Advertisement

Applications of the Rel View System

  • R. Behnke
  • R. Berghammer
  • T. Hoffmann
  • B. Leoniuk
  • P. Schneider
Part of the Advances in Computing Science book series (ACS)

Abstract

The study of relations has its roots in the second half of the 19th century with the pioneering works of Boole and de Morgan. Later on, Peirce and Schröder developed the algebra of relations. The modern axiomatic development of relational algebra starts with the fundamental work of Tarski and his co-workers. In the last two decades this formalization has widely been used by many mathematicians and computer scientists as a very convenient base for describing fundamental concepts like graphs, orders, games, and combinatorics in mathematics and like relational data bases, Petri nets, data types, and semantics of programming languages in computer science. A lot of examples and references to relevant literature can be found in (Schmidt Ströhlein 1993) and (Brink et al. 1997).

Keywords

Line Graph Simple Graph Relational Algebra Binary Decision Diagram Boolean Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behnke R. (1997): Extending relational specifications by sequential algebras–Prototyping with RELVIEw. In: Proc. of a Colloquium on Programming languages and fundamentals of programming, Avendorf, Germany, Report 9717, Institut für Informatik und Praktische Mathematik, Universität Kiel, pp. 12–22Google Scholar
  2. Behnke R. (1998): Transformationelle Programmentwicklung im Rahmen relationaler und sequentieller Algebren. Dissertation, Institut für Informatik und Praktische Mathematik, Universität KielGoogle Scholar
  3. Behnke R., Berghammer R., Schneider P. (1997): Machine support of relational computations - The Kiel RELVIEw system. Report 9711, Institut für Informatik und Praktische Mathematik, Universität KielGoogle Scholar
  4. Berghammer R. (1992): Computing the cut completion of a partially ordered set - An example for the use of the RELVIEw-system. Report 9205, Fakultät für Informatik, Universität der Bundeswehr MünchenGoogle Scholar
  5. Berghammer R., Gritzner T., Schmidt G. (1994): Prototyping relational specifications using higher-order objects. In: Proc. of HOA ‘83, Amsterdam, The Netherlands, Springer, Berlin, pp. 56–75 (Lecture notes in computer science, vol. 816)Google Scholar
  6. Berghammer R., von Karger B., Ulke C. (1996): Relation-algebraic analysis of Petri nets with RELVIEw. In: Proc. of TACAS ‘86, Passau, Germany, Springer, Berlin, pp. 49–69 (Lecture notes in computer science, vol. 1055 )Google Scholar
  7. Berghammer R., Schmidt G. (1993): RELVIEw — A computer system for the manipulation of relations. In: Proc. of AMAST ‘83, Enschede, The Netherlands, Springer, London, pp. 405–406 (Workshops in computing)Google Scholar
  8. Brink C., Kahl W., Schmidt G. (1997): Relational methods in Computer Science. Springer, Wien (Advances in computing science )MATHCrossRefGoogle Scholar
  9. Bryant R.E. (1992): Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Computing Surveys 24, pp. 293–318CrossRefGoogle Scholar
  10. Hattensperger C., Berghammer R., Schmidt G. (1993): RALF - A relation-algebraic formula manipulation system and proof checker. In: Proc. of AMAST ‘83, Enschede, The Netherlands, Springer, London, pp. 407–408 (Workshops in computing)Google Scholar
  11. Schmidt G., Ströhlein T. (1993): Relations and graphs. Springer, Berlin, ( EATCS Monographs on theoretical computer science )Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • R. Behnke
  • R. Berghammer
  • T. Hoffmann
  • B. Leoniuk
  • P. Schneider

There are no affiliations available

Personalised recommendations