Nearly 10,000 living ant species are known today and many are renowned for their fierce aggressiveness. In these highly social insects, defense (offense) is a collective behaviour coordinated by recruiting or dispersing signals, e.g. trail and alarm pheromones. Excellent accounts of ants’ defensive behaviour are provided by BUSCHINGER and MASCHWITZ (1) and HÖLLDOBLER and WILSON (2). Mechanical and chemical weapons are used by ants during fighting, and both can be combined in a single defensive device, e.g. secretions from glands associated with the mandibles or the sting. Chemical defense is prominent and no less than six different exocrine glands have been reported as sources of defensive compounds (1). All these glands are not necessarily present in all species and when present, they can fulfil other functions than defense, e.g. in communication.


Asymmetric Synthesis Reductive Amination Stereoselective Synthesis Pyroglutamic Acid Defensive Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buschinger A, Maschwitz U (1984) Defensive Behavior and Defensive Mechanisms in Ants. In: Hermann HR (ed) Social Insects. Praeger, New York, pp 95–149Google Scholar
  2. 2.
    Hölldobler B, Wilson ED (1990) The Ants. Springer, BerlinGoogle Scholar
  3. 3.
    Maschwitz U (1975) Old and New Chemical Weapons in Ants. In: Pheromones and Defensive Secretions in Social Insects. Proceedings of the IUSSI Symposium, Dijon, pp 41–45Google Scholar
  4. 4.
    Schmidt JO (1970) Hymenopteran Venoms: Striving toward the Ultimate Defense against Vertebrates. In: Evans DL, Schmidt JO (eds) Insect defenses. Adaptative Mechanisms and Strategies of Prey and Predators. State University of New York Press, Albany, pp 387–419Google Scholar
  5. 5.
    Schmidt JO (1986) Chemistry, Pharmacology, and Chemical Ecology of Ant Venoms. In: Piek T (ed) Venoms of the Hymenoptera. Biochemical, Pharmacological and Behavioural Aspects. London, Academic Press, pp 425–508Google Scholar
  6. 6.
    Attygalle AB, Morgan ED (1984) Chemicals from the Glands of Ants Chem Soc Rev 13: 245Google Scholar
  7. 7.
    Blum MS (1981) Chemical Defenses of Arthropods. Academic Press, New YorkGoogle Scholar
  8. 8.
    Numata A, Ibuka T (1987) Alkaloids from Ants and Other Insects. In: Brossi A (ed) The Alkaloids, Vol. 31. Academic Press, San Diego, p 193Google Scholar
  9. 9.
    Braekman JC, Daloze D (1990) Chemical Defense in Ants. In: Atta ur Rahman (ed) Studies in Natural Products Chemistry, Vol. 6. Elsevier, Amsterdam, p 421Google Scholar
  10. 10.
    Jones TH, Blum MS, Robertson HG (1990) Novel Dialkylpiperidines in the Venom of the Ant Monomorium delagoense. J Nat Prod 53: 429Google Scholar
  11. 11.
    Jones TH, Torres JA, Spande TF, Garraffo HM, Blum MS, Snelling RR (1996) Chemistry of Venom Alkaloids in some Solenopsis (Diplorhoptrum) Species from Puerto Rico. J Chem Ecol 22: 1221Google Scholar
  12. 12.
    Gorman JST, Jones TH, Spande TF, Snelling RR, Torres JA, Garraffo HM (1998) 3-Hexyl-5-methylindolizidine Isomers from Thief Ants, Solenopsis (Diplorhoptrum) Species. J Chem Ecol 24: 933Google Scholar
  13. 13.
    Attygalle AB, Xu SC, McCormick KD, Meinwald J, Blankespoor CL, Eisner T (1993) Alkaloids of the Mexican Bean Beetle, Epilachna varivestis (Coccinellidae). Tetrahedron 49: 9333Google Scholar
  14. 14.
    Tarawa JN, Blokhin A, Foderaro TA, Stermitz FR, Hope H (1993) Toxic Piperidine Alkaloids from Pine and Spruce Trees. New Structures and a Biosynthesis Hypothesis. J Org Chem 58: 4813Google Scholar
  15. 15.
    Hill RK, Chan TH (1965) Magnetic Non-Equivalence of Methylene Protons in Dissymetric Benzylamines. Tetrahedron 21: 2015Google Scholar
  16. 16.
    Garraffo HM, Simon LD, Daly JW, Spande TF (1994) Cis- and Trans-Configurations of a,a’-Disubstituted Piperidines and Pyrrolidines by GC-FTIR: Application to Decahydroquinoline Stereochemistry. Tetrahedron 50: 11329Google Scholar
  17. 17.
    Leclercq S, Thirionet I, Broeders F, Daloze D, Van der Meer R, Braekman JC (1994) Absolute Configuration of the Solenopsins, Venom Alkaloids of the Fire Ants. Tetrahedron 50: 8465Google Scholar
  18. 18.
    Wheeler JW, Olubajo O, Storm CB, Duffield RM (1981) Anabaseine: Venom Alkaloid of Aphaenogaster Ants. Science 211: 1051Google Scholar
  19. 19.
    Attygalle AB, Kern F, Huang Q, Meinwald J (1998) Trail Pheromone of the Myrmicine Ant Aphaenogaster rudis (Hymenoptera: Formicidae). Naturwissensch 85: 38Google Scholar
  20. 20.
    Jackson BD, Wright PJ, Morgan ED (1989) 3-Ethyl-2,5-Dimethylpyrazine, a Component of the Trail Pheromone of the Ant Messor bouvieri. Experientia 45: 487Google Scholar
  21. 21.
    Brand JM, Mpuru SP (1993) Dufour’s Gland and Poison Gland Chemistry of the Myrmicine Ant, Messor capensis. J Chem Ecol 19: 1315Google Scholar
  22. 22.
    Coll M, Hefetz A, Lloyd HA (1987) Adnexal Glands Chemistry of Messor ebeninus Forel (Formicidae: Myrmicinae). Z Naturforsch 46c: 1027Google Scholar
  23. 23.
    Van der Meer RK, Morel LM (1995) Ant Queens Deposit Pheromones and Antimicrobial Agents on Eggs. Naturwissensch 82: 93Google Scholar
  24. 24.
    Van der Meer RK, Lofgren CS (1988) Use of Chemical Characters in Defining Populations of Fire Ants, Solenopsis saevissima Complex, (Hymenoptera: Formicidae). The Florida Entomologist 71: 323Google Scholar
  25. 25.
    Jones TH, Blum MS, Andersen AN, Fales HM, Escoubas P (1988) Novel 2-Ethyl-5Alkylpyrrolidines in the Venom of the Australian Ant of the Genus Monomorium. J Chem Ecol 14: 35Google Scholar
  26. 26.
    Bacos D, Basselier JJ, Celerier JP, Lange C, Marx E, Lhommet G, Escoubas P, Lemaire M, Clement JL (1988) Ant Venom Alkaloids from Monomorium Species: Natural Insecticides. Tetrahedron Lett 29: 3061Google Scholar
  27. 27.
    Jones TH, Stahli SM, Don AW, Blum MS (1988) Chemotaxonomic Implications of the Venom Chemistry of some Monomorium antarcticum Populations. J Chem Ecol 14: 2197Google Scholar
  28. 28.
    Jones TH, Laddago A, Don AW, Blum MS (1990) A Novel (5E,9Z)-Dialkylindolizidine from the Ant Monomorium smithii. J Nat Prod 53: 375Google Scholar
  29. 29.
    Jones TH, Blum MS, Fales HM, Brando CRF, Lattke J (1991) Chemistry of Venom Alkaloids in the Ant Genus Megalomyrmex. J Chem Ecol 17: 1897Google Scholar
  30. 30.
    Jones TH, De Vries PJ, Escoubas P (1991) Chemistry of Venom Alkaloids in the Ant Megalomyrmex foreli (Myrmicinae) from Costa Rica. J Chem Ecol 17: 2507Google Scholar
  31. 31.
    Reder E, Veith HJ, Buschinger, A (1995) Novel Alkaloids from the Poison Glands of Ants Leptothoracini. Helv Chim Acta 78: 73Google Scholar
  32. 32.
    Koob R, Rudolph C, Veith HJ (1997) The Absolute Configuration of 3-Methylpyrrolidine Alkaloids from Poison Glands of Ants Leptothoracini (Myrmicinae). Helv Chim Acta 80: 267Google Scholar
  33. 33.
    Buschinger A (1972) Giftdrüsensekret als Sexualpheromon bei der Ameise Harpagoxenus sublaevis. Naturwissensch 59: 313Google Scholar
  34. 34.
    Jones TH, Blum MS, Fales HM, Thompson CR (1980) (5Z,8E)-3-Heptyl-5-Methylpyrrolizidine from a Thief Ant. J Org Chem 45: 4778Google Scholar
  35. 35.
    Jones TH, Highet RJ, Don AW, Blum MS (1986) Alkaloids of the Ant Chelaner antarcticus. J Org Chem 51: 2712Google Scholar
  36. 36.
    Ritter FJ, Rothgans IEM, Tolman E, Verwiel PEJ, Stein F (1973) 5-Methyl-3-ButylOctahydroindolizine, a Novel Type of Pheromone Attractive to Pharaoh’s Ants (Monomorium pharaonis). Experientia 29: 530Google Scholar
  37. 37.
    Jones TH, Highet RJ, Blum MS, Fales HM (1984) (5Z,9Z)-3-Alkyl-5-Methylindolizidines from Solenopsis (Diphorhoptrum) Species. J Chem Ecol 10: 1233Google Scholar
  38. 38.
    Francke W, Schröder F, Walter F, Sinnwell V, Baumann H, Kaib M (1995) New Alkaloids from Ants: Identification and Synthesis of (3R,5S,9R)-3-Butyl-5-(1-Oxopropyl)Indolizidine and (3R,5R,9R)-3-Butyl-5-(1-Oxopropyl)Indolizidine, Constituents of the Poison Gland Secretion in Myrmicaria eumenoides (Hymenoptera, Formicidae). Liebigs Ann 965Google Scholar
  39. 39.
    Schröder F, Franke S, Francke W, Baumann H, Kaib M, Pasteels JM, Daloze D (1996) A New Family of Tricyclic Alkaloids from Myrmicaria Ants. Tetrahedron, 52: 13539Google Scholar
  40. 40.
    Schröder F, Francke W (1998) Synthesis of Myrmicarin 217, a Pyrrolo[2,1,5cd]Indolizine from Ants. Tetrahedron 54: 5259Google Scholar
  41. 41.
    Schröder F, Sinnwell V, Baumann H, Kaib M (1996) Myrmicarin 430A: A New Heptacyclic Alkaloids from Myrmicaria Ants. Chem Commun 2139Google Scholar
  42. 42.
    Schröder F, Sinnwell V, Baumann H, Kaib M, Francke W (1997) Myrmicarin 663: A New Decacyclic Alkaloid from Ants. Angew Chem Int Ed Engl 36: 77Google Scholar
  43. 43.
    Braekman JC, Daloze D, Pasteels JM, Van Hecke P, Declercq JP, Sinnwell V, Francke W (1987) Tetraponerine-8, an Alkaloidal Contact Poison in a Neo-Guinean Pseudomyrmecine Ant, Tetraponera sp. Z Naturforsch 42c: 627Google Scholar
  44. 44.
    Merlin P, Braekman JC, Daloze D, Pasteels JM (1988) Tetraponerines, Toxic Alkaloids in the Venom of the Neo-Guinean Pseudomyrmecine Ant, Tetraponera sp. J Chem Ecol 14: 517Google Scholar
  45. 45.
    Merlin P (1990) PhD Thesis, University of BrusselsGoogle Scholar
  46. 46.
    Yue C, Royer J, Husson HP (1990) The First Enantioselective Synthesis of Natural (+)-Tetraponerine-8: A New Extension of the CN(R,S) Method to an Uncommon Skeleton. J Org Chem 55: 1140Google Scholar
  47. 47.
    Merlin P, Braekman JC, Daloze D (1988) Stereoselective Synthesis of (f)-Tetraponerine-8, a Defense Alkaloid of the Ant Tetraponera sp. Tetrahedron Lett 29: 1691Google Scholar
  48. 48.
    Merlin P, Braekman JC, Daloze D (1991) Stereoselective Total Synthesis of (+)Tetraponerine-8. Tetrahedron 47: 3805Google Scholar
  49. 49.
    Jones TH (1990) A Short Tetraponerine Synthesis. Tetrahedron Lett 31: 1535Google Scholar
  50. 50.
    Jones TH (1990) A Stereoselective Synthesis of the (9Z,11Z) Tetraponerines T4 and T8. Tetrahedron Lett 31: 4543Google Scholar
  51. 51.
    Barluenga J, Tomas M, Kouznetsov V, Rubio E (1994) An Extremely Short Stereo-selective Synthesis of (f)-Tetraponerine-8. J Org Chem 59: 3699Google Scholar
  52. 52.
    Macours P, Braekman JC, Daloze D (1995) Concise Asymmetric Syntheses of (+)and (—)- Tetraponerine-8, (+)- and (—)-Tetraponerine-7, and their Ethyl Homologues. A Correction of the Structures of Tetraponerine-3 and -7. Tetrahedron 51: 1415Google Scholar
  53. 53.
    Devijver C, Macours P, Braekman JC, Daloze D, Pasteels JM (1995) Short Syntheses of (f)-Tetraponerines-5 and -6. The Structures of Tetraponerines-1 and -2, and a Revision of the Structures of (+)-Tetraponerines-5 and -6. Tetrahedron 51: 10913Google Scholar
  54. 54.
    Morgan ED, Hölldobler B, Vaisar T, Jackson BD (1992) Contents of Poison Apparatus and their Relation to Trail-Following in the Ant Daceton armigerum. J Chem Ecol 18: 2161Google Scholar
  55. 55.
    Janssen E, Bestmann HJ, Hölldobler B, Kern F (1995) N,N-Dimethyluracil and Actinidine, Two Pheromones of the Ponerine Ant Megaponera foetens. J Chem Ecol 21: 1947Google Scholar
  56. 56.
    Jones TH, Torres JA, Snelling RR, Spande TF (1996) Primary Tetradecenyl Amines from the Ant Monomorium floricola. J Nat Prod 59: 801Google Scholar
  57. 57.
    Brophy JJ, Clezy PS, Leung CWF, Robertson PL (1993) Secondary Amines Isolated from Venom Gland of Dolichoderine Ant, Technomyrmex albipes. J Chem Ecol 19: 2183Google Scholar
  58. 58.
    Leclercq S, Daloze D, Braekman JC (1996) Synthesis of the Fire Ant Alkaloids, Solenopsins. A Review. Organic Preparations and Procedures Int 28: 499Google Scholar
  59. 59.
    Chakalamannil S, Wang Y (1997) An Enantioselective Route to Trans-2,6-Disubstituted Piperidines. Tetrahedron 53: 11203Google Scholar
  60. 60.
    Adams DR, Carruthers W, Williams MJ, Crowley PJ (1989) Synthesis of trans-2,6Dialkylpiperidines by Intramolecular Amidomercuriation and by 1,3-Cycloaddition of Alkenes to 2-Methyl-2,3,4,5-tetrahydropyridine Oxide. J Chem Soc Perkin Trans I, 1507Google Scholar
  61. 61.
    Escoubas P, Fales HM, Andersen AN, Blum MS, Jones TH (1988) Novel 2-Ethyl-5alkylpyrrolidines in the Venom of an Australian Ant of the Genus Monomorium. J Chem Ecol 14: 35Google Scholar
  62. 62.
    Blum MS, Don AW, Stahly SM, Jones TH (1988) Chemotaxanomic Implications of the Venom Chemistry of Some Monomorium antarcticum. J Chem Ecol 14: 2197Google Scholar
  63. 63.
    Fales HM, Blum MS, Jones TH (1979) Synthesis of Unsymmetrical 2,5-di-nAlkylpyrrolidines: 2-Hexy1–5-pentylpyrrolidine from the Thief Ant Solenopsis molesta, Solenopsis texana, and its Homologues. Tetrahedron Lett 12: 1031Google Scholar
  64. 64.
    Tufariello JJ, Puglis JM (1986) The a-cs’-Dialkylation of Cyclic Amines The Synthesis of Solenopsis Ant Venoms. Tetrahedron Lett 27: 1489Google Scholar
  65. 65.
    Renko ZD, Schink HE, Báckvall JE (1990) A Stereocontrolled Organopalladium Route to 2,5-Disubstituted Pyrrolidine Derivatives. Application to the Synthesis of a Venom Alkaloid of the Ant Species Monomorium latinode. J Org Chem 55: 826Google Scholar
  66. 66.
    Okukado N, Van Horn DE, Baba S, Takahashi T, Negishi E (1970) A Novel Stereoselective Synthesis of 1,3-Dienes from Alkynes via the Addition of Cuprous Chloride to Vinylalanes. J Am Chem Soc 92: 6678Google Scholar
  67. 67.
    Dumas F, D’Angelo J (1992) A New Route to Trans-2,5-Dialkylpyrrolidines. Tetrahedron Lett 38: 2005Google Scholar
  68. 68.
    Fouquet G, Schlosser M (1974) Improved Carbon-Carbon Linking by Controlled Copper Catalysis. Angew Chem Int Edit 13: 82Google Scholar
  69. 69.
    Meyers AI, Edwards PD, Bailey TR, Jagdmann GE (1985) a-Amino Carbanions. Preparation, Metalation, and Alkylation of Enamidines. Synthesis of Piperidine and Pyrrolidine Natural Products and Homologation of Carbonyl Compounds. J Org Chem 50: 1019Google Scholar
  70. 70.
    Bacos D, Celerier JP, Marx E, Rosset S, Lhommet G (1990) Stereoselective Synthesis and Stereochemical Determination of 2,5-Dialkylpyrrolidines and 2,6-Dialkylpiperidines. J Het Chem 27: 1387Google Scholar
  71. 71.
    Miyashita M, Awen BZE, Yoshikoshi A (1990) Acyl Nitronates in Organic Synthesis. An Expeditious Synthesis of 2,5-Dialkylpyrrolidines and 2,5-Dialkylpyrrolines Including Ant Venom Alkaloids. Chem Lett 238Google Scholar
  72. 72.
    Veith J, Collas M, Zimmer R (1997) Simple Synthesis of both Enantiomers of 3-Methyl-N-(3-methylbutyl)pyrrolidine. Liebigs Ann 391Google Scholar
  73. 73.
    Takahata H, Takehara H, Ohkubo N, Momose T (1990) An Efficient Route to Chiral Trans-2,5-dialkylpyrrolidines via Stereoselective Intramolecular Amidomercuration. Tetrahedron Asym 1: 561 (1990).Google Scholar
  74. 74.
    Schlessinger RH, Iwanowicz EJ (1987) The Synthesis of either (+)- or (-)-Trans2,5-dimethylpyrrolidine. Tetrahedron Lett 28: 2083Google Scholar
  75. 75.
    Wistrand LG, Skrinjar M (1991) Chirospecific Synthesis of Trans-2,5-disubstituted Pyrrolidines via Stereoselective Addition of Organocopper Reagents to N-Acyliminium ions. Tetrahedron 47: 573Google Scholar
  76. 76.
    Shono T, Matsumura Y, Tsubata K, Sugihara Y, Yamane S, Kanazawa T, Aoki T (1982) Electroorganic Chemistry, 60. Electroorganic Synthesis of Enamides and Enecarbamates and their Utilization in Organic Synthesis. J Am Chem Soc 104: 6697Google Scholar
  77. 77.
    Rapoport H, Shiosaki K (1985) ¦Á-Amino-acids as Chiral Educts for Asymmetric Products. Chirospecific Syntheses of the 5-Butyl-2-heptylpyrrolidines from Glutamic Acid. J Org Chem 50: 1229Google Scholar
  78. 78.
    Rosset S, Celerier JP, Lhommet G (1991) Enantioselective Syntheses of Monomorium minutum Ant Venom Alkaloids: (5R)-2-(5-Hexenyl)-5-nonyl-3,4-dihydro-2H-pyrrole and (2R,5R)-2-(5-Hexenyl)-5-nonylpyrrolidine from (S)-Pyroglutamic Acid. Tetrahedron Lett 32: 7521Google Scholar
  79. 79.
    Arseniyadis S, Huang PQ, Piveteau D, Husson HP (1988) Asymmetric Synthesis XII: Stereocontroled Electrophilic-Nucleophilic a,a’-Substitution of the Pyrrolidine Ring. Tetrahedron 44: 2457Google Scholar
  80. 80.
    Huang PQ, Arseniyadis S, Husson HP (1987) Asymmetric Synthesis X: A Chiral Pyrrolidine Synthon for a New Approach to the Synthesis of Alkaloids. Tetrahedron Lett 28: 547Google Scholar
  81. 81.
    Grierson DS, Royer J, Guerrier L, Husson HP (1986) Asymmetric synthesis 6. Practical Synthesis of (+)-Solenopsin A. J Org Chem 51: 4475Google Scholar
  82. 82.
    Machinaga N, Kibayashi C (1991) Enantioselective Total Synthesis of (+)- and (-)Pyrrolidine 197B, a New Class of Alkaloids from the Dendrobatid Poison Frog: Assignment of the Absolute Configuration. J Org Chem 56: 1386Google Scholar
  83. 83.
    Mendoza R, Netzel DA, Sonnet PE (1979) 13C NMR Assignments of Selected Octahydroindolizines. J Het Chem 1041Google Scholar
  84. 84.
    Lathbury D, Gallagher T (1986) Stereoselective Synthesis of Pyrrolizidine Alkaloids via Substituted Nitrous. J Chem Soc Chem Commun 1017Google Scholar
  85. 85.
    Vavrecka M, Janowitz A, Hesse M (1991) Transformation of 4-Nitroalkane-1, 7diones into Pyrrolizidine. Tetrahedron Lett 32: 5543Google Scholar
  86. 86.
    Provot O, Lhommet G, C¨¦l¨¦rier JP (1998) Diastereoselective Synthesis of Cis-3- and 3,5-Alkylpyrrolizidines. J Het Chem 35: 371Google Scholar
  87. 87.
    Takahata H, Bandoh H, Momose T (1991) Chirospecific Synthesis of an Ant Venom Alkaloid (5Z,8E)-3-Heptyl-5-methylpyrrolizidine. Tetrahedron Asymm 2: 351Google Scholar
  88. 88.
    Provot O, C¨¦l¨¦rier JP, Petit H, Lhommet G (1992) Synthesis of Ant Venom Alkaloids from Chiral ß-Enamino Lactones: (3R,5R,8S)-3-Heptyl-5-methylpyrrolizidine. J Org Chem 57: 2163Google Scholar
  89. 89.
    Grandjean C, Rosset S, C¨¦l¨¦rier JP, Lhommet G (1993) A New Synthesis of Ant Venom Alkaloid: (3S,5R,8S)-3-Heptyl-5-methylpyrrolizidine. Tetrahedron Lett 34: 4517Google Scholar
  90. 90.
    Guerrier L, Royer J, Grierson DS, Husson HP (1983) Chiral 1,4-Dihydropyridine Equivalents: A New Approach to the Asymmetric Synthesis of Alkaloids. The Enantiospecific Synthesis of (+)- and (-)- Conine and -Dihydropinidine. J Am Chem Soc 105: 7754Google Scholar
  91. 91.
    Arseniyadis S, Huang PQ, Husson HP (1988) Asymmetric Synthesis XIV: A Short and Efficient Synthesis of 3,5-Disubstituted Pyrrolizidine Alkaloids via the CN(R,S) Method. Tetrahedron Lett 29: 1391Google Scholar
  92. 92.
    Takahata H, Bandoh H, Momose T (1992) A Short, Chirospecific Synthesis of the Ant Alkaloid (3R,5S,8S)-3,5-Dialkylpyrrolizidines. J Org Chem 57: 4401Google Scholar
  93. 93.
    Iida H, Watanabe Y, Kibayashi C (1986) A Stereoselective Synthesis of the Ant Trail Pheromone (¡À)-Monomorine I. Tetrahedron Lett 27: 5513Google Scholar
  94. 94.
    Iida H, Wananabe Y, Kibayashi C (1989) Total Synthesis of (f)-Dihydropinidine, (¡À)-Monomorine I, and (¡À)-Indolizidine 223 AB (Gephyrotoxin 223 AB) by Intramolecular Nitroso Diels-Alder Reaction. J Org Chem 54: 4088Google Scholar
  95. 95.
    McGrane PL, Livinghouse T (1992) Synthetic Applications of Group IV Metal Imido Complex-Alkyne [2+2] Cycloadditions. A Concise Total Synthesis of (+)-Monomorine. J Org Chem 57: 1323Google Scholar
  96. 96.
    Stevens RV, Lee AWM (1982) Studies on the Stereochemistry of Nucleophilic Additions to Tetrahydropyridinium Salts. A Stereospecific Total Synthesis of (+)Monomorine I. J Chem Soc Chem Commun 102Google Scholar
  97. 97.
    Nagasaka T, Kato H, Hayashi H, Shioda M, Hikasa H, Hamaguchi F (1990): Stereoselective Formal Synthesis of (+)-Monomorine I from 6-Methyl-2-piperidinone. Heterocycles 30: 561Google Scholar
  98. 98.
    Ohta T, Hosoi A, Kimura T, Nozoe S (1987) Direct Chain Elongation of N-Carbamoylpyroglutamate. An Efficient Synthesis of (-)-Pyrrolidine-2,5-dicarboxylic Acid. Chem Lett 2091Google Scholar
  99. 99.
    Ohta T, Hosoi A, Nozoe S (1988) Stereoselective Hydroxylation of N-Carbamoyl- L-pyroglutamate. Synthesis of (-)-Bulgecitine. Tetrahedron Lett 29: 329Google Scholar
  100. 100.
    Ohta T, Hosoi A, Kimura T, Nozoe S (1988) Chirospecific Synthesis of (+)-PS-5 from L-Glutamic Acid. Tetrahedron Lett 29: 4305Google Scholar
  101. 101.
    Yamaguchi R, Hata E, Matsuki T, Kawanishi M (1987) An Efficient Regio-and Stereoselective Synthesis of (¡À)-Monomorine I via the Highly Regioselective ¦Á-Alkynylation of a 1-Acylpyridinium Salt. J Org Chem 52: 2094Google Scholar
  102. 102.
    Castano AM, Cuerva JM, Echavarren AM (1994) A Concise Synthesis of (¡À)Monomorine I by Way of a Palladium-Catalyzed Reductive Coupling. Tetrahedron Lett 34: 7435Google Scholar
  103. 103.
    Sheils CJ, Gray SM, Conard JL, Shawe TT (1994) Iterative Reductive Alkylation Approach to Alkaloids: A Synthesis of (¡À)-Monomorine I and its C-3 Epimer. J Org Chem 59: 5841Google Scholar
  104. 104.
    Somfai P, Jarevang T, Lindström UM, Svensson A (1997) Bicyclo[3.3.1]nonanes as Synthetic Intermediates. Part 20. Asymmetric Synthesis of the Indolizidine Alkaloids Monomorine I and Indolizidine 223 AB. Acta Chem Scand 51: 1024Google Scholar
  105. 105.
    Zaslona A, Tang Q, Jefford CW (1989) A Short, Simple Synthesis of (¡À)-Monomorine. Helv Chim Acta 72: 1749Google Scholar
  106. 106.
    Zeller E, Grierson DS (1991) Reactions of a-Aminonitriles under Dissolving Metal Conditions: a Concise Synthesis of (¡À)-Monomorine I. Synlett 12: 878Google Scholar
  107. 107.
    Vavrecka M, Hesse M (1991): Synthese von Monomorine I, einem Spurpheromon der Pharao-Ameise (Monomorium pharaonis). Helv Chim Acta 74: 438Google Scholar
  108. 108.
    Mori M, Masanori H, Sato Y (1998) Atmospheric Nitrogen Fixation. Short-step Synthesis of Monomorine I. J Org Chem 63: 4832Google Scholar
  109. 109.
    Tang Q, Zaslona A, Jefford CW (1991): Short, Enantioselective Syntheses of (-)Indolizidine 167B and (+)-Monomorine. J Am Chem Soc 113: 3513Google Scholar
  110. 110.
    Angle SR, Breitenbucher JG (1993) A General Route for the Synthesis of Enantiopure Indolizidine Alkaloids from a-Amino Acids. Total Synthesis of (+)-Monomorine. Tetrahedron Lett 34: 3985Google Scholar
  111. 111.
    Ibuka T, Habashita H, Otaka A, Fujii N, Oguchi Y, Nobutaka F, Uyehara T, Yamamoto Y (1991) A Highly Stereoselective Synthesis of (E)-Alkene Dipeptide Isosteres via Organocopper-Lewis Acid Mediated Reaction. J Org Chem 56: 4370Google Scholar
  112. 112.
    Takahata H, Bandoh H, Momose T (1993) A Short, Practical Synthesis of the Ant Venom Alkaloid, Three (3R,5S,8aS)-3-Alkyl-5-methylindolizidines. Tetrahedron 49: 11205Google Scholar
  113. 113.
    Sienkiewicz K, Thornton SR, Jefford CW (1994) The Enantiospecific Synthesis of (-)-Monomorine from L-Glutamic Ester. Tetrahedron Lett 35: 4759Google Scholar
  114. 114.
    Saliou C, Fleurant A, C¨¦l¨¦rier JP, Lhommet G (1991) Total Synthesis of (+)Monomorine I from Chiral Cyclic ß-Enamino Ester. Tetrahedron Lett 32: 3365Google Scholar
  115. 115.
    Smith AL, Williams SF, Holmes AB (1988) Stereoselective Synthesis of (¡À)Indolizidines 167B, 205A, and 207A. Enantioselective Synthesis of (-)-Indolizidine 209B. J Am Chem Soc 110: 8696Google Scholar
  116. 116.
    Kang TS, Chung CK, Lee E (1996) Radical Cyclization of ß-Aminoacrylates: Expedient Synthesis of (+)-Monomorine I and (+)-Indolizidine 195B. Bull Korean Chem Soc 17: 212Google Scholar
  117. 117.
    Iida H, Yamazaki N, Kibayashi C (1986) ¦Á-Chelation Controlled Nucleophilic Addition to Chiral ¦Á,ß-Dialkoxycarbonyl Compounds. Diastereoselective Preparation of L-Xylo and L-Lyxo Triols. J Org Chem 51: 3769Google Scholar
  118. 118.
    Yamazaki N, Kibayashi C (1988) Enantioselective Total Synthesis of (+)-Monomorine I. Tetrahedron Lett 29: 5767Google Scholar
  119. 119.
    Ito M, Kibayashi C (1990) An Alternative Enantioselective Total Synthesis of (+)Monomorine I. Tetrahedron Lett 31: 5065Google Scholar
  120. 120.
    Ito M, Kibayashi C (1991) Total Synthesis of (+)-Monomorine I via Nitrone Cycloaddition Route. Tetrahedron 47: 9329Google Scholar
  121. 121.
    Fujita F, Nakai H, Kobayashi S, Inoue K, Nojima S, Ohno M (1982): An Efficient and Stereoselective Synthesis of Platelet-Activating Factors and the Enantiomers from D- and L-Tartaric Acids. Tetrahedron Lett 23: 3507Google Scholar
  122. 122.
    Houk KN, Moses SR, Wu YD, Rondan NG, Jäger V, Schohe R, Fronczek FR (1984) Stereoselective Nitrile Oxide Cycloadditions to Chiral Allyl Ethers and Alcohols. The “Inside Alkoxy” Effect. J Am Chem Soc 106: 3880Google Scholar
  123. 123.
    Berry MB, Craig D, Jones PS, Rowlands GJ (1977) 5-Endo-trig Cyclization in Heterocycle Synthesis: Enantiospecific Synthesis of (+)-Monomorine I. Chem Comm 2141Google Scholar
  124. 124.
    Osborn HMI, Sweeney JB, Howson W (1994) The Synthesis and Reactivity of N-Diphenylphosphinyl Aziridines. Synlett 145Google Scholar
  125. 125.
    Artis DR, Cho I, Jaime-Figueroa S, Muchowski JM (1994) Oxidative Radical Cyclization of (w-iodoalkyl)Indoles and Pyrroles. Synthesis of (-)-Monomorine and Three Diastereoisomers. J Org Chem 59: 2456Google Scholar
  126. 126.
    Shirai R, Tanaka M, Koga K (1986) Enantioselective Deprotonation by Chiral Lithium Amide Bases: Asymmetric Synthesis of Trimethylsilyl Enol Ethers from 4-Alkylcylohexanones. J Am Chem Soc 108: 543Google Scholar
  127. 127.
    Toyooka N, Hirai Y, Momose T (1990) Total Synthesis of (+)-Monomorine I via Asymmetric a-Ketonic Cleavage of 8-Azabicyclo[3.2.1.]octan-3-one. Chem Pharm Bull 38: 2072Google Scholar
  128. 128.
    Higashiyama K, Nakahata K, Takahashi H (1994) Asymmetric Synthesis of (+)Monomorine I by Way of a Diastereoselective Reaction of 1,3-Oxazolidine with a Grignard Reagent. J Chem Soc Perkin Trans 1, 351Google Scholar
  129. 129.
    Hase TA, Ourila A, Holmberg C (1981) A Short Route to Pyrenophorin and Vermiculine. J Org Chem 46: 3137Google Scholar
  130. 130.
    Chu GH, Solladi¨¦ G (1996) Total Synthesis of (+)-Indolizidine 195B and (+)Monomorine. Tetrahedron Lett 37: 111Google Scholar
  131. 131.
    Munchhof MJ, Meyers AI (1995) Novel Asymmetric Route to Chiral, Nonracemic Cis-2,6-Disubstituted Piperidines. Synthesis of (+)-Pinidinone and (+)-Monomorine. J Am Chem Soc 117: 5399Google Scholar
  132. 132.
    Eschenmoser A (1970) Roads to Corrins. Quart Rev 24: 366Google Scholar
  133. 133.
    Takahata H, Bandoh H, Momose T (1996) An Asymmetric Synthesis of the Ant Venom Alkaloid (3S,3S,8aR)-3-Butyl-5-(4-pentenyl)indolizidine via the Sharpless Asymmetric Dihydroxylation. Heterocycles 42: 39Google Scholar
  134. 134.
    Macdonald TL (1980) Indolizidine Alkaloid Synthesis. Preparation of the Pharaoh Ant Trail Pheromone and Gephyrotoxin 223 Stereoisomers. J Org Chem 450: 193Google Scholar
  135. 135.
    Yue C, Gauthier I, Royer J, Husson HP (1996) Concise and Stereoselective Syntheses of the Eight Natural and Defense Alkaloids (+)-Tetraponerine-1 to (+)-Tetraponerine-8 According to the CN(R,S) Strategy. J Org Chem 61: 4949Google Scholar
  136. 136.
    Blum MS, Hermann HR (1978) In: Bettini S (ed) Venoms and Venom Apparatuses of the Formicidae: Myrmeciinae, Ponerinae, Dorylinae, Pseudomyrmecinae, Myrmicinae and Formicinae. Springer, Berlin, p 801Google Scholar
  137. 137.
    Merlin P, Braekman JC, Daloze D, Pasteels JM, Dejean A (1992) New 6-Lactones from the Dufour’s Gland of the Urticating Ant Tetramorium aculeatum. Experientia 48: 111Google Scholar
  138. 138.
    Daloze D, Braekman JC, Vanhecke P, Boeve JL, Pasteels JM (1987) Long Chain Electrophilic Contact Poisons in the Dufour’s Gland of the Ant Crematogaster scutellaris. Can J Chem 65: 432Google Scholar
  139. 139.
    Pasteels JM, Daloze D, Boeve JL (1989) Aldehydic Contact Poisons of the Ant Crematogaster scutellaris (Hymenoptera: Myrmicinae): Enzyme-Mediated Production from Acetate Precursors. J Chem Ecol 15: 1501Google Scholar
  140. 140.
    Daloze D, Kaisin M, Detrain C, Pasteels JM (1991) Chemical Defence in the Three European Species of Crematogaster Ants. Experientia 47: 1082Google Scholar
  141. 141.
    Leclercq S, Daloze D, Braekman JC, Kaisin M, Detrain C, De Biseau JC, Pasteels JM (1997) Venom Constituents of Three Species of Crematogaster Ants from Papua New Guinea. J Nat Prod 60: 1148Google Scholar
  142. 142.
    Daloze D, De Biseau JC, Leclercq S, Braekman JC, Quinet Y, Pasteels JM (1998) (13E,15E,18Z,20Z)-1-Hydroxypentacosa-13,15,18,20-tetraen-11-yn-4-one 1-Acetate, from the Venom of a Brazilian Crematogaster Ant. Tetrahedron Lett 39: 4671Google Scholar
  143. 143.
    Leclerq S, Braekman JC, Daloze D, Luhmer M, De Biseau JC, Pasteels JM, Quinet Y (unpublished results)Google Scholar
  144. 144.
    Renson B, Merlin P, Daloze D, Braekman JC (1994) Biosynthesis of Tetraponerine 8, a Defence Alkaloid of the Ant Tetraponera sp. Can J Chem 72: 105Google Scholar
  145. 145.
    Devijver C, Braekman JC, Daloze D, Pasteels JM (1997) The Biosynthesis of Tetraponerine 6: Evidence that Different Pathways are Operating in the Biosynthesis of the Two Tetraponerine Skeletons. J Chem Soc Chem Comm 661Google Scholar
  146. 146.
    Leclercq S, Braekman JC, Daloze D, Pasteels JM, Van der Meer RK (1996). Biosynthesis of the Solenopsins, Venom Alkaloids of the Fire Ants. Naturwissenschaften 83: 222Google Scholar
  147. 147.
    Hefetz A, Blum MS (1978): Biosynthesis and Accumulation of Formic Acid in the Poison Gland of the Carpenter Ant Camponotus pennsylvanicus. Science 201: 454Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • S. Leclercq
    • 1
  • J. C. Braekman
    • 1
  • D. Daloze
    • 1
  • J. M. Pasteels
    • 2
  1. 1.Laboratory of Bio-Organic Chemistry, Department of Organic ChemistryFree University of BrusselsBrusselsBelgium
  2. 2.Laboratory of Cellular and Animal BiologyFree University of BrusselsBrusselsBelgium

Personalised recommendations