey EJ (1985) β-Carboline analogues of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): endogenous factors underlying idiopathic parkinsonism. Neurosci Lett 55: 179–184

    PubMed  CAS  Google Scholar 

  • Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P (1995) A quantitative analysis of isoferritins in select regions of aged, parkinsonian and Alzheimer’s diseased brains. J Neurochem 65: 717–724

    PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate and neurodegenerative disorders. Science 262: 689–695

    PubMed  CAS  Google Scholar 

  • D’Amato RJ, Alexander GM, Schwartzman RJ, Kitt CA, Price DL, Snyder SH (1987) Evidence for neuromelanin involvement in MPTP-induced neurotoxicity. Nature 327: 324–326

    PubMed  Google Scholar 

  • Damier P, Hirsch E, Javoy-Agid F, Zhang P, Agid Y (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52: 1–6

    PubMed  CAS  Google Scholar 

  • Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiat Res 1: 249–254

    CAS  Google Scholar 

  • Dawson TM, Dawson VL, Snyder SH (1992) A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 32: 297–311

    PubMed  CAS  Google Scholar 

  • DeLeve LD, Kaplowitz N (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther 52: 287–305

    Google Scholar 

  • De Michele G, Filla A, Volpe G, Gogliettino A, Ambrosio G, Campanella G (1996) Etiology of Parkinson’s disease. The role of environment and heredity. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 19–24

    Google Scholar 

  • Dexter DT, Wells FR, Agid FJ (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet II: 1219–1220

    Google Scholar 

  • Dexter DT, Cater CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantial nigra is increased in Parkinson’s disease. J Neurochem 52: 381–389

    PubMed  CAS  Google Scholar 

  • Dexter DT, Carayon A, Vidailhet M, Ruberg M, Agid F, Agid Y, Lees AJ, Wells FR, Jenner P, Marsden CD (1990) Decreased ferritin levels in brain in Parkinson’s disease. J Neurochem 55: 16–20

    PubMed  CAS  Google Scholar 

  • Dexter DT, Carayon A, Javoy-Agid F (1991) Alterations in the levels of iron, ferritin and other trace row diroudopically metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114: 1953–1975

    PubMed  Google Scholar 

  • Dexter DT, Ward RJ, Wells FR, Daniel SE, Lees AJ, Peters IJ, Jenner P, Marsden CD (1992) α-Tocopherol levels in brain are not altered in Parkinson’s disease. Ann Neurol 32: 591–593

    PubMed  CAS  Google Scholar 

  • Dexter DT, Holley AE, Flitter WD Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1994a) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9: 92–97

    PubMed  CAS  Google Scholar 

  • Dexter DT, Sian J, Rose S, Hindmarsh JS, Mann VM, Cooper JM, Wells FR, Daniel SE, Lees AJ, Schapira AHV, et al (1994b) Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol 35: 38–44

    PubMed  CAS  Google Scholar 

  • Difazio MC, Hollingsworth Z, Young AB, Penney JBJ (1992) Glutamate receptors in the substantia nigra of Parkinson’s disease brains. Neurology 42: 402–406

    PubMed  CAS  Google Scholar 

  • DiMonte DA (1991) Mitochondrial DNA and Parkinson’s disease. Neurology 41(Suppl 2): 38–42

    CAS  Google Scholar 

  • Dostert P, Strolin-Benedetti M, Dordain G (1988) Dopamine-derived alkaloids in alcoholism and in Parkinson’s and Huntington’s disease. J Neural Transm 74: 61–74

    PubMed  CAS  Google Scholar 

  • Doty RL, Deems DA, Stellar S (1988) Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 38: 1237–1244

    PubMed  CAS  Google Scholar 

  • Double KL, Halliday GM, McRitchie DA, Reid WGJ, Hely MA, Morris JGL (1996) Regional brain atrophy in idiopathic Parkinson’s disease and diffuse Lewy body disease. Dementia 7: 304–313

    PubMed  CAS  Google Scholar 

  • Double KL, Maywald M, Schmittel M, Riederer P, Gerlach M (1997) In vitro studies of ferritin iron release and neurotoxicity. J Neurochem 70: 2492–2499

    Google Scholar 

  • Duffy PE, Tennyson VM (1965) Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus coeruleus in Parkinson’s disease. J Neuropathol Exp Neurol 24: 398–414

    Google Scholar 

  • Duvoisin RC (1996) Recent advances in the genetics of Parkinson’s disease. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 33–40

    Google Scholar 

  • Fahn S (1992) Adverse effects of levodopa. In: Olanow CW, Lieberman AN (eds) The scientific basis for the treatment of Parkinson’s disease. Parthenon, Carnforth (UK), pp 89–112

    Google Scholar 

  • Faucheaux BA, Hirsch EC, Villares J, Selimi F, Mouatt-Prigent A, Javoy-Agid F, Agid Y (1993) Distribution of 125I-ferrotransferrin binding sites in the mesencephalon of control subjects and patients with Parkinson’s disease. J Neurochem 60: 2238–2241

    Google Scholar 

  • Faucheaux BA, Nillesse N, Damier P, Spik G, Mouatt-Prigent A, Pierce A, Leveugle B, Kubis N, Hauw JJ, Agid Y, Hirsch EC (1995) Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson’s disease. Proc Natl Acad Sci USA 92: 9303–9307

    Google Scholar 

  • Fawthrop DJ, Boobis AR, Davies DS (1991) Mechanisms of cell death. Arch Toxicol 65: 437–444

    PubMed  CAS  Google Scholar 

  • Fearnley JM, Lees A (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114: 2283–2301

    PubMed  Google Scholar 

  • Fornai F, Vaglini F, Maggio R, Bonuccelli U, Corsini GU (1996) Excitatory amino acids and MPTP toxicity. In: Battistin L, Scarlato G, Caraceni T, Ruggieṙi S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 167–176

    Google Scholar 

  • Forno LS (1995) Pathological considerations in the etiology of Parkinson’s disease. In: Ellenberg JH. Koller WC, Langston JW (eds) Etiology of Parkinson’s disease. Marcel Dekker, New York, pp 65–95

    Google Scholar 

  • Forno LS, Langston JW (1993) Lewy bodies and aging: relation to Alzheimer’s and Parkinson’s diseases. Neurodegeneration 2: 19–24

    Google Scholar 

  • Forno LS, DeLanney LE, Irwin I, Langson JW (1995) Ultrastructure of eosinophilic inclusion bodies in the amygdala-parahippocampal region of aged squirrel monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic toxin. Neurosci Lett 184: 44–47

    PubMed  CAS  Google Scholar 

  • Forno LS, DeLanney LE, Irwin I, Langson JW (1996) Electron microscopy of Lewy bodies in the amygdala-parahippocampal region: comparison with inclusion bodies in the MPTP-treated squirrel monkey. In: Streifler MB, Korczyn AD, Melamed E, Youdim MBH (eds) Advances in neurology, vol 53, Parkinson’s disease: anatomy, pathology and therapy. Raven Press, New York, pp 217–228

    Google Scholar 

  • Franklin JL, Johnson EM (1992) Suppression of programmed neuronal cell death by sustained elevation of cytosolic calcium. Trends Neurosci 15: 501–508

    PubMed  CAS  Google Scholar 

  • Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380: 252–255

    PubMed  CAS  Google Scholar 

  • Gasser T (1997) Stand der neurogenetischen Forschung bezüglich der Parkinson-Erkrankung. In: Fischer PA (ed) Parkinson-Krankheit. Entwicklungen in Diagnostik und Therapie. Schattauer, Stuttgart, pp 59–71

    Google Scholar 

  • Gasser T, Wszolek ZK, Trofatter J, Ozelius L, Uitti RJ, Lee CS, Gusella J, Pfeiffer RF, Calne DB, Breakefield XO (1994) Genetic linkage studies in autosomal dominant parkinsonism: evaluation of seven candidate genes. Ann Neurol 36: 387–396

    PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P (1993) The pathophysiological basis of Parkinson’s disease. In: Szelenyi (ed) Inhibitors of monoamine oxidase. Birkhäuser, Basel, pp 25–50

    Google Scholar 

  • Gerlach M, Riederer P (1996) Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 103: 987–1041

    PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, Przuntek H, Youdim MBH (1991) MPTP mechanisms of neurotoxicity and their implications for Parkinson’s disease. Eur J Pharmacol [Mol Pharmacol Sect] 208: 273–286

    CAS  Google Scholar 

  • Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63: 793–807

    PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1996) Molecular mechanisms for neurodegeneration: synergism between reactive oxygen species, calcium and excitotoxic amino acids. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 177–194

    Google Scholar 

  • German DC, Manaye KF, Sonsalla PK, Brooks BA (1992) Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: sparing of calbindin D28k-containing cells. Ann NY Acad Sci 648: 42–62

    PubMed  CAS  Google Scholar 

  • Gibb WRG (1989) The diagnostic relevance of Lewy bodies and other inclusions in Parkinson’s disease. In: Przuntek H, Riederer P (eds) Early diagnosis and preventative therapy in Parkinson’s disease. Springer, Wien New York, pp 171–180

    Google Scholar 

  • Gibb WRG (1992) Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson’s disease. Brain Res 581: 283–291

    PubMed  CAS  Google Scholar 

  • Gibb WRG, Lees AJ (1989) The significance of the Lewy body in the diagnosis of idiopathic Parkinson’s disease. Neuropathol Appl Neurobiol 15: 27–44

    PubMed  CAS  Google Scholar 

  • Gibb WRG, Esiri MM, Lees AJ (1985) Clinical and pathologic features of diffuse cortical Lewy body disease (Lewy body dementia). Brain 110: 1131–1153

    Google Scholar 

  • Gibb WRG, Scott T, Lees AJ (1991) Neuronal inclusions of Parkinson’s disease. Mov Disord 6: 2–11

    PubMed  CAS  Google Scholar 

  • Götz ME, Kiinig G, Riederer P, Youdim MBH (1994) Oxidative stress. Free radical production in neural degeneration. Pharmac Ther 63: 37–122

    Google Scholar 

  • Golbe LI (1995) Genetics of Parkinson’s disease. In: Ellenberg JH, Koller WC, Langston JW (eds) Etiology of Parkinson’s disease. Marcel Dekker, New York, pp 115–140

    Google Scholar 

  • Golbe LI, Lazzarini AM, Schwarz KO, Mark MH, Dickson DW, Duvoison RC (1993) Autosomal dominant parkinsonism with benign course and typical Lewy-body pathology. Neurology 43: 2222–2227

    PubMed  CAS  Google Scholar 

  • Goldman JE, Yen SH, Chiu FC, Peress NS (1983) Lewy bodies of Parkinson’s disease contain neurofilament antigen. Science 221: 1082–1084

    PubMed  CAS  Google Scholar 

  • Good P, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease. A LAMMA study. Brain Res 593: 343–346

    PubMed  CAS  Google Scholar 

  • Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14: 633–643

    PubMed  CAS  Google Scholar 

  • Greenlund LJ, Deckwerth TL, Johnson EMJ (1995) Superoxide dismutase delays neuronal aptosis: a role for reactive oxygen species in programmed neuronal death. Neuron 14: 303–315

    PubMed  CAS  Google Scholar 

  • Grote C, Clement HW, Wesemann W, Bringmann G, Feineis D, Riederer P, Sontag KH (1995) Biochemical lesions of the nigrostriatal system by TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline) and derivatives. J Neural Transm [Suppl] 46: 275–281

    CAS  Google Scholar 

  • Gutteridge JM, Quinlan GJ, Clark I, Halliwell B (1985) Aluminum salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim Biophys Acta 835: 441–447

    PubMed  CAS  Google Scholar 

  • Halliday GM, Blumberg PC, Cotton RGH, Blessing WW, Geffen LB (1990) Loss of brainstem serotonin-and substance P-containing neurons in Parkinson’s disease. Brain Res 510: 104–107

    PubMed  CAS  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59: 1609–1623

    PubMed  CAS  Google Scholar 

  • Hansen LA, Galasko D (1992) Lewy body disease. Curr Opin Neurol Neurosurg 5: 889–894

    PubMed  CAS  Google Scholar 

  • Hattori N, Tanaka M, Ozawa T, Mizuno Y (1991) Immunohistochemical studies on complexes I, II, III and IV of mitochondria in Parkinson’s disease. Ann Neurol 30: 563–571

    PubMed  CAS  Google Scholar 

  • Hefti F (1994) Neurotrophic factor therapy for central nervous system degenerative disease. J Neurobiol 25: 1418–1435

    PubMed  CAS  Google Scholar 

  • Hefti F, Melamed E, Bhawan J, Wurtman R (1981) Long term administration of L-dopa does not damage dopaminergic neurons in the mouse. Neurology 31: 1194–1195

    CAS  Google Scholar 

  • Heintz N, Zoghbi H (1997) α-synuclein — a link between Parkinson and Alzheimer diseases? Nat Genet 16: 325–327

    PubMed  CAS  Google Scholar 

  • Hill W, Lee VMY, Hurtig H, Murray JM, Trojanowski JQ (1991) Epitopes located in spatially separated domains of each neurofilament subunit are present in Parkinson’s disease Lewy bodies. J Comp Neurol 309: 150–160

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Graybiel AM, Agid Y (1988) Melanized dopaminergic neurons are differentially affected in Parkinson’s disease. Nature 334: 345–348

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56: 446–451

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Mouatt A, Thomasset M, Javoy-Agid F, Agid Y, Graybiel AM (1992) Expression of calbindin D28K-like immunoreactivity in catecholaminergic cell groups in the human midbrain. Normal distribution and distribution in Parkinson’s disease. Neurodegeneration 1: 83–93

    Google Scholar 

  • Hirsch EC, Faucheux B, Damier P, Mouatt-Prigent A, Agid Y (1997) Neuronal vulnerability in Parkinson’s disease. J Neural Transm [Suppl] 50: 79–88

    CAS  Google Scholar 

  • Hotamisligil GS, Girmen AS, Fink JS, Tivol E, Shalish C, Trofatter J, Baenziger J, Diamond S, Markham C, Sullivan J, et al (1994) Hereditary variations in the monoamine oxidase as a risk factor for Parkinson’s disease. Mov Disord 9: 305–310

    PubMed  CAS  Google Scholar 

  • Hunot S, Boissièrre F, Faucheux B, Brugg B, Mouatt-Prigend A, Agid Y, Hirsch EC (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72: 355–363

    PubMed  CAS  Google Scholar 

  • Iacopino AM, Christakos S (1990) Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci USA 87: 4078–4082

    PubMed  CAS  Google Scholar 

  • Ichimaya Y, Emson PC, Mountjoy CQ, Lawson DEM, Iizuka P (1989) Calbindin D28k-immunoreactive cholinergic neurons in the nucleus basalis of Meynert in Alzheimer-type dementia. Brain Res 499: 402–406

    Google Scholar 

  • Ikonomidou C, Turski L (1996) Neurodegenerative disorders: clues from glutamate and energy metabolism. Crit Rev Neurobiol 10: 239–263

    PubMed  CAS  Google Scholar 

  • Irwin I, Langston JW (1995) Endogenous toxins as potential etiologic agents in Parkinson’s disease. In: Ellenberg JH, Koller WC, Langston JW (eds) Etiology of Parkinson’s disease. Marcel Dekker, New York, pp 153–201

    Google Scholar 

  • Itoh K, Weis S, Mehraein P, Muller-Hocker J (1997) Defects of cytochrome c oxidase in the substantia nigra of Parkinson’s disease: an immunohistochemical and morphometric study. Mov Disord 12: 9–16

    PubMed  CAS  Google Scholar 

  • Janetzky B, God R, Bringmann G, Reichmann H (1995) 1-Trichloromethyl-1,2,3,4-tetrahydro-β-carboline, a new inhibitor of complex I. J Neural Transm [Suppl] 46: 265–273

    CAS  Google Scholar 

  • Jellinger KA (1990) New developments in the pathology of Parkinson’s disease. In: Streifler MB, Korczyn AD, Melamed E, Youdim MBH (eds) Advances in neurology, vol 53, Parkinson’s disease: anatomy, pathology and therapy. Raven Press, New York, pp 1–16

    Google Scholar 

  • Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14: 153–197

    PubMed  CAS  Google Scholar 

  • Jellinger KA (1995) Neurodegenerative disorders with extrapyramidal features. J Neural Transm [Suppl] 46: 33–58

    CAS  Google Scholar 

  • Jellinger P, Paulus W, Grundke-Iqbal I, Riederer P, Youdim MBH (1990) Brain iron and ferritin in Parkinson’s disease and Alzheimer’s diseases. J Neural Transm [PD Sect] 2: 327–340

    CAS  Google Scholar 

  • Jellinger K, Youdim MBH, Ben-Shachar D, Stachelberger H, Riederer P, Rumpelmair G, Kienzl E (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1171

    PubMed  CAS  Google Scholar 

  • Jellinger K, Linert L, Kienzl E, Youdim MBH (1995) Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease. J Neural Transm 46: 297–314

    CAS  Google Scholar 

  • Jenner P, Olanow CW (1996a) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47 [Suppl 3]: S161–S170

    PubMed  CAS  Google Scholar 

  • Jenner P, Olanow CW (1996b) Pathological evidence for oxidative stress in Parkinson’s disease and related degenerative disorders. In: Olanow CW, Jenner P, Youdim M (eds) Neurodegeneration and neuroprotection in Parkinson’s disease. Academic Press, London, pp 24–45

    Google Scholar 

  • Johnson WG, Hodge SE, Duvoisin RC (1990) Twin studies and the genetics of Parkinson’s disease — a reappraisal. Mov Disord 5: 187–194

    PubMed  CAS  Google Scholar 

  • Kass GEN, Wright JM, Nicotera P, Orrenius S (1988) The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity: role of intracellular calcium. Arch Biochem Biophys 260: 789–797

    PubMed  CAS  Google Scholar 

  • Kish SJ, Morito CH, Hornykiewicz O (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci Lett 58: 343–346

    PubMed  CAS  Google Scholar 

  • Klockgether T, Turski L (1993) Toward an understanding of the role of glutamate in experimental parkinsonism: agonist-sensitive sites in the basal ganglia. Ann Neurol 34: 585–593

    PubMed  CAS  Google Scholar 

  • Koller WC, Montgomery EB (1997) Issues in the early diagnosis of Parkinson’s disease. Neurology 49 [Suppl 1]: S10–S25

    PubMed  CAS  Google Scholar 

  • Kondo K, Kurland RT (1973) Parkinson’s disease, genetic analysis and evidence of a multifactorial etiology. Mayo Clin Proc 48: 465–474

    PubMed  CAS  Google Scholar 

  • Kosaka K (1978) Lewy bodies in the cerebral cortex: report of three cases. Acta Neuropathol (Berl) 42: 127–134

    CAS  Google Scholar 

  • Kosel S, Lucking SB, Egensperger R, Mehraein P, Graeber MB (1996) Mitochondrial NADH dehydrogenase and CYP2D6 genotypes in Lewy-body parkinsonism. J Neurosci Res 44: 174–183

    PubMed  CAS  Google Scholar 

  • Kuhn W, Müller T (1995) Neuroimmune mechanisms in Parkinson’s disease. J Neural Transm [Suppl] 46: 229–234

    CAS  Google Scholar 

  • Kuhn W, Müller T (1997) Hypersusceptibilität gegen Xenobiotika. Die potentielle Bedeutung ökogenetischer Faktoren für die Atiologie des Morbus Parkinson. In: Fischer PA (ed) Parkinson-Krankheit. Entwicklungen in Diagnostik und Therapie. Schattauer, Stuttgart, pp 87–93

    Google Scholar 

  • Kuhn W, Müller T, Groβe H, Rommelspacher H (1995) Plasma harman and norharman in Parkinson’s disease. J Neural Transm [Suppl] 46: 291–295

    CAS  Google Scholar 

  • Kupsch A, Oertel WH, Earl CD, Sautter J (1995) Neuronal transplantation and neurotrophic factors in the treatment of Parkinson’s disease — update February 1995. J Neural Transm [Suppl] 46: 193–207

    CAS  Google Scholar 

  • Kurth JH, Kurth MC, Poduslo SE, Schwankhaus JD (1993) Association of a monoamine oxidase B allele with Parkinson’s disease. Neurology 33: 368–372

    CAS  Google Scholar 

  • Landfield PW, Applegate MD, Schwitzer-Osborne SE, Naylor CE (1991) Phosphate/ calcium alterations in the first stages of Alzheimer’s disease: Implications for etiology and pathogenesis. J Neurol Sci 106: 221–229

    PubMed  CAS  Google Scholar 

  • Landi MT, Ceroni M, Martignoni E, Bertazzi PA, Caporaso NE, Nappi G (1996) Gene-environment action in Parkinson’s disease. The case of CYP2D6 polymorphism. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 61–72

    Google Scholar 

  • Langston JW (1996) The etiology of Parkinson’s disease with emphasis on the MPTP story. Neurology 47 [Suppl 3]: S153–S160

    PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 970–980

    Google Scholar 

  • Lazzarini AM, Myers RH, Zimmerman TR, Mark MH, Golbe JI, Sage JI, Johnson WG, Duvoisin RC (1994) A clinical genetic study of Parkinson’s disease: evidence for dominant transmission. Neurology 44: 499–506

    PubMed  CAS  Google Scholar 

  • Lee CS, Schulzer M, Mak E, Snow BJ, Tsui JK, Calne S, Hammerstad J, Calne B (1994) Clinical observations on the rate of progression of idiopathic parkinsonism. Brain 117: 501–507

    PubMed  Google Scholar 

  • Leigh P, Probst A, Gale G, Dale GE, Power DP, Brion JP, Dodson A, Anderton BH (1989) New aspects of the pathology of neurodegenerative disorders as revealed by ubiquitin antibodies. Acta Neuropathol (Berl) 79: 61–72

    CAS  Google Scholar 

  • Leveugle B, Faucheux BA, Bouras C, Nillesse N, Spik G, Hirsch EC, Agid Y, Hof PR (1996) Immunohistochemical analysis of the iron binding protein lactotransferrin in the mesencephalon of Parkinson’s disease cases. Acta Neuropathol 566–572

    Google Scholar 

  • Lewy FH (1912) Paralysis agitans. I. Pathologische Anatomie. In: Lewandowsky M (ed) Handbuch der Neurologie, vol III. Springer, Berlin, pp 920–933

    Google Scholar 

  • Lindquist NG, Larsson BS, Lyden-Sokolowski A (1987) Neuromelanin and its possible protective and destructive properties. Pigment Cell Res: 133–136

    Google Scholar 

  • Mann DMA, Yates PO (1983) Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech Age Dev 21: 193–203

    CAS  Google Scholar 

  • Mann DMA, Yates PO, Barton CM (1977) Neuromelanin and RNA in cells of substantia nigra. J Neuropathol Exp Neurol 36: 379–383

    PubMed  CAS  Google Scholar 

  • Mann VM, Cooper JM, Daniel SE, Srai K, Jenner P, Marsden CD, Schapira AH (1994) Complex I, iron and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 36: 876–881

    PubMed  CAS  Google Scholar 

  • Maraganore DM, Harding AE, Marsden CD (1991) A clinical and genetic study of familial Parkinson’s disease. Mov Disord 6: 205–211

    PubMed  CAS  Google Scholar 

  • Marklund S, Adolfsson R, Gottfries C, Winblad B (1985) Superoxide dismutase isoenzymes in normal brains and in brains from patients with dementia of Alzheimer type. J Neurol Sci 67: 319–325

    PubMed  CAS  Google Scholar 

  • Marsden CD (1983) Neuromelanin and Parkinson’s disease. J Neural Transm [Suppl] 19: 121–141

    CAS  Google Scholar 

  • Martilla RJ, Rinne UK (1981) Epidemiology of Parkinson’s disease: an overview. J Neural Transm 51: 135–148

    Google Scholar 

  • Martilla RJ, Lorentz H, Rinne UK (1988) Oxygen toxicity protecting enzymes in Parkinson’s disease: increase of Superoxide dismutase-like activity in the substantial nigra and basal nucleus. J Neurol Sci 86: 321–331

    Google Scholar 

  • Matsubara K, Koyabashi S, Koyabashi Y, Yamashita K, Koide H, Hatta M, Iwamoto K, Tanaka O, Kimura K (1995) β-Carbolinium cations, endogenous MPP+ analogs, in the lumbar cerebrospinal fluid of patients with Parkinson’s disease. Neurology 45: 2240–2245

    PubMed  CAS  Google Scholar 

  • McCall T, Vallance P (1991) Nitric oxide takes center stage with newly defined roles. Trends Pharmacol Sci 13: 1–6

    Google Scholar 

  • McGeer PL, Itagaki S, Akiyama K, McGeer EG (1988) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24: 574–576

    PubMed  CAS  Google Scholar 

  • Miller DM, Buettner GR, Aust SD (1990) Transition metals as catalysts of auto-oxidation reactions. Free Radical Biol Med 8: 95–108

    CAS  Google Scholar 

  • Mizuno Y, Matuda S, Yoshino H, Mori H, Hattori N, Ikebe SI (1994) An immunohistochemical study on α-ketoglutarate dehydrogenase complex in Parkinson’s disease. Ann Neurol 35: 204–210

    PubMed  CAS  Google Scholar 

  • Mjönes H (1949) Paralysis agitans: a clinical and genetic study. Acta Psychiatr Neurol 54: 1–95

    Google Scholar 

  • Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137: 120–123

    PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Kondo T, Mizuno Y, Narabayashi H, Riederer P, Nagatsu T (1996) The soluble form of Fas molecule is elevated in parkinsonian brain tissues. Neurosci Lett 220: 195–198

    PubMed  CAS  Google Scholar 

  • Moroo I, Yamada T, Makino H, Tooyama I, McGeer PL, McGeer EG, Hirayama K (1994) Loss of insukin receptor immunoreactivity from the substantia nigra pars compacta neurons in Parkinson’s disease. Acta Neuropathol 87: 343–348

    PubMed  CAS  Google Scholar 

  • Morrish PK, Sawle GV, Brooks PJ (1996) An [18F]dopa PET and clinical study of the rate of progression in Parkinson’s disease. Brain 119: 585–591

    PubMed  Google Scholar 

  • Mouant-Prigent A, Karlsson JO, Agid Y, Hirsch EC (1996) Increased m-calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in cell death? Neuroscience 73: 979–987

    Google Scholar 

  • Münch G, Thome J, Foley P, Schinzel R, Riederer P (1997) Advanced glycation end products in ageing and disease. Brain Res Rev 23: 134–143

    PubMed  Google Scholar 

  • Mufson EJ, Brandabur MM (1994) Sparing of NADPH-diaphorase striatal neurons in Parkinson’s and Alzheimer’s diseases. Neuroreport 5: 705–708

    PubMed  CAS  Google Scholar 

  • Nishino N, Noguchi-Kuno SA, Sugiyama T, Tanaka C (1986) [3H]Nitrendipine binding sites are decreased in the substantia nigra and striatum of the brain from patients with Parkinson’s disease. Brain Res 377: 186–189

    PubMed  CAS  Google Scholar 

  • Nussbaum RL, Polymeropoulos MH (1997) Genetics of Parkinson’s disease. Hum Mol Genet 6: 1687–1691

    PubMed  CAS  Google Scholar 

  • Oestreicher E, Sengstock GJ, Riederer P, Olanow CW, Dunn AJ, Arendash G (1994) Degeneration of nigrostriatal dopaminergic neurons increases iron in within the substantia nigra: a histochemical and neurochemical study. Brain Res 660: 8–18

    PubMed  CAS  Google Scholar 

  • Offen D, Ziv I, Barzilai A, Gorodin S, Glater E, Hochman A, Melamed E (1997) Dopamine-melanin induces apoptosis in PC12 cells: possible implications for etiology of Parkinson’s disease. Neurochem Int 31: 207–216

    PubMed  CAS  Google Scholar 

  • Olanow CW (1997) Attempts to obtain neuroprotection in Parkinson’s disease. Neurology 49 [Suppl 1]: S26–S33

    PubMed  CAS  Google Scholar 

  • Olney JW (1978) Neurotoxicity of excitatory amino acids. In: McGeer EG, Olney JW (eds) Kainic acid as a tool in neurobiology. Raven, New York, pp 95–121

    Google Scholar 

  • Olney JW (1989) Excitatory amino acids and neuropsychiatric disorders. Biol Psychiatry 26: 505–525

    PubMed  CAS  Google Scholar 

  • Olson L (1997) The coming of age of the GDNF family and its receptors: gene delivery in a rat Parkinson model may have clinical implications. Trends Neurosci 20: 277–279

    PubMed  CAS  Google Scholar 

  • Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol 50: 743–755

    PubMed  CAS  Google Scholar 

  • Pearce RKB, Owen A, Daniel S, Jenner P, Marsden CD (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104: 661–677

    PubMed  CAS  Google Scholar 

  • Perry TL, Goden DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency. Neurosci Lett 33: 305–310

    PubMed  CAS  Google Scholar 

  • Perry TL, Young VW, Ito M, Foulks JG, Wall RA, Godin DV, Clavier RM (1984) Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-dopa and carbidopa chronically. J Neurochem 43: 990–993

    PubMed  CAS  Google Scholar 

  • Perry RH, Irving D, Tomlinson BE (1990) Lewy body prevalence in the aging brain: relationship to neuropsychiatric disorders, Alzheimer-type pathology and catecholaminergic nuclei. J Neurol Sci 100: 223–233 (published erratum in J Neural Sci (1991) 102:121)

    PubMed  CAS  Google Scholar 

  • Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7: 695–702

    PubMed  CAS  Google Scholar 

  • Pigott MA, Candy JM, Perry RH (1991) [3H]Nitrendipine binding in temporal cortex in Alzheimer’s and Huntington’s diseases. Brain Res 565: 42–47

    Google Scholar 

  • Pilas B, Sarna T, Kalyanaraman B, Swartz RM (1988) The effect of melanin on iron associated decomposition of hydrogen peroxide. Free Radical Biol Med 4: 285–293

    CAS  Google Scholar 

  • Pileblad E, Magnusson T, Fornstedt B (1996) Reduction of brain glutathione by L-buthionine sulfoximine potentiates the dopamine-depleting action of 6-hydroxydopamine in rat striatum. J Neurochem 52: 978–980

    Google Scholar 

  • Poewe W, Gerstenbrand F, Ransmayr G, Plorer S (1983) Premorbid personality of Parkinsonian patients. J Neural Transm [Suppl] 19: 215–224

    CAS  Google Scholar 

  • Polymeropoulos MH, Lowedern C, Leroy E, Ide SE, Dehija A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, et al (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047

    PubMed  CAS  Google Scholar 

  • Przedborski S, Kostic V, Jackson-Lewis V, Naini AB, Simonetti S, Fahn S, Carlson E, Epstein CJ, Cadet JL (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to MPTP-induced neurotoxicity. J Neurosci 12: 1658–1667

    PubMed  CAS  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Muthane U, Jiang H, Ferreira M, Naini AB, Fahn S (1993) Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity. Ann Neurol 34: 715–723

    PubMed  CAS  Google Scholar 

  • Przuntek H, Müller T, Kuhn W, Hoffmann V (1997) Ist Apoptose, ein zentraler Mechanismus der Neurodegeneration, durch Selegiline beeinflußbar? In: Fischer PA (ed) Parkinson-Krankheit. Entwicklungen in Diagnostik und Therapie. Schattauer, Stuttgart, pp 259–274

    Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite-induced membrane peroxidation: the cytotoxic potential of Superoxide and nitric oxide. Arch Biochem Biophys 288: 481–487

    PubMed  CAS  Google Scholar 

  • Reichmann H, Lestienne P, Jellinger K, Riederer P (1993) Parkinson’s disease and the electron transport chain in post mortem brain. In: Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y (eds) Advances in neurology, vol 60, Parkinson’s disease: from basic research to treatment. Raven, New York, pp 297–299

    Google Scholar 

  • Reif DW, Simmons RD (1990) Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys 283: 537–541

    PubMed  CAS  Google Scholar 

  • Riederer P, Youdim MBH (eds) (1993) Iron in central nervous system disorders. Springer, Wien New York

    Google Scholar 

  • Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease: a detailed study of influential factors in human brain amine analogues. J Neural Transm [P-D Sect] 38: 277–301

    CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J Neurochem 52: 515–520

    PubMed  CAS  Google Scholar 

  • Rinne JO, Halonen T, Riekinnen PJ, Rinne UK (1988) Free amino acids in the brain of patients with Parkinson’s disease. Neurosci Lett 94: 182–186

    PubMed  CAS  Google Scholar 

  • Robbins JH, Otsuka F, Nee LE (1985) Parkinson’s disease and Alzheimer’s disease: hypersensitivity to x-rays in cultured cell lines. J Neurol Neurosurg Psychiatry 48: 916–923

    PubMed  CAS  Google Scholar 

  • Roman GC, Zhang ZX, Ellenberg JH (1995) The neuroepidemiology of Parkinson’s disease. In: Ellenberg JH, Koller WC, Langston JW (eds) Etiology of Parkinson’s disease. Marcel Dekker, New York, pp 203–243

    Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, et al (1993) Mutations in Cu/Zn Superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62 (published erratum: Nature 364: 362)

    PubMed  CAS  Google Scholar 

  • Rubanyi GM, Ho EH, Cantor EH, Lumma WC, Botelho LH (1991) Cytoprotective function of nitric oxide: inactivation of Superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun 181: 1392–1397

    PubMed  CAS  Google Scholar 

  • Saggu H, Cooksey J, Dexter D, Wells FR, Lees A, Jenner P, Marsen CD (1989) A selective increase in particulate Superoxide dismutase activity in Parkinsonian sub-stantia nigra. J Neurochem 53: 692–697

    PubMed  CAS  Google Scholar 

  • Sanchez-Ramos JR, Övervik E, Ames BN (1994) A marker of oxyradical-mediated DNA damage (8-hydroxy-2′-deoxyguanosine) is increased in nigro-striatum of Parkinson’s disease brain. Neurodegeneration 3: 197–204

    Google Scholar 

  • Sawle GV, Wroe SJ, Lees AJ, Brooks DJ, Frackowiak RS (1992) The identification of presymptomatic parkinsonism: clinical and [l8F]dopa positron emission tomography studies in an Irish kindred. Ann Neurol 32: 609–617

    PubMed  CAS  Google Scholar 

  • Schapira AHV (1994) Evidence for mitochondrial dysfunction in Parkinson’s disease — a critical appraisal. Mov Disord 9: 125–13

    PubMed  CAS  Google Scholar 

  • Schapira AHV (1996) Neurotoxicity and the mechanisms of cell death in Parkinson’s disease. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 161–165

    Google Scholar 

  • Schapira AHV (1997) Mitochondrial disorders. Curr Opin Neurol 10: 43–47

    PubMed  CAS  Google Scholar 

  • Schapira AHV, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55: 2142–2145

    PubMed  CAS  Google Scholar 

  • Scherman D, Desnos C, Darchen F, Javoy-Agid F, Agid Y (1989) Striatal dopamine deficiency in Parkinson’s disease: role of aging. Ann Neurol 26: 551–557

    PubMed  CAS  Google Scholar 

  • Seaton TA, Marsden CD, Jenner P (1996) Mitochondrial respiratory enzyme function and Superoxide dismutase activity following brain glutathione depletion in the rat. Biochem Pharmacol 13: 1657–1663

    Google Scholar 

  • Sen AP, Boksa P, Quirion R (1993) Brain calcium channel-related dihydropyridine and phenylalkylamine binding sites in Alzheimer’s, Parkinson’s and Huntington’s diseases. Brain Res 611: 216–221

    PubMed  CAS  Google Scholar 

  • Sengstock GJ, Olanow CW, Dunn AJ, Arendash GW (1992) Iron induces degeneration of nigrostriatal neurons. Brain Res Bull 28: 645–649

    PubMed  CAS  Google Scholar 

  • Sengstock GJ, Olanow CW, Dunn AJ, Barone S, Arendash GW (1994) Progressive changes in striatal dopaminergic markers, nigral volume and rotational behavior following iron infusion into rat substantia nigra. Exp Neurol 130: 82–94

    PubMed  CAS  Google Scholar 

  • Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 36: 356–361

    PubMed  CAS  Google Scholar 

  • Siesjö BK (1990) Calcium in the brain under physiological and pathological conditions. Eur Neurol 30: 3–9

    PubMed  Google Scholar 

  • Singer TP, Castagnoli N, Ramsay RR, Trevor AJ (1987) Biochemical events in the development of parkinsonism induced by of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 49: 1–8

    PubMed  CAS  Google Scholar 

  • Smith TA, Prayson RA (1996) Lewy body disease. South Med J 89: 1174–1180

    PubMed  CAS  Google Scholar 

  • Snow BJ (1996) Fluorodopa PET scanning in Parkinson’s disease. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69, Parkinson’s disease. Lippincott-Raven, Philadelphia, pp 449–457

    Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckman H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Increased iron(III) and total iron content in post mortem substantia nigra of Parkinsonian brain. J Neural Transm 74: 199–205

    PubMed  CAS  Google Scholar 

  • Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142: 128–130

    PubMed  CAS  Google Scholar 

  • Sontag KH, Heim C, Sontag TA, God R, Reichmann H, Wesemann W, Rausch WD, Riederer, Bringmann G (1995) Long-term behavioural effects of TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline) after subchronic treatment in rats. J Neural Transm [Suppl] 46: 283–289

    CAS  Google Scholar 

  • Spencer PS, Butterfield PG (1995) Environmental agents and Parkinson’s disease. In: Ellenberg JH, Koller WC, Langston JW (eds) Etiology of Parkinson’s disease. Marcel Dekker, New York, pp 319–365

    Google Scholar 

  • Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, Robertson RC (1987) Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237: 517–522

    PubMed  CAS  Google Scholar 

  • Spencer JPE, Jenner A, Aruoma OI, Evans PJ, Kaur H, Dexter DT, Jenner P, Lees AJ, Marsden DC, Halliwell B (1994) Intense oxidative DNA damage promoted by l-dopa and its metabolites: implications for neurodegenerative disease. FEBS Lett 353: 246–250

    PubMed  CAS  Google Scholar 

  • Spencer-Smith T, Parker WD, Bennett JP (1994) L-Dopa increases nigral production of hydroxyl radicals in vivo: potential 1-dopa toxicity? Neuroreport 5: 1009–1011

    Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R. Goedert M (1997) α-synuclein in Lewy bodies (letter). Nature 388: 839–840

    PubMed  CAS  Google Scholar 

  • Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson’s disease. Proc Natl Acad Sci USA 88: 1398–1400

    Google Scholar 

  • Springer JE, Mu X, Bergmann LW, Trojanowsky Q (1994) Expression of GDNF mRNA in rat and human nervous tissue. Exp Neurol 127: 167–170

    PubMed  CAS  Google Scholar 

  • Swan GA (1963) Chemical structure of melanins. Ann NY Acad Sci 100: 1005

    PubMed  CAS  Google Scholar 

  • Swartz HM, Sarna T, Zecca L (1992) Modulation by neuromelanin of the availability and reactivity of metal ions. Ann Neurol 32 [Suppl]: S69–S75

    PubMed  CAS  Google Scholar 

  • Taussig D, Plante-Bordeneuve V (1997) Les syndromes parkinsoniens familiaux “atypiques”. Maladies de Parkinson ou entites autonomes? Presse Med 26: 290–296

    PubMed  CAS  Google Scholar 

  • Temlet JA, Landsberg JP, Watt F, Grime GW (1994) Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 62: 134–146

    Google Scholar 

  • Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 61: 1191–1206

    PubMed  CAS  Google Scholar 

  • Toffa S, Kunikowska GM, Zeng BY, Jenner P, Marsden CD (1997) Chronic glutathione depletion in rat brain does not cause nigrostriatal pathway degeneration. J Neural Transm [PD Sect] 104: 67–75

    CAS  Google Scholar 

  • Tomac A, Lindquist E, Lin LFH, Ögren SO, Young D, Hoffer BJ, Olsen L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373: 335–339

    PubMed  CAS  Google Scholar 

  • Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150: 119–131

    PubMed  CAS  Google Scholar 

  • Tooyama I, Kawamata T, Walker D, Yamada I, Hanai K, Kimura H, Iwane M, Igarashi K, McGeer EG, McGeer PL (1993) Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinson’s disease. Neurology 43: 372–376

    PubMed  CAS  Google Scholar 

  • Turski L, Bressler K, Rettig KJ, Löschmann PA, Wachtel H (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-d-aspartate antagonists. Nature 349: 414–418

    PubMed  CAS  Google Scholar 

  • Vieregge P (1994) Genetic factors in the etiology of Parkinson’s disease. J Neural Transm 8: 1–37

    CAS  Google Scholar 

  • Walinshaw G, Waters CM (1995) Induction of apoptosis in catecholaminergic PC12 cells by L-dopa: imolications for the treatment of Parkinson’s disease. J Clin Invest 95: 2458–2464

    Google Scholar 

  • Wallace DC (1992a) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256: 628–632

    PubMed  CAS  Google Scholar 

  • Wallace DC (1992b) Diseases of the mitochondrial DNA Ann Rev Biochem 61: 1175–1212

    PubMed  CAS  Google Scholar 

  • Waters CH, Miller CA (1994) Autosomal dominant Lewy body parkinsonism in a four-generation family. Ann Neurol 35: 59–64

    PubMed  CAS  Google Scholar 

  • Wesemann W, Blaschke S, Solbach M, Grote C, Clement HW, Riederer P (1994) Intranigral injected iron progressively reduces striatal dopamine metabolism. J Neural Transm [PD Sect] 8: 209–214

    CAS  Google Scholar 

  • Wüllner U, Löschmann PA, Schulz JB, Schmid A, Dringen R, Eblen F, Turski L. Klockgether T (1996) Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurones. Neuroreport 7: 921–923

    PubMed  Google Scholar 

  • Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra neurons containing calbindin D28K. Brain Res 526: 303–307

    PubMed  CAS  Google Scholar 

  • Yen TC, Chen YS, King KL, Yeh SH, Wei YH (1989) Liver mitochondrial functions decline with age. Biochem Biophys Res Commun 165: 994–1003

    Google Scholar 

  • Yoritaki A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson’s disease. Proc Natl Acad Sci USA 93: 2696–2713

    Google Scholar 

  • Yoshida E, Mokuno K, Aoki SI, Takahashi A, Riku S, Murayama T, Yanagi T, Kato K (1994) Cerebrospinal fluid levels of Superoxide dismutases in neurological diseases detected by sensitive enzyme immunoassays. J Neurol Sci 124: 25–31

    PubMed  CAS  Google Scholar 

  • Youdim MBH, Ben-Shachar D, Riederer P (1994) The enigma of neuromelanin in Parkinson’s disease substantia nigra. J Neural Transm [Suppl] 43: 113–132

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Foley, P., Riederer, P. (1999). Pathogenesis and preclinical course of Parkinson’s disease. In: Przuntek, H., Müller, T. (eds) Diagnosis and Treatment of Parkinson’s Disease — State of the Art. Journal of Neural Transmission. Supplementa, vol 56. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6360-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6360-3_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83275-2

  • Online ISBN: 978-3-7091-6360-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics