Post mortem studies in Parkinson’s disease — is it possible to detect brain areas for specific symptoms?

  • K. A. Jellinger
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 56)


Parkinson’s disease (PD) is characterized by progressive neuronal loss associated with Lewy bodies in many subcortical nuclei leading to multiple biochemical and pathophysiological changes of clinical relevance. Loss of nigral neurons causing striatal dopamine deficiency is related to both the duration and clinical stages (severity) of the disease. The clinical subtypes of PD have different morphological lesion patterns: a) The akinetic-rigid type shows more severe cell loss in the ventrolateral part of substantia nigra zona compacta (SNZC) that projects to the dorsal putamen than the medial part projecting to caudate nucleus and anterior putamen, with negative correlation between SNZC cell counts, severity of akinesia-rigidity, and dopamine loss in the posterior putamen. Reduced dopaminergic input causes overactivity of the GABA ergic inhibitory striatal neurons projecting via the “indirect loop” to SN zona reticulata (SNZR) and medial pallidum (GPI) leading to inhibition of the glutamatergic thalamo-cortical motor loop and reduced cortical activation. b) The tremor-dominant type shows more severe neuron loss in medial than in lateral SNZC and damage to the retrorubral field A8 containing only few tyrosine hydroxylase and dopamine transporter immunoreactive (IR) neurons but mainly calretinin-IR cells. A8 that is rather preserved in rigid-akinetic PD (protective role of calcium-binding protein?) projects to the matrix of dorsolateral striatum and ventromedial thalamus. Together with area A10 it influences the striai efflux via SNZR to thalamus and from there to prefrontal cortex. Rest tremor in PD is associated with increased metabolism in the thalamus, subthalamus, pons, and premotor-cortical network suggesting an increased functional activity of thalamo-motor projections. In essential tremor, no significant pathomorphological changes but overactivity of cerebello-thalamic loop have been observed. c) In the akinetic-rigid forms of multisystem atrophy, degeneration is more severe in the lateral SNZC with severe loss of calbindin-IR cells reflecting initial degeneration of the striatal matrix in the caudal putamen with transsynaptic degeneration of striatonigral efferences that remain intact in PD. This fact and loss of striatal D2 receptors — as in advanced stages of PD — are reasons for negative response to L-dopa substitution. These data suggest different pathophysiological mechanisms of the clinical subtypes of PD that have important therapeutic implications. d) Involvement of extranigral structures in PD includes the mesocortical dopaminergic system, the noradrenergic locus coeruleus, dorsal vagal nucleus and medullary nuclei, serotonergic dorsal raphe, nucleus basalis of Meynert and other cholinergic brainstem nuclei, e.g. Westphal-Edinger nucleus (controlling pupillomotor function), posterolateral hypothalamus and the limbic system, e.g. amygdaloid nucleus, part of hippocampal formation, limbic thalamic nuclei with prefrontal projections, etc. Damage to multiple neuronal systems by the progressing degenerative process causing complex biochemical changes may explain the variable clinical picture of PD including vegetative, behavioural and cognitive dysfunctions, depression, pharmacotoxic psychoses, etc. Future comparative clinico-morphological and pathobiochemical studies will further elucidate the pathophysiological basis of specific clinical symptoms of PD and related disorders providing a broader basis for effective treatment strategies.

Parkinson’s disease (PD) is characterized by progressive degeneration of the nigrostriatal dopaminergic system and other subcortical neuronal systems leading to striatal dopamine deficiency and other biochemical deficits related to the variable clinical signs and symptoms of the disorder. While the pathogenesis and aetiology of PD are still unknown, the recent elucidation of the morphological and pathophysiological substrates of several clinical dysfunctions in PD has provided a better insight into the course of the disease and important implications for treatment (Jellinger, 1998).


Tyrosine Hydroxylase Multiple System Atrophy Progressive Supranuclear Palsy Essential Tremor Progressive Supranuclear Palsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agid Y, Javoy-Agid F, Ruberg M (1987) Biochemistry of neurotransmitters in Parkinson’s disease. In: Marsden CD, Fahn ST (eds) Movement disorders 2. Butterworth, London, pp 166–230Google Scholar
  2. Agid Y, Graybiel AM, Ruberg M et al (1990) The efficacy of levodopa treatment declines in the course of Parkinson’s disease. Do non-dopaminergic lesions play a role? Adv Neurol 53: 83–100PubMedGoogle Scholar
  3. Albin RL (1995) The pathophysiology of chorea, ballism and parkinsonism. Parkinsonism Rel Disord 1: 2–133CrossRefGoogle Scholar
  4. Anglade P, Vyas S, Javoy-Agid F et al (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12: 25–31PubMedGoogle Scholar
  5. Antonini A, Moeller JR, Nakamura T, Spetsieris P, Dhawan V, Eidelberg D (1998) The metabolic anatomy of tremor in Parkinson’s disease. Neurology 51: 803–810PubMedCrossRefGoogle Scholar
  6. Arima K, Ueda K, Sunohara N, Arakawa K, Hirai S, Nakamura M, Tonozuka-Ueahra H, Kawai M (1998) NACP/α-synuclein immunoreactivity in fibrillary components of neuronal and oligodendroglial cytoplasmic inclusions in the pontine nuclei in multiple system atrophy. Acta Neuropathol 96: 439–444PubMedCrossRefGoogle Scholar
  7. Baba M, Nakajo S, Tu PH, et al. (1998) Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152: 879–884PubMedGoogle Scholar
  8. Bagmen T, Carmine B, De-Long MR (1994) Parkinsonian tremor is associated with low frequency oscillations in selective loops of the basal ganglia. Adv Behav Biol 41: 317–325CrossRefGoogle Scholar
  9. Banati RB, Daniel SE, Path MRC, Blunt SB (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 13: 221–227PubMedCrossRefGoogle Scholar
  10. Benabid AL, Pollak P, Gao DM et al (1996) Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84: 203–214PubMedCrossRefGoogle Scholar
  11. Bender MB (1980) Brain control of conjugate horizontal and vertical eye movements. Brain 103: 25–69CrossRefGoogle Scholar
  12. Bernheimer H, Birkmayer W, Hornykiewicz O et al (1973) Brain dopamine and the syndromes of Parkinson and Huntington: Clinical, morphological and neurochemical correlations. J Neurol Sci 20: 415–455PubMedCrossRefGoogle Scholar
  13. Blandini F, Porter RHP, Greenamyre JT (1996) Glutamate and Parkinson’s disease. Mol Neurobiol 12: 73–94PubMedCrossRefGoogle Scholar
  14. Boecker H, Wills AJ, Ceballos-Baumann A et al (1997) Stereotactic thalamotomy in tremor-dominant Parkinson’s disease — An (H2O)-O-15 PET motor activation study. Ann Neurol 41: 108–111PubMedCrossRefGoogle Scholar
  15. Booij J, Tissingh G, Boer GJ et al (1997) [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 133–140PubMedCrossRefGoogle Scholar
  16. Braak H, Braak E, Yilmazer D et al (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103: 455–490PubMedCrossRefGoogle Scholar
  17. Brooks DJ (1993) Functional imaging in relation to parkinsonian syndromes. J Neurol Sci 115: 1–17PubMedCrossRefGoogle Scholar
  18. Bucher SF, Seelos KC, Dodel RC et al (1997) Activation mapping in essential tremor with functional magnetic resonance imaging. Ann Neurol 41: 32–40PubMedCrossRefGoogle Scholar
  19. Burke RE, Antonelli M, Sulzer D (1998) Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture. J Neurochem 71: 517–525PubMedCrossRefGoogle Scholar
  20. Carmichael SW, Wilson RJ, Brimijoin WS et al (1988) Decreased catecholamines in the adrenal medulla of patients with parkinsonism. N Engl Med J 319: 254Google Scholar
  21. Chan-Palay V (1993) Depression and dementia in Parkinson’s disease: Catecholaminergic changes in the locus ceruleus. A basis for therapy. Adv Neurol 60: 438–446PubMedGoogle Scholar
  22. Chang MH, Chang TW, Lai PH, Sy CG (1995) Resting tremor only — a variant of Parkinson’s disease or of essential tremor. J Neurol Sci 130: 215–219PubMedCrossRefGoogle Scholar
  23. Chase TN, Oh JD, Blanchet PJ (1998) Neostriatal mechanisms in Parkinson’s disease. Neurology 51(2) [Suppl 2]: 30–35CrossRefGoogle Scholar
  24. Coles SK, Iies JF, Nicolopoulos-Stournaras S (1989) The mesencephalic centre controlling locomotion in the rat. Neuroscience 28: 149–157PubMedCrossRefGoogle Scholar
  25. Counihan TJ, Penney JB, Jr (1998) Regional dopamine transporter gene expression in the substantia nigra from control and Parkinson’s diseased brains. J Neurol Neurosurg Psychiatry 65: 164–169PubMedCrossRefGoogle Scholar
  26. Dale GE, Probst A, Luthert P, et al (1992) Relationship between Lewy bodies and pale bodies in Parkinson’s disease. Acta Neuropathol 83: 525–529PubMedCrossRefGoogle Scholar
  27. Damier P, Hirsch EC, Agid Y (1996) Patterns of cell loss in the substantia nigra in Parkinson’s disease. Neurology 46: A442CrossRefGoogle Scholar
  28. Deutch AY, Goldstein M, Baldino FJ, Roth RH (1988) Telencephalic projections of the A8 dopaminergic cell group. Ann NY Acad Sci 537: 27–50PubMedCrossRefGoogle Scholar
  29. Dormont D, Cornu P, Pidoux B et al (1997) Chronic thalamic stimulation with three-dimensional MR stereotactic guidance. Am J Neuroradiol 18: 1093–1107PubMedGoogle Scholar
  30. Dubois B, Malapani C, Verin M et al (1994) Cognitive functions and the basal ganglia. The model of Parkinson’s disease. Rev Neurol 150: 763–770Google Scholar
  31. Duyckaerts C, Gaspar P, Costa C et al (1993) Dementia in Parkinson’s disease. Morphometric data. Adv Neurol 60: 447–455Google Scholar
  32. Eadie MJ (1963) The pathology of certain medullary nuclei in parkinsonism. Brain 86: 781–795PubMedCrossRefGoogle Scholar
  33. Elsworth J, Roth R (1996) Dopamine autoreceptor pharmacology and function: Recent insights. In: Neve K, Neve R (eds) The dopamine receptors. Humana Press, Totowa, NJ, pp 223–265Google Scholar
  34. Eve DJ, Nisbet AP, Kingsburg AE et al (1997) Selective increase in somatostatin mRNA expression in human basal ganglia in Parkinson’s disease. Mol Brain Res 50: 59–70PubMedCrossRefGoogle Scholar
  35. Fearnley JM, Lees AJ (1994) Pathology of Parkinson’s disease. In: Calne DB (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 545–554Google Scholar
  36. Fernandez A, Deceballos ML, Rose S et al (1996) Alterations in peptide levels in Parkinson’s disease and incidental Lewy body disease. Brain 119: 823–830PubMedCrossRefGoogle Scholar
  37. Fernandez PM, Dujovny M (1997) Pallidotomy — Editorial review. Neurol Res 19: 25–34PubMedGoogle Scholar
  38. Furukawa Y, Kondo T, Nishi K et al (1991) Total biopterin levels in the ventricular CSF of patients with Parkinson’s disease: A comparison between akineto-rigid and tremor types. J Neurol Sci 103: 232–237PubMedCrossRefGoogle Scholar
  39. Gai WP, Geffen LB, Dehoroy L, et al (1993) Loss of Cl and C3 epinephrine-synthesizing neurons in the medulla oblongata in Parkinson’s disease. Ann Neurol 33: 357–367PubMedCrossRefGoogle Scholar
  40. Gai WP, Vickers JC, Blumbergs PC, Blessing WW (1994) Loss of nonphosphorylated neurofilament immunoreactivity, with preservation of tyrosine hydroxylase, in surviving substantia nigra neurons in Parkinson’s disease. J Neurol Neurosurg Psychiatry 57: 1039–1046PubMedCrossRefGoogle Scholar
  41. Gai WP, Blessing WW, Blumbergs PC (1995) Ubiquitin-positive degenerating neurites in the brainstem in Parkinson’s disease. Brain 118: 1447–1459PubMedCrossRefGoogle Scholar
  42. Galvin JE, Lee AMY, Baba M, Mann DMA, Dickson DW, Yamaguchi H, Schmidt ML, Iwatsubo T, Trojanowski JQ (1997) Monoclonal antibodies to purified cortical Lewy bodies recognize the mid-size neurofilament subunit. Ann Neurol 42: 595–603PubMedCrossRefGoogle Scholar
  43. Gaspar P, Gray F (1984) Dementia in idiopathic Parkinson’s disease. A neuropathological study of 32 cases. Acta Neuropathol 64: 43–52PubMedCrossRefGoogle Scholar
  44. Gaspar P, Duyckaerts C, Alvarez C et al (1991) Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson’s disease. Ann Neurol 30: 365–374PubMedCrossRefGoogle Scholar
  45. Gerfen C (1992) The neostriatal mosaic: Multiple levels of compartmental organization. Trends Neurosci 15: 133–139PubMedCrossRefGoogle Scholar
  46. Gerlach M, Jellinger K, Riederer P (1994) The possible role of noradrenergic deficits in selected signs of Parkinson’s disease. In: Briley M, Marien M (eds) Noradrenergic mechanisms in Parkinson’s disease. CRC Press, Boca Raton, pp 59–71Google Scholar
  47. Gerlach M, Riederer P, Youdim MBH (1996) Molecular mechanisms of neurodegene-ration. Synergism between reactive oxygen species, calcium, and excitotoxic amino acids. Adv Neurol 69: 177–194PubMedGoogle Scholar
  48. German DC, Manaye KF, White CL (1992) Disease specific patterns of locus ceruleus cell loss. Ann Neurol 32: 667–676PubMedCrossRefGoogle Scholar
  49. German DC, Manaye KE, Sonsalia PK, Brooks BA (1993) Midbrain dopaminergic neurons (nuclei A8, A9, and A10): Three-dimensional reconstruction in the rat. J Comp Neurol 331: 297–309PubMedCrossRefGoogle Scholar
  50. Gilman S, Frey KA, Koeppe RA et al (1996) Decreased striatal monoaminergic terminals in olivopontocerebellar atrophy and multiple system atrophy demonstrated with positron emission tomography. Ann Neurol 40: 885–892PubMedCrossRefGoogle Scholar
  51. Good PF, Olanow CW, Perl DP (1997) LAMMA studies of iron, oxidative stress, and neuroprotective strategies in Parkinson’s disease. In: Yasui M, Strong MJ, Ota K, Veritiy MA (eds) Mineral and metal neurotoxicology. CRC Press, Boca Raton, pp 379–390Google Scholar
  52. Goto S, Matsumoto S, Ushio Y, Hirano A (1996) Subregional loss of putaminal efferents to the basal ganglia output nuclei may cause parkinsonism in striatonigral degeneration. Neurology 47: 1032–1036PubMedCrossRefGoogle Scholar
  53. Graybiel AM, Hirsch EC, Agid Y (1990) The nigrostriatal system in Parkinson’s disease. Adv Neurol 53: 17–29PubMedGoogle Scholar
  54. Groenewegen JH, Roeling T, Voorn P, Berendse H (1993) The parallel arrangement of basal ganglia-thalamocortical circuits: a neuronal substrate for the role of dopamine in motor and cognitive functions? In: Wolters EC, Scheltens P (eds) Mental dysfunction in Parkinson’s disease. Vrije Universiteit Amsterdam 193: 3–18Google Scholar
  55. Gross C, Rougier A, Guehl D et al (1997) High-frequency stimulation of the globus pallidus internalis in Parkinson’s disease — a study of seven cases. J Neurosurg 87: 491–498PubMedCrossRefGoogle Scholar
  56. Guiloff RJ, George RJ, Marsden DC (1980) Reversible supranuclear ophthalmoplegia associated with parkinsonism. J Neurol Neurosurg Psychiatry 43: 352–354Google Scholar
  57. Guttman M, Burkholder J, Kish SJ et al (1997) [C-ll]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson’s disease — implications for the symptomatic threshold. Neurology 48: 1578–1583PubMedCrossRefGoogle Scholar
  58. Hallanger AE, Levey AL, Lee HJ et al (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262: 105–124PubMedCrossRefGoogle Scholar
  59. Halliday CM, Blumbergs PC, Cotton RCH et al (1990a) Loss of brainstem serotonin-and substance P-containing neurons in Parkinson’s disease. Brain Res 510: 104–107PubMedCrossRefGoogle Scholar
  60. Halliday CM, Blumbergs PC, Cotton RGH et al (1990b) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann Neurol 27: 373–385PubMedCrossRefGoogle Scholar
  61. Halliday GM, McRitchie DA, Cartwright HR et al (1996) Midbrain neuropathology in idiopathic Parkinson’s disease and diffuse Lewy body disease. J Clin Neurosci 3: 52–60PubMedCrossRefGoogle Scholar
  62. Hardman CD, McRitchie DA, Halliday GM et al (1996) The substantia nigra pars reticulata in Parkinson’s disease. Neurodegeneration 5: 49–55PubMedCrossRefGoogle Scholar
  63. Hardman CD, Halliday GM, McRitchie DA et al (1997a) Progressive supranuclear palsy effects both the substantia nigra pars compacta and reticulata. Exp Neurol 144: 183–192PubMedCrossRefGoogle Scholar
  64. Hardman CD, Halliday GM, McRitchie DA, Morris JGL (1997b) The subthalamic nucleus in Parkinson’s disease and progressive supranuclear palsy. J Neuropathol Exp Neurol 56: 132–142PubMedCrossRefGoogle Scholar
  65. Heinonen O, Soininen H, Sorvari H et al (1995) Loss of synaptophysin-like immunoreactivity in the hippocampal formation as an early phenomenon in Alzheimer’s disease. Neuroscience 64: 375–384PubMedCrossRefGoogle Scholar
  66. Hierholzer J, Cordes M, Venz S et al (1998) Loss of dopamine-D2 receptor binding sites in parkinsonian plus syndromes. J Nucl Med 39: 954–960PubMedGoogle Scholar
  67. Hill WD, Arai M, Cohen JA, et al (1993) Neurofilament mRNA is reduced in Parkinson’s disease substantia nigra pars compacta neurons. J Comp Neurol 328–336Google Scholar
  68. Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson’s disease and progressive supranuelear palsy. Proc Natl Acad Sci USA 84: 5976–5980PubMedCrossRefGoogle Scholar
  69. Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348PubMedCrossRefGoogle Scholar
  70. Hirsch EC, Mouatt A, Thomasset M et al (1992) Expression of calbindin D (28K) — like immunoreactivity in catecholaminergic cell groups of the human midbrain; normal distribution and distribution in Parkinson’s disease. Neurodegeneration 1: 83–93Google Scholar
  71. Hirsch EC, Faucheux B, Damier P et al (1997) Neuronal vulnerability in Parkinson’s disease. J Neural Transm [Suppl] 50: 79–88CrossRefGoogle Scholar
  72. Holthoffdetto VA, Kessler J, Herholz K et al (1997) Functional effects of striatal dysfunction in Parkinson’s disease. Arch Neurol 54: 145–150CrossRefGoogle Scholar
  73. Hoogendijk WJG, Pall CW, Troost D et al (1995) Image analysis-assisted morphometry of the locus ceruleus in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Brain 118: 131–143PubMedCrossRefGoogle Scholar
  74. Hunot S, Boissiere F, Faucheux B et al (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72: 355–363PubMedCrossRefGoogle Scholar
  75. Hunter S (1985) The rostral mesencephalon in Parkinson’s and Alzheimer’s disease. Acta Neuropathol 68: 326–334Google Scholar
  76. Hutchison WD, Lozano AM, Tasker RR et al (1997) Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp Brain Res 113: 557–563PubMedCrossRefGoogle Scholar
  77. Irrizary MC, Growdon W, Gomez-Isla T et al (1998) Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain α-synuclein immunoreactivity. J Neuropathol Exp Neurol 57: 334–337CrossRefGoogle Scholar
  78. Ito H, Goto S, Sakamoto S, Hirano A (1992) Calbindin-D28K in the basal ganglia of patients with Parkinsonism. Ann Neurol 32: 543–550PubMedCrossRefGoogle Scholar
  79. Ito H, Kosaka H, Matsumoto S, Imai T (1996) Striatal efferent involvement and its correlation to levodopa efficiacy in patients with multiple system atrophy. Neurology 47: 1291–1299PubMedCrossRefGoogle Scholar
  80. Itoh K, Weis S, Mehraein P, Müller-Höcker J (1997) Defects of cytochrome c oxidase in the substantia nigra of Parkinson’s disease: An immunohictochemical and morphometric study. Mov Disord 12: 9–16PubMedCrossRefGoogle Scholar
  81. Jackson-Lewis V, Donaldson D, Przedborski S (1997) Apoptosis and Parkinson’s disease (PD). Neurology 48: A323Google Scholar
  82. Javoy-Agid F, Scatton B, Ruberg M et al (1989) Distribution of monoaminergic, cholinergic and gabaergic markers in the human cerebral cortex. Neuroscience 29: 251–269PubMedCrossRefGoogle Scholar
  83. Jellinger (1988) The pedunculopontine nucleus in Parkison’s disease, supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51: 540–544PubMedCrossRefGoogle Scholar
  84. Jellinger K (1989) Pathology of Parkinson’s syndrome. In: Calne DB (ed) Drugs for the treatment of Parkinson’s disease. Springer, Berlin Heidelberg New York Tokyo, pp 47–112CrossRefGoogle Scholar
  85. Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14: 153–197CrossRefGoogle Scholar
  86. Jellinger K (1993) Pathogenese und Pathophysiologie der Parkinson-Krankheit. Neuropsychiatrie 7: 29–37Google Scholar
  87. Jellinger KA (1996) Die Bewegungsstörungen im höheren Lebensalter. In: Zapotoczky HG, Fischhoff PK (Hrsg) Handbuch der Gerontopsychiatrie. Springer, Wien New York, pp 202–290CrossRefGoogle Scholar
  88. Jellinger KA (1997) Morphological substrates of dementia in parkinsonism. A critical update. J Neural Transm [Suppl] 51: 123–147Google Scholar
  89. Jellinger KA (1998) Neuropathology of movement disorders. Neurosurg Clin North Am 9: 237–262Google Scholar
  90. Jellinger KA (1999) Cell death mechanisms in Parkinson’s disease. J Neural Transm (in press)Google Scholar
  91. Jellinger KA, Bancher C (1996) Dementia with Lewy bodies. Relationship to Parkinson’s and Alzheimer’s disease. In: McKeith LG, Perry E et al (eds) Dementia with Lewy bodies. Cambridge University Press, New York, pp 268–286CrossRefGoogle Scholar
  92. Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’ disease. Neurology 56 [Suppl 3] pp 161–170CrossRefGoogle Scholar
  93. Johansson F, Malm J, Nordh E, Hariz M (1997) Usefulness of pallidotomy in advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 125–132PubMedCrossRefGoogle Scholar
  94. Joyce JN, Smutzer G, Whitty CJ, Myers A, Bannon MJ (1997) Differential modification of dopamin transporter and tyrosine hydroxylase mRNAs in midbrain of subjects with Parkinson’s, Alzheimer’s with parkinsonism, and Alzheimer’s disease. Mov Disord 12: 885–897PubMedCrossRefGoogle Scholar
  95. Juncos JL, Hirsch EC, Malessa S et al (1991) Mesencephalic cholinergic nuclei in progressive supranuclear palsy. Neurology 41: 25–30PubMedCrossRefGoogle Scholar
  96. Kastner A, Hirsch EC, Agid Y, Javoy-Agid F (1993) Tyrosine hydroxylase protein and messenger RNA in the dopaminergic neurons of patients with Parkinson’s disease. Brain Res 606: 341–345PubMedCrossRefGoogle Scholar
  97. Kienzl E, Puchinger L, Jellinger K et al (1995) The role of transition metals in the pathogenesis of Parkinson’s disease. J Neurol Sci 134 [Suppl]: 69–75PubMedCrossRefGoogle Scholar
  98. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven patterns of dopamine loss in the striatum of patients with Parkinson’s disease. N Engl J Med 318: 876–880PubMedCrossRefGoogle Scholar
  99. Koller W, Pahwa R, Busenbark K et al (1997) High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 42: 292–299PubMedCrossRefGoogle Scholar
  100. Kösel S, Egensperger R, von Eitzen U et al (1997) On the question of apoptosis in the substantia nigra in Parkinson’s disease. Acta Neuropathol 93: 105–109PubMedCrossRefGoogle Scholar
  101. Kraus JK, Jankovic J, Lai EC et al (1997) Posteroventral medial pallidotomy in Levodopa-unresponsive parkinsonism. Arch Neurol 54: 1026–1029CrossRefGoogle Scholar
  102. Kume A, Takahashi A, Hashizume Y (1993) Neuronal cell loss of the striatonigral system in multiple system atrophy. J Neurol Sci 117: 33–40PubMedCrossRefGoogle Scholar
  103. Kupsch A, Earl C (1998) Neurosurgical interventions in the treatment of idiopathic Parkinson disease: neurostimulation and neural implantation. J Molec Med 77: 178–184CrossRefGoogle Scholar
  104. Lach H, Grimes D, Benoit B, Minkiewicz-Janda A (1992) Caudate nucleus pathology in Parkinson’s disease. Ultrastructural and biochemical findings in biopsy material. Acta Neuropathol 83: 352–360PubMedCrossRefGoogle Scholar
  105. Lehericy S, Hirsch EC, Pervera-Plerot P et al (1993) Heterogeneity of the degeneration of choliergic neurons in basal forebrain in patients with Alzheimer’s disease. J Comp Neurol 330: 15–31PubMedCrossRefGoogle Scholar
  106. Leigh JR, Zee DS (1991) The neurology of eye movement, 2nd edn. FA Davis PhiladelphiaGoogle Scholar
  107. Limousin P, Krack P, Pollak P et al (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. New Engl J Med 339: 1105–1111PubMedCrossRefGoogle Scholar
  108. Linert W, Herlinger E, Jameson RF et al (1996) Dopamine, 6-hydroxydopamine, iron, and dioxygen — their mutual interactions and possible implication in the development of Parkinson’s disease. Biochem Biophys Acta 1316: 160–168PubMedCrossRefGoogle Scholar
  109. Litvan I, Hauw JJ, Bartko JJ et al (1996) Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol 55: 97–105PubMedCrossRefGoogle Scholar
  110. Loughlin SE, Foote SL, Bloom FE (1986) Efferent projections of nucleus locus coeruleus: Topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neuroscience 18: 291–306PubMedCrossRefGoogle Scholar
  111. Lowe J, Lennox G, Leigh PN (1997) Disorders of movement and system degenerations. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn. E Arnold, London, pp 280–366Google Scholar
  112. Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: A comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345: 562–578PubMedCrossRefGoogle Scholar
  113. Ma SY, Rinne JO, Collan Y et al (1996) A quantitative morphometrical study of the neuron degeneration in the substantia nigra in patients with Parkinson’s disease. J Neurol Sci 140: 40–45PubMedCrossRefGoogle Scholar
  114. Ma SY, Röyttä M, Rinne JO et al (1997) Correlation between neuromorphometry in the substantia nigra and clinical features in Parkinson’s disease using disector counts. J Neurol Sci 151: 83–87PubMedCrossRefGoogle Scholar
  115. Malessa S, Hirsch EC, Cerver P et al (1990) Catecholaminergic systems in the medulla obiongata in Parkinsonian syndromes. A quantitative immunohistochemical study in Parkinson’s disease, progressive supranuclear palsy, and striatonigral degeneration. Neurology 40: 1739–1742PubMedCrossRefGoogle Scholar
  116. Mann DMA, Yates PO, Hawkes J (1983) The pathology of the human locus coeruleus. Clin Neuropathol 2: 1–7PubMedGoogle Scholar
  117. Marek KL, Seibyl JP, Zoghbi SS et al (1996) (123I)β-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 46: 231–237PubMedCrossRefGoogle Scholar
  118. Marie RM, Barre L, Rioux P et al (1995) PET imaging of neocortical monoaminergic terminals in Parkinson’s disease. J Neural Transm (PD-Dem Sect) 9: 55–71CrossRefGoogle Scholar
  119. Masliah E (1995) Mechanisms of synaptic dysfunction in Alzheimer’s disease. Histol Histopathol 10: 505–519Google Scholar
  120. Matzuk MM, Saper CB (1985) Preservation of hypothalamic dopaminergic neurons in Parkinson’s disease. Ann Neurol 18: 552–555PubMedCrossRefGoogle Scholar
  121. McGeer EG, McGeer PL (1989) Biochemical neuroanatomy of the basal ganglia. In: Calne DB (ed) Drugs for the treatment of Parkinson’s disease. Handbook of experimental pharmacology, vol 88. Springer, Wien-New York, pp 112–148Google Scholar
  122. McGeer PL, Itagaki S, Akiyama H, McGeer EG (1988) Rate of cell death in parkinsonisrn indicates active neuropathological process. Ann Neurol 24: 574–576PubMedCrossRefGoogle Scholar
  123. McRitchie DA, Cartwright HR, Halliday GM (1997) Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease. Exp Neurol 144: 202–213PubMedCrossRefGoogle Scholar
  124. Miller GW, Staley JK, Heilman CJ et al (1997) Immunochemical analysis of dopamine transporter protein in Parkinson’s disease. Ann Neurol 41: 530–539PubMedCrossRefGoogle Scholar
  125. Mitchell IJ, Aambrook MA, Jackson A et al (1990) Basal ganglia function in experimental movement disorders. In: Franks AJ (ed) Function and dysfunction in the basal ganglia. Manchester University Press, Manchester, NY, pp 94–109Google Scholar
  126. Mochizuki H, Mori H, Mizuno Y (1997) Apoptosis in neurodegenerative disorders. J Neural Transm [Suppl] 50: 125–140CrossRefGoogle Scholar
  127. Monza D, Soliveri P, Radice V et al (1998) Cognitive dysfunction and impaired organization of complex motility in degenerative Parkinsonian syndromes. Arch Neurol 55: 372–378PubMedCrossRefGoogle Scholar
  128. Morrish PK, Sawle GV, Brooks DJ (1996) Regional changes in [18F]dopa metabolism in the striatum in Parkinson’s disease. Brain 119: 2097–2103PubMedCrossRefGoogle Scholar
  129. Mufson EJ, Conner JM, Kordower JH (1995) Nerve growth factor in Alzheimer’s disease. Defective retrograde transport to nucleus basalis. Neuroreport 6: 1063–1066PubMedCrossRefGoogle Scholar
  130. Neill TH, Brown SA, Rafols JA, Shoulson L (1988) Atrophy of medium spiny I striatal dendrites in advanced Parkinson’s disease. Brain Res 455: 148–152CrossRefGoogle Scholar
  131. Nieuwenhuys R, Voogel J, Van Huizen C (1988) The human central nervous system. A synopsis and atlas, 3rd edn. Springer, Berlin Heidelberg New York Tokyo.CrossRefGoogle Scholar
  132. Nirenberg MJ, Vaughan RA, Uhl GR et al (1996) The dopamin transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 16: 436–447PubMedGoogle Scholar
  133. Nishimura M, Tomimoto H, Suenaga T, et al (1994) Synaptophysin and chromogranin A immunoreactivities of Lewy bodies in Parkinson’s disease brains. Brain Res 634: 339–344PubMedCrossRefGoogle Scholar
  134. Nishio T, Furukawa S, Akiguchi I, Sunohara N (1998) Medial nigral dopamine neurons have rich neurotrophin support. NeuroReport 9: 2847–2851PubMedCrossRefGoogle Scholar
  135. Obeso JA, Guridi J, DeLong M (1997) Surgery for Parkinson’s disease. J Neurol Neurosurg Psychiatry 62: 2–8PubMedCrossRefGoogle Scholar
  136. Olanow CW, Tatton N, Redman R, Perl D, Walker R, Tatton WG (1998) Apoptosis and mitochondrial potential in Parkinson’s disease (abstract). Ann Neurol 44: 452Google Scholar
  137. Olszewski J, Baxter D (1982) Cytoarchitecture of the human brain stem 2nd edn. Karger, BaselGoogle Scholar
  138. Ondo W, Jankovic J, Schwartz K, Almaguer M, Simpson RK (1998) Unilateral thalamic deep brain stimulation for refractory essential tremor and Parkinson’s disease tremor. Neurology 51: 1063–1069PubMedCrossRefGoogle Scholar
  139. Otsuka M, Ichiya Y, Kuwabara Y et al (1996) Differences in the reduced 18F-Dopa uptakes of the caudate and the putamen in Parkinson’s disease: correlation with the three main symptoms. J Neurol Sci 136: 169–173PubMedCrossRefGoogle Scholar
  140. Pahwa R, Paolo A, Tröster A, Koller W (1998) Cognitive impairment in Parkinson’s disease. Eur J Neurol 5: 431–441PubMedCrossRefGoogle Scholar
  141. Pakkenberg B, Moller A, Gundersen HJG et al (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54: 30–33PubMedCrossRefGoogle Scholar
  142. Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. I. The cortico-basal-ganglia-thalamo-corticol loop. Brain Res Rev 20: 91–127PubMedCrossRefGoogle Scholar
  143. Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subtypes of Parkinson’s disease. J Neuropathol Exp Neurol 50: 143–155CrossRefGoogle Scholar
  144. Percheron G, Francois C, Yelnik J et al (1994) The basal ganglia related system of primates: Definition, description and informational analysis. In: Percheron G, McKensie JS, Féger J (eds) The basal ganglia, Vol IV, New ideas and data on structure and function. Plenum Press, New York, pp 3–20CrossRefGoogle Scholar
  145. Perry EK, Irving D, Kerwin JM et al (1993) Cholinergic transmitter and neurotrophic activities in Lewy body dementia: similarity to Parkinson’s and distinction from Alzheimer disease. Alzheimer Dis Assoc Disord 7: 69–79PubMedCrossRefGoogle Scholar
  146. Pillon B, Deweer B, Malapani C et al (1994) Explicit memory disorders of demented parkinsonian patients and underlying neuronal basis. In: Korczyn AD (ed) Dementia in Parkinson’s disease. Monduzzi, Bologna, pp 265–271Google Scholar
  147. Pollanen MS, Dickson DW, Bergeron C (1993) Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 52: 183–191PubMedCrossRefGoogle Scholar
  148. Rascol O, Clanet M, Motastruc JL et al (1989) Abnormal ocular movements in Parkinson’s disease. Brain 112: 1193–1214PubMedCrossRefGoogle Scholar
  149. Reid WJG, Broe, GA, Morris JGL (1992) The roile of cholinergic deficiency in neuropsychological deficits in idiopathic Parkinson’s disease. Dementia 3: 114–120Google Scholar
  150. Riederer P, Rausch WD, Birkmayer W et al (1978) CNS modulation of adrenal tyrosine hydroxylase in Parkinson’s disease and metabolic encephalopathies. J Neural Transm [Suppl] 14: 121–133Google Scholar
  151. Rinne JO, Rummukainen J, Paljärvi J, Rinne UK (1989) Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra. Ann Neurol 26: 47–50PubMedCrossRefGoogle Scholar
  152. Rinne JO, Burn DJ, Mathias CJ et al (1995a) Positron emission tomography studies on the dopaminergic system and striatal opioid binding in the olivopontocerebellar atrophy variant of multiple system atrophy. Ann Neurol 37: 568–573PubMedCrossRefGoogle Scholar
  153. Rinne JO, Leihinnen A, Ruottinen H et al (1995b) Increased densitiy of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson’s disease — A PET study with [C-ll]raclopride. J Neurol Sci 132: 156–161PubMedCrossRefGoogle Scholar
  154. Rinne JO, Kuikka JT, Berström MA et al (1997) Striatal dopamine transporter in Parkinson’s disease; a study with a new radioligand, (123I)B-CIT-FP. Parkinsonism Rel Disord 3: 77–81CrossRefGoogle Scholar
  155. Robertson H (1992) Dopamine receptor interactions: Some implications for the treatment of Parkinson’s disease. Trends Neurosci 15: 201–206PubMedCrossRefGoogle Scholar
  156. Ruberg M, Agid Y (1988) Dementia in Parkinson’s disease. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 20, Psychopharmacology of aging nervous system. Plenum Press, New York, pp 157–206Google Scholar
  157. Saper CD, German DC, White CL (1985) Neuronal pathology in the nucleus basalis of Meynert and associated cell groups in senile dementia of the Alzheimer’s type. Possible role of cell loss. Neurology 35: 1089–1095Google Scholar
  158. Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251: 247–250CrossRefGoogle Scholar
  159. Scarnati E, Casbarri A, Campana E, Pacitti C (1987) The organization ot the nucleus tegmenti pedunculopontine neurons projecting to basal ganglia and thalamus. Neurosci Lett 79: 11–16PubMedCrossRefGoogle Scholar
  160. Schapira AHV (1995) Oxidative stress in Parkinson’s disease. Neuropathol Appl Neurobiol 21: 3–9PubMedCrossRefGoogle Scholar
  161. Sims KS, Williams RS (1990) The human amygdaloid complex. Neuroscience 36: 449–472PubMedCrossRefGoogle Scholar
  162. Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) α-synuclein in Lewy bodies. Nature 388: 839–840PubMedCrossRefGoogle Scholar
  163. Spillantini MG, Crowther RA, Jakes R et al (1998) α-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95: 6469–6473PubMedCrossRefGoogle Scholar
  164. Steriade M, Biesold D (1990) Brain cholinergic systems. Oxford University Press, OxfordGoogle Scholar
  165. Stoessl AJ, Ruth TJ (1998) Neuroreceptor imaging: new developments om PET and SPECT imaging of neuroreceptor binding (including dopamine transporters, vesicle transporters and post synaptic receptor sites). Curr Opin Neurol 11: 327–333PubMedCrossRefGoogle Scholar
  166. Strafella A, Ashby P, Munz M et al (1997) Inhibition of voluntary activity by thalamic stimulation in humans — relevance for the control of tremor. Mov Disord 12: 727–737PubMedCrossRefGoogle Scholar
  167. Sun D, Leung CL, Liem RKH (1996) Phosphorylation of the high molecular weight neurofilament protein (NF-H) by cdk5 and p53. J Biol Chem 271: 14245–14251PubMedCrossRefGoogle Scholar
  168. Tagliavini F, Pilleri G, Bouras C, Constantinidis J (1984) The basal nucleus of Meynert in idiopathic parkinson’s disease. Acta Neurol Scand 69: 20–28CrossRefGoogle Scholar
  169. Taha JM, Favre J, Baumann TK, Burchiel KJ (1997) Tremor control after pallidotomy in patients with Parkinson’s disease — correlation with microrecording findings. J Neurosurg 86: 642–647PubMedCrossRefGoogle Scholar
  170. Tasker RR, Lang AE, Lozano AM (1997) Pallidal and thalamic surgery for Parkinson’s disease. Exp Neurol 144: 35–40PubMedCrossRefGoogle Scholar
  171. Tissingh G, Booij J, Winogrodzka A et al (1997) IBZM-and CIT-SPECT of the dopaminergic system in parkinsonism. J Neurol Transm [Suppl] 50: 31–37CrossRefGoogle Scholar
  172. Tissingh G, Bergmans P, Booij J et al (1998) Drug-naive patients with Parkinson’s disease in Hoehn and Yahr stages I and II show a bilateral decrease in striatal dopamine transporters as revealed by [1-123]β-cit spect. J Neurol 245: 14–20PubMedCrossRefGoogle Scholar
  173. Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775: 24–29PubMedCrossRefGoogle Scholar
  174. Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150: 119–131PubMedGoogle Scholar
  175. Trojanowski JQ, Lee VM-Y (1994) Phosphorylation of neuronal cytoskeletal proteins in Alzheimer’s disease and Lewy body dementia. Ann NY Acad Sci 747: 92–109PubMedCrossRefGoogle Scholar
  176. Trojanowski JQ, Lee VMY (1998) Aggregation of neurofilament and α-synuclein proteins in Lewy bodies — Implications for the pathogenesis of Parkinson’s disease and Lewy body dementia. Arch Neurol 55: 151–152PubMedCrossRefGoogle Scholar
  177. Turjanski N, Lees AJ, Brooks DJ (1997) In vivo studies on striatal dopamine D1 and D2 site binding in 1-dopa treated Parkinson’s disease patients with and without dyskinesias. Neurology 49: 717–723PubMedCrossRefGoogle Scholar
  178. Uhl GR (1998) Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson’s disease. Ann Neurol 43: 555–560PubMedCrossRefGoogle Scholar
  179. Uhl GR, Walther D, Mash D et al (1994) Dopamine transporter messenger RNA in Parkinson’s disease and control substantia nigra neurons. Ann Neurol 35: 494–498PubMedCrossRefGoogle Scholar
  180. Varastet M, Riche D, Maziere M, Hantraye P (1994) Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons in Parkinson’s disease. Neuroscience 63: 47–56PubMedCrossRefGoogle Scholar
  181. Vereecken ThHLG, Vogels OJM, Nieuwenhuys R (1994) Neuron loss and shrinkage in the amygdala in Alzheimer’s disease. Neurobiol Aging 15: 45–54PubMedCrossRefGoogle Scholar
  182. Vila M, Herrero MT, Levy R et al (1996) Consequences of nigrostriatal denervation on the Y-aminobutyric acidic neurons of substantia nigra pars reticulata and superior colliculus in parkinsonian syndromes. Neurology 46: 502–509CrossRefGoogle Scholar
  183. Wakabayashi K, Takahashi H, Takeda S et al (1988) Parkinson’s disease: The presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol 76: 217–221PubMedCrossRefGoogle Scholar
  184. Wills AJ, Thompson PD, Findley LJ, Brooks DJ (1996) A positron emission tomography study of primary orthostatic tremor. Neurology 46: 747–752PubMedCrossRefGoogle Scholar
  185. Xuereb JH, Perry EK, Candy JM et al (1990) Parameters of cholinergic neurotransmission in the thalamus in Parkinson’s disease and Alzheimer’s disease. J Neurol Sci 99: 185–197PubMedCrossRefGoogle Scholar
  186. Yung KKL, Smith AD, Levey AL, Bolam JP (1996) Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat — Evidence from dopamine receptor and neuropeptide immunostaining. Eur J Neurosci 8: 861–869PubMedCrossRefGoogle Scholar
  187. Zubenko GS (1992) Biological correlates of clinical heterogeneity in primary dementia. Neuropsychopharmacology 6: 72–93Google Scholar
  188. Zubenko GS, Moossy J, Kopp U (1990) Neurochemical correlates of major depression in primary dementia. Arch Neurol 47: 209–214PubMedCrossRefGoogle Scholar
  189. Zweig RM, Jankel WR, Hedreen JC et al (1989a) The pedunculopontine nucleus in Parkinson’s disease. Ann Neurol 26: 41–46PubMedCrossRefGoogle Scholar
  190. Zweig RM, Ross CA, Hedreen JC et al (1989b) Neuropathology of aminergic nuclei in Alzheimer’s disease. In: Iqbal K, Wisniewski HM (eds) Alzheimer’s disease and related disorders. Liss, New York, pp 353–365Google Scholar
  191. Zweig RM, Cardilio JE, Cohen M, Giere S, Hedreen JC (1993) The locus ceruleus and dementia in Parkinson’s disease. Neurology 43: 986–991PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • K. A. Jellinger
    • 1
  1. 1.Ludwig Boltzmann Institute of Clinical NeurobiologyPsychiatric HospitalViennaAustria

Personalised recommendations