Advertisement

Abstract

The aim of the present review is to cover developments in the chemistry of iridoids and related compounds during the last decade. In order to be able to give a broad, but still comprehensive presentation of this vast area some limitations to the subject were necessary. Accordingly, the chemotaxonomic importance and biosynthesis studies of iridoids will be omitted from the present survey since these subjects have been treated in contemporary reviews(1-4).Similarly, biological activity(5)and ecological aspects of iridoids(6, 7)will not be treated in detail here. A more historical introduction to the chemistry of iridoids has already been given(8)and in addition a specialized report on the progress of synthetic iridoid chemistry has appeared(9).Here, it is rather intended to provide the reader with an overview of the types of chemical reactions that have recently been applied to iridoids and to present a collection of synthetic possibilities which should give some perspectives for future work in this field.

Keywords

Iridoid Glycoside Silyl Ether Enol Ether Human Intestinal Bacterium Medium Pressure Liquid Chromatography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jensen SR (1991) Plant Iridoids, their Biosynthesis and Distribution in Angiosperms. In: Harborne JB, Tomas -Barberan FA (eds) Ecological Chemistry and Biochemistry of Plant Terpenoids. Proceedings of the Phytochemical Society of Europe, vol 31. Clarendon Press, Oxford, p 133Google Scholar
  2. 2.
    Jensen SR (1992) Systematic Implications of the Distribution of Iridoids and other Chemical Compounds in the Loganiaceae and other Families of the Asteridae. Ann Missouri Bot Gard 79: 284Google Scholar
  3. 3.
    Inouye H (1991) Iridoids. In: Dey PM, Harborne JB (eds) Methods in Plant Biochemistry, vol 7. Academic Press, New York, p 99Google Scholar
  4. 4.
    Grayer RJ, Chase MW, Simmonds MSJ (1999) A Comparison Between Chemical and Molecular Characters for the Determination of Phylogenetic Relationships among Plant Families: An Appreciation of Hegnauer’s “Chemotaxonomie der Pflanzen”. Biochem Syst Ecol 27: 369Google Scholar
  5. 5.
    Ghisalberti EL (1998) Biological and Pharmacological Activity of Naturally Occurring Iridoids and Secoiridoids. Phytomedicine 5: 147Google Scholar
  6. 6.
    Rimpler H (1991) Sequestration of Iridoids by Insects. In: Harbome JB, TomasBarberan FA (eds) Ecological Chemistry and Biochemistry of Plant Terpenoids. Proceedings of the Phytochemical Society of Europe, vol 31. Clarendon Press, Oxford, p 314Google Scholar
  7. 7.
    Bowers DM (1988) Chemistry and Coevolution: Iridoid Glycosides, Plants, and Herbivorous Insects. In: Spencer K (ed) Chemical Mediation of Coevolution. Academic Press, New York, p 133Google Scholar
  8. 8.
    Bianco A (1990) The Chemistry of Iridoids. In: Rahman AU (ed) Studies in Natural Products Chemistry, vol 7. Elsevier, Amsterdam, p 439Google Scholar
  9. 9.
    Isoe S (1995) Progress in the Synthesis of Iridoids and Related Natural Products. In: Rahman AU (ed) Studies in Natural Products Chemistry, vol 16. Elsevier, Amsterdam, p 289Google Scholar
  10. 10.
    Boros CA, Stermitz FR (1990) Iridoids. An Updated Review, Part I. J Nat Prod 53: 1055Google Scholar
  11. 11.
    Boros CA, Stermitz FR (1991) Iridoids. An Updated Review, Part II. J Nat Prod 54: 1173Google Scholar
  12. 12.
    Krull RE, Stermitz FR (1998) Trans-fused Iridoid Glycosides from Penstemon mucrunatus. Phytochemistry 49: 2413Google Scholar
  13. 13.
    El-Naggar LJ, Beal JL (1980) Iridoids. A Review. J Nat Prod 43: 649Google Scholar
  14. 14.
    Hegnauer R (1986) Chemotaxonomie der Pflanzen, vol. 7. Birkhäuser, Basel Boston Stuttgart, p 325Google Scholar
  15. 15.
    Junior P (1990) Recent Developments in the Isolation and Structure Elucidation of Naturally Occurring Iridoid Compounds. Planta Med 56: 1Google Scholar
  16. 16.
    Cordell GA (1977) The Monoterpene Alkaloids. In: Manske RHF (ed) The Alkaloids. Academic Press, New York San Francisco London, p 432Google Scholar
  17. 17.
    Contin A, Van der Heijden R, Lefeber AWM, Verpoorte R (1998) The Iridoid Glucoside Secologanin is Derived from the Novel Triose Phosphate/pyruvate Pathway in a Catharanthus roseus Cell Culture. FEBS Letters 434: 413Google Scholar
  18. 18.
    Eichinger D, Bacher A, Zenk MH, Eisenreich W (1999) Analysis of Metabolic Pathways via Quantitative Prediction of Isotope Labeling Patterns: A Retrobiosynthetic 13C NMR Study on the Monoterpene Loganin. Phytochemistry 51: 223Google Scholar
  19. 19.
    Bobbitt JM, Segebarth KP (1969) In: Battersby AR, Taylor WI (eds) Cyclopentanoid Terpene Derivatives. Marcel Dekker, New York, p 1Google Scholar
  20. 20.
    Franzyk H, Frederiksen SM, Jensen SR (1997) Synthesis of Monoterpene Piperidines from the Iridoid Glucoside Antirrhinoside. J Nat Prod 60: 1012Google Scholar
  21. 21.
    Franzyk H, Jensen SR, Rasmussen JH (1998) Ozonolysis of Protected Iridoid Glucosides. Eur J Org Chem 365Google Scholar
  22. 22.
    Wysokinska H, Swiatek L (1990) Production of Iridoid Glucosides in Cell Suspension Cultures of Penstemon serrulatus. Planta Med 56: 625Google Scholar
  23. 23.
    Wysokinska H, Skrzypek Z (1992) Studies on Iridoids of Tissue Cultures of Penstemon serrulatus: Isolation and their Antiproliferative Properties. J Nat Prod 55: 58Google Scholar
  24. 24.
    Ueda S, Iwahashi Y (1991) Production of Anti-tumor-promoting Iridoid Glucosides in Genipa americana and its Cell Cultures. J Nat Prod 54: 1677Google Scholar
  25. 25.
    Iyer RI, Mathuram V, Gopinath PM (1998) Establishment of Callus Cultures of Nyctanthes arbor-tristis from Juvenile Explants and Detection of Secondary Metabolites in the Callus. Current Sci 74: 243Google Scholar
  26. 26.
    Koleva II (1997) Separation Methods for Iridoid Glycosides. Herba Polononica 43: 322Google Scholar
  27. 27.
    Berkowitz WF, Sasson I, Sampathkumar PS, Hrabie J, Choudhry S, Pierce D (1979) Chiral Prostanoid Intermediates from Aucubin. Tetrahedron Lett 1641Google Scholar
  28. 28.
    Weinges K, Ziegler HJ (1991) Palladium-katalysierte Substitution an Hexaacetylaucubin. Liebigs Ann Chem 1109Google Scholar
  29. 29.
    Weinges K, Haremsa S, Huber-Patz U, Jahn R, Rodewald H, Irngartinger H, Jaggy H, Melzer E (1986) Ein einfaches Verfahren zur Herstellung von (1S,2S,6R,7R)-(—)-2(Benzylthio)-7-hydroxy-3-oxabicyclo[4.3.0]nonan-9-on aus Catalpol— Strukturbeweis durch Röntgenbeugung. Liebigs Ann Chem 46Google Scholar
  30. 30.
    Weinges K, Schick H, Neuberger K, Ziegler HJ, Lichtenthäler J, Irngartinger H (1989) Isolierung und Strukturaufklärung neuer Inhaltsstoffe aus dem sodaalkalischen Extrakt von Picrorhiza kurrooa. Liebigs Ann Chem 1113Google Scholar
  31. 31.
    Nakatani K, Hiraishi A, Han Q, Isoe S (1992) Synthesis of Asperuloside Aglucon Sily1 Ether and Garjasmine from (+)-Genipin via Gardenoside Aglucon Disilyl Ether as a Common Intermediate. Chem Lett 1851Google Scholar
  32. 32.
    Tietze LF, Bärtels C (1989) Synthesis of the Monoterpene Alkaloid Bakankosin from Secologanin. Tetrahedron 45: 681Google Scholar
  33. 33.
    Briggs LH, Nicholls GA (1954) Chemistry of the Coprosma Genus. Part VIII. The Occurrence of Asperuloside. J Chem Soc 3940Google Scholar
  34. 34.
    Damtoft S, Franzyk H, Jensen SR (1994) Fontanesioside and 5-Hydroxysecologanol from Fontanesia phillyreoides. Phytochemistry 35: 705Google Scholar
  35. 35.
    Damtoft S, Franzyk H, Jensen SR (1994) Biosynthesis of Iridoids in Forsythia spp. Phytochemistry 37: 173 Google Scholar
  36. 36.
    Damtoft S, Franzyk H, Jensen SR (1995) Biosynthesis of Iridoids in Syringa and Fraxinus: Secoriridoid Precursors. Phytochemistry 40: 773Google Scholar
  37. 37.
    Damtoft S (1992) Iridoid Glucosides from Lamium album. Phytochemistry 31: 175Google Scholar
  38. 38.
    Murai F, Tagawa M (1980) The Absolute Configuration of Boschnaloside and the Chemical Conversion of Genipin into Boschnaloside. Chem Pharm Bull 28: 1730Google Scholar
  39. 39.
    Damtoft S, Jensen SR, Jessen CU, Knudsen TB (1993) Late Stages in the Biosynthesis of Aucubin in Scrophularia. Phytochemistry 33: 1089Google Scholar
  40. 40.
    Damtoft S, Frederiksen LB, Jensen SR (1994) Biosynthesis of Iridoid Glucosides in Thunbergia alata. Phytochemistry 37: 1599Google Scholar
  41. 41.
    Frederiksen LB, Damtoft S, Jensen SR (1999) Biosynthesis of Iridoids Lacking C-10 and the Chemotaxonomic Implications of their Distribution. Phytochemistry 52: 1409Google Scholar
  42. 42.
    Jensen SR, Kirk O, Nielsen BJ (1989) Biosynthesis of the Iridoid Glucoside Cornin in Verbena officinalis. Phytochemistry 28: 97Google Scholar
  43. 43.
    Damtoft S, Jensen SR, Nielsen BJ (1992) Biosynthesis of Iridoid Glucosides in Lamium album. Phytochemistry 31: 135Google Scholar
  44. 44.
    Breinholt J, Damtoft S, Demuth H, Jensen SR, Nielsen BJ (1992) Biosynthesis of Antirrhinoside in Antirrhinum majus. Phytochemistry 31: 795Google Scholar
  45. 45.
    Inoue K, Ono M, Nakajima H, Fujie 1, Inouye H, Fujita T (1992) Radioimmunoassay of Iridoid Glucosides: Part I. General Methods for the Preparation of the Haptens and the Conjugates with a Protein of this Series of Glucosides. Heterocycles 33: 673Google Scholar
  46. 46.
    Inouye H, Yoshida T, Tobita S, Okigawa M (1970) Studies on Monoterpene Glucosides IX. Chemical Correlation between Asperuloside and Loganin.Tetrahedron 26: 3905Google Scholar
  47. 47.
    Damtoft S, Franzyk H, Jensen SR (1993) Biosynthesis of Secoiridoid Glucosides in Oleaceae. Phytochemistry 34: 1291Google Scholar
  48. 48.
    Damtoft S, Franzyk H, Jensen SR (1995) Biosynthesis of Secoiridoids in Fontanesia. Phytochemistry 38: 615Google Scholar
  49. 49.
    Damtoft S, Jensen SR, Schacht M (1995) Last Stages in the Biosynthesis of Antirrhinoside. Phytochemistry 39: 549Google Scholar
  50. 50.
    Weinges K, Ziegler HJ (1990) Aucubin und Scandosid aus Catalpol. Liebigs Ann Chem 715Google Scholar
  51. 51.
    Jensen SR, Kirk O, Nielsen BJ (1987) Application of the Vilsmeier Formylation in the Synthesis of 11-13C Labelled Iridoids. Tetrahedron 43: 1949Google Scholar
  52. 52.
    Takeda Y, Morimoto Y, Matsumoto T, Honda G, Tabata M, Fujita T, Otsuka H, Sezik E, Yesilada E (1995) Nepetanudoside, an Iridoid Glucoside with an Unusual Stereostructure from Nepeta nuda ssp. albiflora. J Nat Prod 58: 1217Google Scholar
  53. 53.
    Cachet X, Deguin B, Koch M, Makhlouf K, Tillequin F (1999) Efficient Conversion of Aucubin into 6-epi-Aucubin. J Nat Prod 62: 400Google Scholar
  54. 54.
    Franzyk H, Jensen SR, Stermitz FR (1998) Iridoid Glucosides from Penstemon secundiflorus and P. grandiflorus: Revised Structure of 10-Hydroxy-8-epi-hastatoside. Phytochemistry 49: 2025Google Scholar
  55. 55.
    Franzyk H, Jensen SR, Thale Z, Olsen CE (1999) Halohydrins and Polyols Derived from Antirrhinoside: Structural Revisions of Muralioside and Epimuralioside. J Nat Prod 62: 275Google Scholar
  56. 56.
    Berdini R, Bianco A, Guiso M, Marini E, Nicoletti M, Passacantilli P, Righi G (1991) Isolation and Partial Synthesis of 7,8-Dehydro-6(3,10-dihydroxy-11-nor-iridomyrmecin. J Nat Prod 54: 1400Google Scholar
  57. 57.
    Kigawa M, Tanaka M, Mitsuhashi H, Wakamatsu T (1992) Synthesis of Iridolactones Isolated from Silver Vine. Heterocycles 33: 117Google Scholar
  58. 58.
    Weinges K, Ziegler HJ, Maurer W, Schmidbauer SB (1993) Zwei einfache EPCSynthesen mit chemischem Beweis der absoluten Konfiguration von (+)-Mitsugashiwa-Lacton aus (S)-(¡ª)-Citronellol und Aucubin. Liebigs Ann Chem 1029Google Scholar
  59. 59.
    Franzyk H, Frederiksen SM, Jensen SR (1998) Synthesis of Antirrhinolide, a New Lactone from Antirrhinum majus. Eur J Org Chem 1665Google Scholar
  60. 60.
    Mohammad-Ali AK, Chan TH, Thomas AW, Jewett B, Strunz GM (1994) Spruce Budworm (Choristoneura fumiferana) Antifeedants 4. Synthesis of Specionin and Biological Studies. Canad J Chem 72: 2137Google Scholar
  61. 61.
    Ge Y, Isoe S (1992) An Efficient Synthesis of Cerbinal, a 107t Aromatic Iridoid. Chem Letters 139Google Scholar
  62. 62.
    Nakatani K, Shimano K, Hiraishi A, Han Q, Isoe S (1993) Synthesis of Asperuloside Aglucon Silyl Ether and Garjasmine from (+)-Genipin via Gardenoside Aglucon Bis(silyl ether) as a Common Intermediate. Bull Chem Soc Japan 66: 2646Google Scholar
  63. 63.
    Inouye H, Yoshida T, Nakamura Y, Tobita S (1970) Über die Monoterpenglucoside, XI. Chemische Korrelation des Asperulosids mit Swerosid. Chem Pharm Bull 18: 1889Google Scholar
  64. 64.
    Inouye H, Yoshida T, Tobita S, Tanaka K, Nishioka T (1970) Absolute Struktur des Oleuropeins und einiger verwandter Glucoside. Tetrahedron Lett 2459Google Scholar
  65. 65.
    Inouye H, Yoshida T, Tobita S, Tanaka K, Nishioka T (1974) Über die Monoterpenglucoside und verwandte Naturstoffe, XXII. Absolutstrukturen des Oleuropeins, Kingisids und Morronisids. Tetrahedron 30: 201Google Scholar
  66. 66.
    Bianco A, Naccarato G, Passacantilli P, Righi G, Scarpati ML (1992) Partial Synthesis of Oleuropein. J Nat Prod 55: 760Google Scholar
  67. 67.
    Kuwajima H, Tanahashi T, Inoue K, Inouye H (1998) Synthesis of Four Possible Intermediates after Secologanin on the Biosynthesis of the Oleoside-, 10-Hydroxyoleoside and Ligustaloside-type Glucosides in Oleaceous Plants. Chem Pharm Bull 46: 900Google Scholar
  68. 68.
    Shen Y, Chen C (1993) Enzymatic Transformation of 10-Hydroxyoleoside Type Secoiridoid Glucosides to Jasmolactones. Tetrahedron Lett 34: 1949Google Scholar
  69. 69.
    Yamamoto H, Katano N, Ooi A, Inoue K (1999) Transformation of Loganin and 7-Deoxyloganin into Secologanin by Lonicera japonica Cell Suspension Cultures. Phytochemistry 50: 417Google Scholar
  70. 70.
    Wildman WC, Le Men J, Wiesner K (1969) In: Battersby AR, Taylor WI (eds) Cyclopentanoid Terpene Derivatives. Marcel Dekker, New York, p 239Google Scholar
  71. 71.
    Gournelis D, Skaltsounis AL, Tillequin F, Koch M, Pusset J, Labarre S (1989) Plantes de Nouvelle-Caledonie, CXXI. Iridoïdes et Alcaloïdes de Plectronia odorata. J Nat Prod 52: 306Google Scholar
  72. 72.
    Boros CA, Stermitz FR, Harris GH (1990) Iridoid Glycosides and a Pyridine Monoterpene Alkaloid from Orthocarpus. New Artifactual Iridoid Dienals. J Nat Prod 53: 72Google Scholar
  73. 73.
    Benkrief R, Skaltsounis AL, Tillequin F, Koch M, Pusset J (1991) Iridoids and an Alkaloid from Oxera morieri. Planta Med 57: 79Google Scholar
  74. 74.
    Benkrief R, Ranarivelo Y, Skaltsounis AL, Tillequin F, Koch M, Pusset J, S¨¦venet T (1998) Monoterpene Alkaloids, Iridoids and Phenylpropanoid Glycosides from Osmanthus austrocaledonica. Phytochemistry 47: 825Google Scholar
  75. 75.
    Skaltsounis AL, Michel S, Tillequin F, Koch M, Pusset J, Chauvi¨¨re G (1985) Plantes de Nouvelle-Cal¨¦donie. Helv Chim Acta 68: 1679Google Scholar
  76. 76.
    Ranarivelo Y, Hotellier F, Skaltsounis AL, Tillequin F (1990) Biomimetic Synthesis of (¡ª)-Deoxyrhexifoline, (¡ª)-Tecostidine, and (¡ª)-Actinidine. Heterocycles 31: 1727Google Scholar
  77. 77.
    Frederiksen SM, Stermitz FR (1996) Pyridine Monoterpene Alkaloid Formation from Iridoid Glycosides. A Novel PMTA Dimer from Geniposide. J Nat Prod 59: 41Google Scholar
  78. 78.
    Baghdikian B, 011ivier E, Faure R, Debrauwer L, Rathelot P, Balansard G (1999) Two New Pyridine Monoterpene Alkaloids by Chemical Conversion of a Commercial Extract of Harpagophytum procumbens. J Nat Prod 62: 211Google Scholar
  79. 79.
    El-Sedawy AI, Shu YZ, Hattori M, Kobashi K, Namba T (1989) Metabolism of Swertiamarin from Swertia japonica by Human Intestinal Bacteria. Planta Med 55: 147Google Scholar
  80. 80.
    Hattori M, Kawata Y, Kobashi K, Namba T (1990) Transformation of Iridoid and Secoiridoid Glucosides to Monoterpene Alkaloids by Human Intestinal Bacteria. Planta Med 56: 625Google Scholar
  81. 81.
    Kawata Y, Hattori M, Akao T, Kobashi K, Namba T (1991) Formation of Nitrogen-Containing Metabolites from Geniposide and Gardenoside by Human Intestinal Bacteria. Planta Med 57: 536Google Scholar
  82. 82.
    Baghdikian B, Guiraud-Dauriac H, 011ivier E, N’Guyen A, Dumenil G, Balansard G (1999) Formation of Nitrogen-Containing Metabolites from the Main Iridoids of Harpagophytum procumbens and H. zeyheri by Human Intestinal Bacteria. Planta Med 65: 164Google Scholar
  83. 83.
    Cossy J, Belotti D, Leblanc C (1993) Total Synthesis of (f)-Actinidine and of (f)Isooxyskytanthine. J Org Chem 58: 2351Google Scholar
  84. 84.
    Shiao M, Chia W, Peng C, Shen C (1993) Facile Synthesis of two Pyridine Alkaloids via Functionalized 3,4-Dialkylpyridines. J Org Chem 58: 3162Google Scholar
  85. 85.
    Aoyagi Y, Inariyama T, Arai Y, Tsuchida S, Matuda Y, Kobayashi H, Ohta A, Kurihara T, Fujihira S (1994) First Total Synthesis of (+)-Oxerine. Tetrahedron 50: 13575Google Scholar
  86. 86.
    Jones K, Fiumana A (1996) Pyridine Radicals in Synthesis: a Formal Total Synthesis of (f)-Oxerine. Tetrahedron Lett 37: 8049Google Scholar
  87. 87.
    Jones K, Escudero-Hernandez ML (1998) A Short Synthesis of (f)-Actinidine. Tetrahedron 54: 2275Google Scholar
  88. 88.
    Stepanov AV, Lozanova AV, Veselovsky VV (1998) Chemistry of Natural Compounds and Bioorganic Chemistry. Stereocontrolled Synthesis of the Alkaloid (-)-Actinidine. Russ Chem Bull 47: 2286Google Scholar
  89. 89.
    Lins AP, Felicio JD (1993) Monoterpene Alkaloids from Tecoma stans. Phytochemistry 34: 876Google Scholar
  90. 90.
    Chi Y, Yan W, Chen D, Nogushi H, Iitaka Y, Sankawa U (1992) A Monoterpene Alkaloid from Incarvillea sinensis. Phytochemistry 31: 2930Google Scholar
  91. 91.
    Chi Y, Hashimoto F, Yan W, Nohara T, Yamashita M, Marubayashi N (1997) Monoterpene Alkaloids from Incarvillea sinensis. VI. Absolute Stereochemistry of Incarvilline and Structure of a New Alkaloid, Hydroxyincarvilline. Chem Pharm Bull 45: 495Google Scholar
  92. 92.
    Chi Y, Hashimoto F, Yan W, Nohara T (1995) Two Alkaloids from Incarvillea sinensis. Phytochemistry 39: 1485Google Scholar
  93. 93.
    Chi Y, Hashimoto F, Yan W, Nohara T (1995) Incarvine A, a Monoterpene Alkaloid from Incarvillea sinensis. Phytochemistry 40: 353Google Scholar
  94. 94.
    Chi Y, Hashimoto F, Yan W, Nohara T (1997) Four Monoterpene Alkaloid Derivatives from Incarvillea sinensis. Phytochemistry 46: 763Google Scholar
  95. 95.
    Chi Y, Yan W, Li J (1990) An Alkaloid from Incarvillea sinensis. Phytochemistry 29: 2376Google Scholar
  96. 96.
    Kan-Fan C, Sevenet T, Hadi HA, Bonin M, Quirion J, Husson H (1995) Monoterpene Alkaloids from Kopsia macrophylla. Nat Prod Lett 7: 283Google Scholar
  97. 97.
    Kam T, Yoganathan K, Wei C (1996) Kinabalurine A, a New Monoterpene Alkaloid from a North Borneo Kopsia. Nat Prod Lett 8: 231Google Scholar
  98. 98.
    Kam T, Yoganathan K, Wei C (1997) Monoterpene Alkaloids from Kopsia paucifiora. J Nat Prod 60: 673Google Scholar
  99. 99.
    Alazard JP, Leboff A, Thal C (1989) Synth¨¨se St¨¦r¨¦osp¨¦cifique de la (f)-¨¦pi-7,7aTecomanine. Tetrahedron Lett 30: 5267Google Scholar
  100. 100.
    Brayer JL, Alazard JP, Thal C (1990) Alcaloïdes Monoterp¨¦niques II: Synth¨¨se St¨¦r¨¦osp¨¦cifique de la (+)-A-7,7a-4a- 3H-Isot¨¦comanine. Tetrahedron 46: 5187Google Scholar
  101. 101.
    Cossy J, Leblanc C (1991) First Efficient Synthesis of Iso-Oxy-Skytanthine. Tetrahedron Lett 32: 3051Google Scholar
  102. 102.
    Alazard JP, Leboff A, Thal C (1991) Alcaloïdes Monoterp¨¦niques III: Synthese St¨¦r¨¦osp¨¦cifique de la (f)-Épi-7,7a-Tecomanine. Tetrahedron 47: 9195Google Scholar
  103. 103.
    Oppolzer W, Stevenson T (1986) Asymmetric Additions of 1-Alkenylcopper Reagents to Chiral Enoates: Enantioselective Synthesis of California Red Scale Pheromone. Tetrahedron Lett 27: 1139Google Scholar
  104. 104.
    Oppolzer W, Jacobsen EJ (1986) Enantioselective Syntheses of (+)-a-Skytanthine, (+)-B-Skytanthine and (+)-Iridomyrmecin by an Intramolecular Magnesium-Ene Reaction. Tetrahedron Lett 27: 1141Google Scholar
  105. 105.
    Kametani T, Suzuki Y, Ban C, Honda T (1987) A Facile Synthesis of (+)-Tecomanine Using a Chiral Cyclopentane Derivative. Heterocycles 26: 1491Google Scholar
  106. 106.
    Cid MM, Eggnauer U, Weber HP, Pombo-Villar E (1991) Synthesis of (-)-6-NNormethylskytanthine. Tetrahedron Lett 32: 7233Google Scholar
  107. 107.
    Cid MM, Pombo-Villar E (1993) Enantioselective Synthesis of 3-Azabicyclo[4.3.0]nonane Alkaloids. Helv Chim Acta 76: 1591Google Scholar
  108. 108.
    Tsunoda T, Tatsuki S, Kataoka K, Itô S (1994) A Stereoselective Synthesis of (-)Isoiridomyrmecin. Application of the Asymmetric Aza-Claisen Rearrangement. Chem Lett 543Google Scholar
  109. 109.
    Tsunoda T, Nagino C, Oguri M, Itô S (1996) Mitsunobu-type Alkylation with Active Methine Compounds. Tetrahedron Lett 37: 2459Google Scholar
  110. 110.
    Tsunoda T, Ozaki F, Shirakata N, Tamaoka Y, Yamamoto H, Itô S (1996) Formation of Heterocycles by the Mitsunobu Reaction. Stereoselective Synthesis of (+)-a-Skytanthine. Tetrahedron Lett 37: 2463Google Scholar
  111. 111.
    Cordell GA (1999) The Monoterpene Alkaloids. In: Cordell GA (ed) The Alkaloids, vol. 52. Academic Press, San Diego London Boston New York Sydney Tokyo Toronto, p 261Google Scholar
  112. 112.
    Tietze LF, Bärtels C, Fennen J (1989) Biomimetic Synthesis of the Monoterpene Alkaloids Xylostosidine and Loxylostosidine A and of Similar Unnatural Compounds by Transformations of the Monoterpene Glycoside Secologanin. Liebigs Ann Chem 1241Google Scholar
  113. 113.
    Bianco A (1994) Recent Developments in Iridoids Chemistry. Pure Appl Chem 66: 2335Google Scholar
  114. 114.
    Bianco A, Cerichelli G, Guiso M, Lo Baido G, Mazzei RA (1993) Structure of Coloured Compounds Formed in a Chromatic Test of Iridoids. Gazz chim ital 123: 437Google Scholar
  115. 115.
    Fujikawa S, Fukui Y, Koga K, Iwashita T, Komura H, Nomoto K (1987) Structure of Genipocyanin G1, a Spontaneous Reaction Product Between Genipin and Glycine. Tetrahedron Lett 28: 4699Google Scholar
  116. 116.
    Touyama R, Takeda Y, Inoue K, Kawamura I, Yatsuzuka M, Ikumoto T, Shingu T, Yokoi T, Inouye H (1994) Studies on the Blue Pigments Produced from Genipin and Methylamine. I. Structures of the Brownish-Red Pigments, Intermediates Leading to the Blue Pigments. Chem Pharm Bull 42: 668Google Scholar
  117. 117.
    Touyama R, Inoue K, Takeda Y, Yatsuzuka M, Ikumoto T, Moritome N, Shingu T, Yokoi T, Inouye H (1994) Studies on the Blue Pigments Produced from Genipin and Methylamine II. On the Formation Mechanisms of Brownish-Red Intermediates Leading to the Blue Pigments. Chem Pharm Bull 42: 1571Google Scholar
  118. 118.
    Tietze LF, Bärtels C (1991) Synthesis of Bridged Homoiridoids from Secologanin by Tandem-Knoevenagel-Hetero-Diels-Alder Reactions. Liebigs Ann Chem 155Google Scholar
  119. 119.
    Szab¨®-Pusztay K, Szab¨® LF, Pod¨¢nyi B (1994) Natural Products Chemistry: a Sort of Heterocyclic Chemistry. Reactions of Sweroside with Amines ACH - Models in Chemistry 131: 475Google Scholar
  120. 120.
    Schwartz A, Szab¨® LF, Pod¨¢nyi B (1997) Chemistry of Secologanin. Part 3. Graph Analysis of the Acidic Deglucosylation of Secologanin Derivatives. Tetrahedron 53: 10489Google Scholar
  121. 121.
    Krajsovszky G, Kocsis A, Szab¨® LF, Pod¨¢nyi B (1997) Formation of Trioxadamantane Type Aglucones of 3-Methoxy Secologanin Derivatives. Tetrahedron 53: 11659Google Scholar
  122. 122.
    Isoe S, Ge Y, Yamamoto K, Katsumura S (1988) Synthesis of Optically Active Petiodial and Determination of its Absolute Structure. Tetrahedron Lett 29: 4591Google Scholar
  123. 123.
    Ge Y, Kondo S, Odagaki Y, Katsumura S, Nakatani K, Isoe S (1993) Synthesis of the Antipode of Udoteatrial Hydrate Using (+)-Genipin as a Chiral Building Block: Determination of the Absolute Configuration of Udoteatrial Hydrate. Tetrahedron Lett 34: 2621Google Scholar
  124. 124.
    Ge Y, Kondo S, Katsumura S, Nakatani K, Isoe S (1993) Absolute Configuration of Novel Marine Diterpenoid Udoteatrial Hydrate. Synthesis and Cytotoxities of entUdoteatrial Hydrate and its Analogues. Tetrahedron 49: 10555Google Scholar
  125. 125.
    Shimano K, Ge Y, Sakaguchi K, Isoe S (1996) Synthesis of Both Enantiomers of Halitunal. Tetrahedron Lett 37: 2253Google Scholar
  126. 126.
    Tanaka M, Kigawa M, Mitsuhashi H, Wakamatsu T (1991) The Practical Method for the Preparation of Iridoid Aglycons from their Glycosides. Heterocycles 32: 1451Google Scholar
  127. 127.
    Weinges K, Braun G, Oster B (1983) Chemie und Stereochemie der Iridoide, III. Über die Synthese von 12-epi-Prostaglandinen. Liebigs Ann Chem 2197Google Scholar
  128. 128.
    Weinges K, Huber W, Huber-Patz U, Imgartinger H, Nixdorf M, Rodewald H (1984) Chemie und Stereochemie der Iridoide, IV. Synthese und Röntgenstrukturanalyse von 15-Methyl-12-epi-prostaglandin F20. Liebigs Ann Chem 761Google Scholar
  129. 129.
    Weinges K, Gethöffer H, Huber-Patz U, Rodewald H, Imgartinger H (1987) EPCSynthese von (1R,2R,2“Z)-(-)-Methyljasmonat aus Catalpol - Kristall-und Molekularstruktur von Methyl dehydrojasmonat-semicarbazon. Liebigs Ann Chem 361Google Scholar
  130. 130.
    Weinges K, Lernhardt U (1990) Synthese von enantiomerenreinem (1R,2S,2“Z)-(+)Methyljasmonat aus Catalpol. Liebigs Ann Chem 751Google Scholar
  131. 131.
    Weinges K, Iatridou H, Stammler H, Weiss J (1989) Chirale Bausteine zur Synthese von Triquinan-Sesquiterpenen: Derivate des 2-Methylbicyclo[3.3.0]octan-3-ols aus Catalpol. Angew Chem 101: 485Google Scholar
  132. 132.
    Chirale Bausteine zur Synthese von Triquinan-Sesquiterpenen: Derivate des 2-Methylbicyclo[3.3.0]octan-3-ols aus Catalpol. Angew ChemGoogle Scholar
  133. 133.
    Weinges K, Iatridou H, Dietz U (1991) EPC-Synthese von (-)-Hypnophilin. Liebigs Ann Chem 893Google Scholar
  134. 134.
    Weinges K, Haremsa S (1987) Chemistry and Stereochemistry of Iridoids X. Enantiomerically Pure Hexahydropentalene Derivatives - Building Units for the Synthesis of Cyclopentanoid Natural Products. Liebigs Ann Chem 679Google Scholar
  135. 135.
    Weinges K, Ziegler HJ, Schick H (1992) Enantiomerenreines (+)-Cyclosarkomycin aus Catalpol. Liebigs Ann Chem 1213Google Scholar
  136. 136.
    Weinges K, Neuberger K, Schick H, Reifenstahl U, Imgartinger H (1991) Eine effiziente Synthese enantiomerenreiner (-)-Specionin-Analoga aus peracetylierten Iridoidglucosiden. Kristall-und Molek¨¹lstruktur von (-)-3’-Methoxyspecionin. Liebigs Ann Chem 477Google Scholar
  137. 137.
    Van der Eycken E, Janssens A, Vandewalle M (1987) Iridoids: an Efficient Conversion of (-)-Catalpol into (-)-Specionin. Tetrahedron Lett 28: 3519Google Scholar
  138. 138.
    Naruto M, Ohno K, Naruse N (1978) The Synthesis of Useful Chiral Prostanoid Intermediates and Naturally Occurring Prostaglandins from Aucubin. Chem Lett 1419Google Scholar
  139. 139.
    Naruto M, Ohno K, Naruse N, Takeuchi H (1978) (+)-11-Deoxy-13,14-dihydro13ß,11a-epoxymethano-12-isoprostaglandin F2¦Á from Aucubin. Chem Lett 1423Google Scholar
  140. 140.
    Naruto M, Ohno K, Naruse N, Takeuchi H (1979) Synthesis of Prostaglandins and their Congeners I. (+)-11-Deoxy-11a-hydroxymethyl Prostaglandin F2¦Á from Aucubin. Tetrahedron Lett 251Google Scholar
  141. 141.
    Ohno K, Naruto M (1979) A Simple Synthesis of (+)-11-Deoxy-11a-hydroxymethyl PGF1¦Á and its 12-Isomer from Aucubin. Chem Lett 1015Google Scholar
  142. 142.
    Ohno K, Naruto M (1980) Synthesis of Novel Prostanoids Having a Cyclopenta[c]furan Structure with a Hemithioacetal Side Chain from Aucubin. Chem Lett 175Google Scholar
  143. 143.
    Tixidre A, Rolland Y, Gamier J, Poisson J (1982) Aucubin, a Source of Prostanoid Synthons - New Hemisynthetic Pathways. Heterocycles 19: 253Google Scholar
  144. 144.
    Bernie R, Davini E, Iavarone C, Trogolo C (1986) Synthesis of a Corey Lactone Analogue from Iridoid Glucoside Aucubin and Its Utilization in the Synthesis of a New 12-epi-PGF2a Modified at C-11. J Org Chem 51: 4600Google Scholar
  145. 145.
    Bonini C, Di Fabio R (1982) Synthesis of a Corey’s Lactone Analogue from the Iridoid Aucubin. Tetrahedron Lett 23: 5199Google Scholar
  146. 146.
    Bonadies F, Gubbiotti A, Bonini C (1985) New Routes for the Conversion of Aucubin to 11-Deoxy-11-methylprostaglandin Intermediates. Gazz chim ital 115: 45Google Scholar
  147. 147.
    Bonini C, Iavarone C, Trogolo C, Di Fabio R (1985) One-pot Conversion of 6-Hydroxy-¦¤7-iridoid Glucosides into cis-2-Oxabicyclo[3.3.0]oct-7-enes and Transformation into Corey’s Lactone Analogue. J Org Chem 50: 958Google Scholar
  148. 148.
    Davini E, Iavarone C, Mataloni F, Trogolo C (1988) Conversion of Aucubin to a Useful Corey Lactone Analogue for the Synthesis of 11-Methyl PGA2. J Org Chem 53: 2089Google Scholar
  149. 149.
    Bianco A, Mazzei RA (1997) Synthesis of a New Carbocyclic Nucleoside Analog. Tetrahedron Lett 38: 6433Google Scholar
  150. 150.
    Carnevale G, Davini E, Iavarone C, Trogolo C (1988) Organomercury Chemistry of Iridoid Glucosides. 1. Chemoselective Hydroxymercuration-Demercuration of Aucubin: A Cheaper and Efficient Approach to Epimeric Isoeucommiols and 6,7-Bis(hydroxymethyl)-cis-2-oxabicyclo[3.3.0]oct-7-enes. J Org Chem 53: 5343Google Scholar
  151. 151.
    D’Annibale A, Iavarone C, Trogolo C (1993) Organomercury Chemistry of Iridoid Glucosides, Part 3. Heterocycles 36: 701Google Scholar
  152. 152.
    Carnevale G, Davini E, Iavarone C, Trogolo C (1990) Organomercury Chemistry of Iridoid glucosides, Part 2. Chemoselective Methoxymercuriation-Demercuriation of Aucubin: A New Approach to Optically Active Cyclopentanols. J Chem Soc Perkin Trans 1, 989Google Scholar
  153. 153.
    Franzyk H, Rasmussen JH, Mazzei RA, Jensen SR (1998) Synthesis of Carbocyclic Homo-N-nucleosides from Iridoids. Eur J Org Chem 2931Google Scholar
  154. 154.
    Vince R, Hua M, Brownell J, Daluge S, Lee F, Shannon WM, Lavelle GC, Qualls J, Weislow OS Potent and Selective Activity of a New Carbocyclic Nucleoside Analog (Carbovir-NSC-614846) against Human Immunodeficiency Virus In Vitro (1988) Biochem Biophys Res Comm 156: 1046Google Scholar
  155. 155.
    Wachtmeister J, Classon B, Samuelsson B, Kvarnström I (1995) Synthesis of 2’,3’Dideoxycyclo-2’-pentenyl-3’-C-hydroxymethyl Carbocyclic Nucleoside Analogues as Potential Anti-viral Agents. Tetrahedron 51: 2029Google Scholar
  156. 156.
    Hayashi M, Yaginuma S, Muto N, Tsujino M (1980) Structures of Neplanocins, New Antitumor Antibiotics. Nucleic Acids Symp Ser 8: 65Google Scholar
  157. 157.
    Ishiguro K, Yamaki M, Tagaki S, Ikeda Y, Kawakami K, Ito K, Nose T (1988) Studies on Iridoid-related Compounds. V. Antitumor Activity of Iridoid Dervs. Periodate Oxidation Products. J Pharmacobio-Dyn 11: 131Google Scholar
  158. 158.
    Raj K, Mathad VT, Bhaduri AP (1995) Modified Iridoid Glycosides (Part 1). Syntheses of 4’,5’-Unsaturated Iridoid Glycosides from Loganin and Arbortristoside A. Nat Prod Lett 7: 51Google Scholar
  159. 159.
    Raj K, Mathad VT, Bhaduri AP, Pandey CP, Patnaik GK (1996) Modified Iridoid Glycosides, Part 3. Syntheses and Hepatoprotective Evaluation of Modified Iridoid Glycosides. Indian J Chem 35B: 1056Google Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • H. Franzyk
    • 1
  1. 1.Department of Organic ChemistryThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations