The Term Graph Programming System HOPS

  • Wolfram Kahl
Part of the Advances in Computing Science book series (ACS)


Programmers of Haskell or ML know that once their programs are syntactically correct and get past the type checker, the probability that they are correct is usually already pretty high. But while the parser or the type checker still complain, it is not always easy to spot the real problem, which may be far from the trouble spot indicated by the often cryptic error message.


Automatic Transformation Term Graph Module Editor Successor Edge Module Document 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayer, A., Grobauer, B., Kahl, W., Kempf, P., Schmalhofer, F., Schmidt, G., Winter, M. (1996): The Higher-Object Programming System “HOPS”Internal Report, Fakultät für Informatik, Universität der Bundeswehr München. URL 214 pp.
  2. Bellin, G., Scott, P.J. (1994): On the it-calculus and linear logic. Theoretical Computer Science 135 (1), 11–63.MathSciNetMATHCrossRefGoogle Scholar
  3. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K. (1993): A Technique for Drawing Directed Graphs. IEEE-TSE.Google Scholar
  4. Kahl, W. (1994): Can Functional Programming Be Liberated from the Applicative Style?. In Bjorn Pehrson, Imre Simon (eds.), Technology and Foundations, Proceedings of the IFIP 13th World Computer Congress, Hamburg, Germany, 28 August – 2 September 1994, Volume I, pages 330–335. IFIP Transactions. North-Holland. IFIP.Google Scholar
  5. Kahl, W. (1996): Algebraische Termgraphersetzung mit gebundenen Variablen.Reihe Informatik. Herbert Utz Verlag, München. ISBN 3–931327–60–4, zugleich Dissertation an der Fakultät für Informatik, Universität der Bundeswehr München.Google Scholar
  6. Kahl, W. (1998): The Higher Object Programming System — User Manual for HOPS, Fakultät für Informatik, Universität der Bundeswehr München. URL Google Scholar
  7. Kahl, W. (1998): Internally Typed Second-Order Term Graphs. In Juraj Hromkovic, Ondrej Sykora (eds.), Graph Theoretic Concepts in Computer Science, 24th International Workshop, WG ‘88, Smolenice Castle, Slovak Republic, June 1998, Proceedings, pages 149–163. LNCS 1517. Springer-Verlag.Google Scholar
  8. Kingston, J.H. (1998): A User’s Guide to the Lout Document Formatting System (Version 3.12). Basser Department of Computer Science, University of Sydney. ISBN 0 86758 951 5. URL Google Scholar
  9. Klop, J.W. (1980): Combinatory Reduction Systems. Mathematical Centre Tracts 127, Centre for Mathematics and Computer Science, Amsterdam. PhD ThesisGoogle Scholar
  10. Klop, J.W., van Oostrom, V., van Raamsdonk, F. (1993): Combinatory reduction systems: introduction and survey. Theoretical Computer Science 121 (1–2), 279–308.MathSciNetMATHCrossRefGoogle Scholar
  11. Knuth, D.E. (1984): Literate Programming. The Computer Journal 27 (2), 97–111.MATHCrossRefGoogle Scholar
  12. Milner, R. (1993): The Polyadic’n-Calculus: A Tutorial. In F. L. Bauer, W. Brauer, H. Schwichtenberg (eds.), Logic, Algebra, and Specification, pages 203–246. Vol. 94 of NATO Series F: Computer and Systems Sciences. Springer.Google Scholar
  13. Orava, F., Parrow, J. (1992): An Algebraic Verification of a Mobile Telephone Network. Formal Aspects of Computer Science 4, 497–543.MATHCrossRefGoogle Scholar
  14. Williams, R.N. (1992): FunnelWeb User’s Manual.URL Part of the FunnelWeb distributionGoogle Scholar
  15. Zierer, H., Schmidt, G., Berghammer, R. (1986): An Interactive Graphical Manipulation System for Higher Objects Based on Relational Algebra. In Proc. 12th International Workshop on Graph-Theoretic Concepts in Computer Science, pages 68–81. LNCS 246. Springer-Verlag, Bernried, Starnberger See.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Wolfram Kahl

There are no affiliations available

Personalised recommendations